Физиология органов зрения. Орган зрения человека

Глаза человека, может быть, и небольшой орган, но они дают нам то, что многие считают самым важным из наших чувственных ощущений мира вокруг – зрение.

Хотя конечное изображение и формируется головным мозгом, но его качество, несомненно, зависит от состояния и функциональности воспринимающего органа – глаза.

Анатомия и физиология этого органа у человека сформировалась в ходе эволюции под влиянием условий, необходимых для выживания нашего вида. Поэтому имеет ряд особенностей – центральное, периферическое, бинокулярное зрение, возможность приспосабливаться к интенсивности освещения, фокусироваться на объектах, находящихся на разном удалении.

Анатомия глаза

Глазное яблоко неспроста носит такое название, так как орган имеет не совсем правильную форму сферы. Его кривизна больше в направлении спереди назад.

Находятся эти органы на одной плоскости лицевой части черепа достаточно близко друг от друга, чтобы обеспечивать перекрывание полей зрения. В черепе человека имеется специальное «посадочное место» для глаз – глазницы, которые защищают орган и служат местом прикрепления глазодвигательных мышц. Размеры орбиты взрослого человека обычного телосложения находятся в пределах 4-5 см по глубине, 4 см по ширине и 3,5 см по высоте. Глубина залегания глаза обусловлена этими размерами, а также объемом жировой клетчатки в глазнице.

Спереди глаз защищен с помощью верхнего и нижнего века – особых кожных складок с хрящеватым каркасом. Они мгновенно готовы сомкнуться, проявив мигательный рефлекс при раздражении, прикосновении к роговице, ярком свете, порывах ветра. На переднем наружном крае век в два ряда растут ресницы, здесь же открываются протоки железок.

Пластическая анатомия щелей век может быть относительно внутреннего угла глаза приподнятой, идти вровень, или внешний угол будет опущен. Чаще всего встречается приподнятый наружный угол глаза.

По краю век начинается тонкая защитная оболочка. Слой конъюнктивы покрывает оба века и глазное яблоко, переходя в его задней части в роговичный эпителий. Функция этой оболочки – продуцирование слизистой и водянистой частей слезной жидкости, которыми смазывается глаз. Конъюнктива имеет богатое кровоснабжение, и по ее состоянию нередко можно судить не только о заболеваниях глаз, но и об общем состоянии организма (например, при болезнях печени она может иметь желтоватый оттенок).

Вместе с веками и конъюнктивой вспомогательный аппарат глаза составляют мышцы, осуществляющие движения глазами (прямые и косые) и слезный аппарат (слезная железа и дополнительные мелкие железы). Основная железа включается, когда есть необходимость устранения раздражающего элемента с глаза, осуществляет выработку слез при эмоциональной реакции. Для перманентного смачивания глаза слезу производят в небольшом количестве добавочные железы.

Смачивание глаза происходит мигающими движениями век и мягким скольжением конъюнктивы. Слезная жидкость стекает через пространство за нижним веком, собирается в слезном озере, потом в слезном мешке вне орбиты. Из последнего по носослезному протоку жидкость отводится в нижний носовой ход.

Наружный покров

Склера

Анатомические особенности покрывающей глаз оболочки заключаются в ее неоднородности. Задняя часть представлена более плотным слоем – склерой. Он непрозрачен, так как образован беспорядочным скоплением фибриновых волокон. Хотя у младенцев склера еще настолько нежная, что имеет не белесоватый, а голубой оттенок. С возрастом в оболочке происходит отложение липидов, и она характерно желтеет.

Это опорный слой, обеспечивающий форму глазу и дающий возможность прикрепления глазодвигательных мышц. Также в задней части глазного яблока склера на некотором продолжении покрывает зрительный глазной нерв, выходящий от глаза.

Роговица

Глазное яблоко не полностью покрывается склерой. В передней 1/6 части оболочка глаза становится прозрачной и называется роговицей. Это куполообразная часть глазного яблока. Именно от ее прозрачности, гладкости и симметричности кривизны зависит характер преломления лучей и качество зрения. Вместе с хрусталиком роговица ответственна за фокусировку света на сетчатке.

Средний слой

Эта оболочка, находящаяся между слоем склеры и сетчатки, сложного строения. По анатомическим особенностям и функциям в ней выделяют радужку, цилиарное тело, хориоидею.

Второе распространенное название – ирис. Она достаточно тонкая – не достигает и полмиллиметра, а в месте перетекания в цилиарное тело вдвое тоньше.


Именно радужка определяет самую привлекательную характеристику глаза – его цвет

Непрозрачность структуры обеспечивается двойным слоем эпителия на задней поверхности радужки, а цвет дает наличие клеток-хроматофоров в строме. Радужка, как правило, мало чувствительна к болевым раздражениям, поскольку содержит немного нервных окончаний. Основная ее функция – адаптация – регулирование количества света, которое достигнет сетчатки. Диафрагма содержит круговые мышцы вокруг зрачка и радиальных мышц, расходящиеся наподобие лучей.

Зрачок – это отверстие в центре радужной оболочки, расположенное напротив хрусталика. Сокращение мышц, идущих по кругу, уменьшает зрачок, сжатие радиальных мышц увеличивает его. Поскольку эти процессы происходят рефлекторно в ответ на степень освещенности, то на изучении реакции зрачков на свет основывается тест cостояния III пары черепных нервов, которые могут поражаться при инсульте, ЧМТ, инфекционных заболеваниях, опухоли, гематоме, диабетической нейропатии.

Реснитчатое тело

Это анатомическое образование представляет собой «бублик», находящийся между радужной и, собственно, сосудистой оболочками. От внутреннего диаметра этого кольца к линзе тянутся цилиарные отростки. В свою очередь, от них отходит огромное количество тончайших зонулярных волокон. Они прикрепляются к линзе по линии экватора. Все вместе эти волокна образуют цинную связку. В толще реснитчатого тела находятся цилиарные мышцы, с помощью которых хрусталик меняет свою кривизну и, соответственно, фокус. Напряжение мышц позволяет линзе округлиться и рассматривать предметы на близком расстоянии. Расслабление, наоборот, ведет к уплощению хрусталика и отдалению фокуса.

Реснитчатое тело в офтальмологии – одна из главных мишеней при лечении глаукомы, так как именно его клетками вырабатывается внутриглазная жидкость, создающая внутриглазное давление.

Пролегает под склерой и представляет большую часть всего сосудистого сплетения. Благодаря ей, реализуется питание сетчатки, ультрафильтрация, а также механическая амортизация.

Состоит из переплетения задних коротких цилиарных артериол. В переднем отделе эти сосуды создают анастамозы с артериолами большого кровеносного круга радужной оболочки. Сзади в районе выхода зрительного нерва эта сеть сообщается с капиллярами зрительного нерва, идущими от центральной артерии сетчатки.

Часто на фото и видео при расширенном зрачке и яркой вспышке могут получиться «красные глаза» – это видимая часть глазного дна, сетчатки и сосудистой оболочки.

Внутренний слой

Большое внимание атлас по анатомии человеческого глаза уделяет обычно его внутренней оболочке, называемой сетчаткой. Именно благодаря ей мы можем воспринимать световые раздражители, из которых потом формируются зрительные образы.

Отдельная лекция может быть посвящена только анатомии и физиологии внутреннего слоя как части мозга. Ведь на самом деле сетчатка, хоть и отделилась от него на ранней стадии развития, но до сих пор посредством зрительного нерва имеет прочную связь и обеспечивает трансформацию световых раздражителей в нервные импульсы.

Сетчатка может воспринимать световые раздражители только той площадью, что впереди очерчена зубчатой линией, а в задней части диском зрительного нерва. Точку выхода нерва называют «слепым пятном», здесь совершенно отсутствуют фоторецепторы. По этим же границам происходит сращение фоторецепторного слоя с сосудистым. Такое строение дает возможность питать сетчатку посредством сосудов хориоидеи и центральной артерии. Примечательно то, что оба этих слоя нечувствительны к боли, так как в нем нет ноцицептивных рецепторов.

Сетчатка – необычная ткань. Ее клетки бывают нескольких видов и располагаются по всей площади неравномерно. Слой, обращенный к внутреннему пространству глаза, составляют особые клетки – фоторецепторы, которые содержат светочувствительные пигменты.


Рецепторы различаются по форме и способности к восприятию света и цвета

Одни из таких клеток – палочки , в большей мере занимают периферию и обеспечивают сумеречное зрение. Несколько палочек, как веер, соединяются с одной биполярной клеткой, а группа биполярных клеток – с одной ганглиозной. Таким образом, нервная клетка получает достаточно мощный сигнал при малом освещении, и человеку предоставляется возможность видеть в сумерках.

Другой вид фоторецепторных клеток – колбочки – специализируются на восприятии цвета и обеспечении четкого и ясного видения. Они концентрируются по центру сетчатки. Самая большая густота колбочек наблюдается в так называемом желтом пятне. И здесь есть место самого острого восприятия, входящее в состав желтого пятна – центральное углубление. Эта зона полностью избавлена от кровеносных сосудов, застилающих поле зрения. А высокая четкость зрительного сигнала обусловлена прямой связью каждого из фоторецепторов через единственную биполярную клетку с ганглиозной. Благодаря такой физиологии, сигнал напрямую транслируется к зрительному нерву, который берет свое начало из сплетения длинных отростков ганглиозных клеток – аксонов.

Наполнение глазного яблока

Внутреннее пространство глаза поделено на несколько «отсеков». Ближайший к роговичной поверхности глаза называют передней камерой. Ее местоположение – от роговицы до радужки. Она имеет несколько важных ролей в глазах. Во-первых, обладает иммунной привилегией – здесь не развивается иммунный ответ на появление антигенов. Так появляется возможность избегать чрезмерных воспалительных реакций органов зрения.

Во-вторых, своим анатомическим строением, а именно наличием угла передней камеры, она обеспечивает циркуляцию внутриглазной водянистой влаги.

Следующий «отсек» – задняя камера – небольшое пространство, ограниченное радужкой спереди и линзой с цинной связкой позади.

Эти две камеры заполнены водянистой влагой, вырабатываемой цилиарным телом. Основное назначение данной жидкости – питание участков глаза, где нет кровеносных сосудов. Ее физиологичная циркуляция обеспечивает поддержание внутриглазного давления.

Стекловидное тело

Эта структура отделена от других тонкой фиброзной мембраной, а внутреннее наполнение имеет особую консистенцию, благодаря растворенным в воде белкам, гиалуроновой кислоте и электролитам. Это формообразующая составляющая глаза связана с цилиарным телом, капсулой линзы и сетчаткой по зубчатой линии и в районе диска зрительного нерва. Поддерживает внутренние структуры и обеспечивает тургор и постоянство формы глаза.


Основной объем глаза заполнен гелеобразной субстанцией, получившей название стекловидное тело

Хрусталик

Оптическим центром зрительной системы глаза является его линза – хрусталик. Он двояковыпуклый, прозрачный и эластичный. Капсула тонкая. Внутреннее содержимое хрусталика полутвердое, на 2/3 состоит из воды и на 1/3 из белка. Его главная задача – преломление света и участие в аккомодации. Это возможно, благодаря способности хрусталика варьировать свою кривизну при натяжении и расслаблении цинной связки.

Строение глаза выверено очень точно, в нем нет лишних и незадействованных структур, начиная от оптической системы и заканчивая удивительной физиологией, позволяющей ни замерзать, ни ощущать боли, обеспечивать слаженную работу парных органов.

1. Цветовое зрение. В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высокочувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение. В сетчатке глаза человека есть три вида колбочек, максимум чувствительности которых приходится на красный, зелёный и синий участок спектра, то есть соответствует трем «основным» цветам. Они обеспечивают распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что вызывает эффект метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

2. Бинокулярное и стереоскопическое зрение. Бинокулярное зрение у человека, обеспечивается наличием двух глаз, информация от которых обрабатывается сначала раздельно и параллельно, а затем синтезируется в мозгу в зрительный образ. В процессе эволюции у некоторых позвоночных, в том числе и у предков человека в связи с приобретением стереоскопического зрения, глаза переместились вперед. Это привело к перекрытию левого и правого зрительных полей и к появлению новых ипсилатеральных связей: левый глаз - левое полушарие, правый глаз - правое. Таким образом, появилась возможность иметь в одном месте зрительную информацию от левого и правого глаза, для их сопоставления и измерения глубины. Большинство особенностей бинокулярного зрения человека обусловлено характеристиками нейронов и нейронных связей.

Свойства зрения:

1. Световая чувствительность человеческого глаза оценивается величиной порога светового раздражителя. Чувствительность глаза зависит от полноты адаптации, от интенсивности источника света, длины волны и угловых размеров источника, а также от времени действия раздражителя. Чувствительность глаза понижается с возрастом из-за ухудшения оптических свойств склеры и зрачка, а также рецепторного звена восприятия.

2. Острота зрения. Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между цилиндрами и колбочками сетчатки и называется остротой зрения.

3. Бинокулярность. Рассматривая предмет обоими глазами, мы видим его только тогда одиночным, когда оси зрения глаз образуют такой угол сходимости (конвергенцию), при котором симметричные отчётливые изображения на сетчатках получаются в определённых соответственных местах чувствительного жёлтого пятна (fovea centralis). Благодаря такому бинокулярному зрению, мы не только судим об относительном положении и расстоянии предметов, но и воспринимаем впечатления рельефа и объёма.

4. Контрастная чувствительность - способность человека видеть объекты, слабо отличающиеся по яркости от фона. Оценка контрастной чувст-сти производится по синусоидальным решеткам.

5. Адаптация зрения. Адаптация происходит к изменениям освещённости (темновая адаптация), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света, см. также Баланс белого). Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)

Дефекты зрения. Самый массовый недостаток - нечёткая, неясная видимость близких или удалённых предметов.

Дефекты хрусталика: дальнозоркость, близорукость, астигматизм.

Дефекты сетчатки: дальтонизм, скотома

Прочие дефекты : косоглазие

Как мы видим? Физиология зрения

Палочки и колбочки , располагающиеся в наружном слое сетчатки, являются светочувствительными рецепторами глаза. Они находятся в самом непосредственном контакте с нервными окончаниями (нейронами). Отростки ганглиозных нейронов образуют зрительный нерв. В конечном счете образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс, который идет в зрительный нерв, а затем – в кору головного мозга. Зрительный нерв на выходе из глаза делится на две половины. Внутренняя его половина перекрещивается и вместе с наружной половиной противоположной стороны направляется к коленчатому телу, где находится еще один нейрон, заканчивающийся в зрительной зоне коры затылочной доли полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних бугорков четверохолмия. Эти ядра, так же как и ядра коленчатых тел, представляют собой первичные зрительные центры. Основным раздражителем для глаза является свет, который представляет собой электромагнитные волны длиной от 400 до 750 ммк. Более короткие (ультрафиолетовые) и более длинные (инфракрасные) лучи глазом человека не воспринимаются. В передней части глаза находятся хрусталик и роговица, представляющие собой аппарат, преломляющий световые лучи и фокусирующий их на сетчатке. В сетчатке насчитывают около 7 миллионов колбочек и почти 130 миллионов палочек. Палочки обладают большей чувствительностью к свету, их также называют аппаратом сумеречного зрения.

Чувствительность колбочек к свету почти в 1000 раз меньше, чем чувствительность палочек, – они являются аппаратом дневного и цветового видения. Из млекопитающих только обезьяны и люди способны воспринимать цвета. Собаки и копытные животные цвета не воспринимают (так же, как и быки, которые не могут отличить черный цвет от синего и красного). Колбочки и палочки разбросаны по сетчатке неравномерно. На дне глаза, напротив зрачка, имеется так называемое желтое пятно, в центре которого есть углубление. Здесь фиксируется изображение при рассматривании предмета. В центральной ямке желтого пятна находятся только колбочки. Чем ближе к периферии сетчатки, тем меньше на ней колбочек. Соответственно, по направлению к периферии увеличивается число палочек. На периферии сетчатки находятся только палочки. Недалеко от желтого пятна находится слепое пятно (расположено ближе к носу). Слепое пятно – место выхода зрительного нерва. В этом участке глаза нет фоторецепторов, и оно не принимает участия в зрении. Глаз человека всегда находится в скачкообразном, мелком и непрерывном движении. Это движение почти незаметно, но благодаря ему в мозг поступает информация об изменениях световых сигналов. Импульсы в зрительном нерве возникают только в момент включения и выключения света. Если бы глаз человека был неподвижен, мы бы видели мир как бы затянутым серой дымкой, как это происходит у лягушки. Зато появление летящей мошки лягушка видит моментально.

Как строится изображение на сетчатке?

Пройдя через несколько преломляющих сред (роговица, передняя камера, хрусталик, стекловидное тело), луч света попадает на сетчатку . Ясное видение какого-либо предмета возможно только в том случае, если лучи, исходящие из одной точки внешнего пространства, будут сфокусированы в одну точку на сетчатке. Глаз сам по себе представляет сложную оптическую систему, но для того, чтобы построить простейшее изображение, можно воспользоваться моделью глаза. Такая модель может иметь только одну преломляющую поверхность (роговицу) и одну преломляющую среду (стекловидное тело). Для того чтобы построить изображение на модели глаза (редуцированный глаз), надо от двух крайних точек предмета провести два луча через узловую точку (точка, через которую лучи идут не преломляясь, в редуцированном глазу она помещается на расстоянии 7,5 мм от вершины роговицы и в 15 мм от сетчатки, такие расстояния взяты потому, что длина обычного человеческого глаза составляет 22,5 мм). Лучи, проходящие через узловую точку, называются направляющими, а угол, образуемый ими, называется углом зрения. Изображение на сетчатке получается перевернутое, действительное и уменьшенное . Но несмотря на то что изображение на сетчатке перевернуто, мы видим предмет в прямом изображении. Это происходит потому, что деятельность одних органов чувств проверяется другими органами. Когда-то древнегреческий естествоиспытатель Страттон поставил интересный опыт. Он надел очки с оптической системой, позволяющей видеть все «вверх ногами». Но уже через 4 дня изображение стало на свое место, и он стал видеть все окружающее в обычном виде.

Что такое острота зрения?

Острота зрения – это способность глаза видеть раздельно две точки, что доступно глазу в том случае, если расстояние между точками не менее 4 микрон, а угол зрения составляет одну угловую минуту. Если угол зрения меньше 1 минуты, то мы не получим ясного изображения, так как точки сольются. Для примера можно рассмотреть здание, украшенное электрическими гирляндами. С большого расстояния мы увидим не отдельные лампочки, а прямые или волнистые линии. Только подойдя ближе, мы сможем различить каждый источник света . Если лучи, падающие на сетчатку, возбуждают сплошной ряд колбочек, то глаз видит сплошную линию. Но если возбуждаются только колбочки, стоящие через одну, то глаз видит отдельные точки. Для того чтобы видеть раздельно две отдельные точки, надо, чтобы между двумя возбужденными колбочками находилась хотя бы одна невозбужденная. Для определения остроты зрения в больницах пользуются специальными таблицами, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемый помещается на определенном расстоянии от таблицы, и для него находят ту строку, которую он может прочитать без ошибок. Рассчитывается острота зрения по простой формуле: V = d / D, где V – острота зрения, d – расстояние от испытуемого до таблицы и D – расстояние, с которого эту строку должен видеть нормальный глаз. Если испытуемый с 5 метров читает 12-ю строку, то у него превосходное зрение («орлиные глаза»). Обычно острота зрения зависит от освещенности. Она увеличивается при ярком свете и уменьшается при слабом освещении.

Аккомодация (приспособление)

Аккомодация – это способность глаза регулировать «преломляющую силу» для приспособления к восприятию предметов, находящихся от него на различных расстояниях. Механизм аккомодации заключается в следующем: при сокращении волокон аккомодационной мышцы происходит расслабление связки, посредством которой хрусталик подвешен к цилиарному телу; в результате этого хрусталик, обладающий большой эластичностью, приобретает более выпуклую форму, и преломляющая способность глаза усиливается. При расслаблении аккомодационной мышцы происходит обратное, хрусталик уплощается, и преломляющая сила оптической системы глаза соответственно уменьшается. Аккомодация глаза может быть осуществлена в определенных пределах, зависящих главным образом от эластических свойств хрусталика.

Неправильное преломление света в глазу (нарушение аккомодации)

По своему устройству глаз как оптическая система сходен с фотоаппаратом. Роль объектива выполняет хрусталик совместно с преломляющей средой передней камеры и стекловидного тела.

С возрастом эластичность хрусталика уменьшается, и он утрачивает способность менять свою кривизну. При этом лучи света преломляются не точно на сетчатке, а немного впереди или позади нее. Когда это случается, человек видит не четкое и ясное, а расплывчатое или искаженное изображение. Причина заключается в напряженных глазных мышцах, которые не дают глазу достаточно быстро расслабиться, чтобы автоматически перефокусироваться с близкого расстояния на далекое и наоборот. Человек, в глазу которого неправильно преломляется свет, на самом деле только потерял гибкость глазных мышц и способность их координировать. Состояние это обратимо . Рассмотрим схемы наиболее распространенных отклонений от правильного преломления лучей света в глазном яблоке.

Рис. 4.

Близорукость глаза (а) исправляется с помощью рассеивающей линзы (б) ; дальнозоркость (в) – с помощью собирающей линзы (г) .

В дальнозорком глазу (в) фокус при спокойном состоянии глаза находится за сетчаткой. Дальнозоркий глаз преломляет слабее нормального. Для того чтобы видеть даже весьма удаленные предметы, дальнозоркий глаз должен делать усилие; для видения близко лежащих предметов аккомодационная способность глаза уже недостаточна. Поэтому для исправления дальнозоркости употребляются очки с собирающими линзами (г) , приводящие фокус глаза в спокойном состоянии на сетчатку.

Восприятие цвета

Существует несколько типов колбочек, имеющих различную чувствительность к свету с различной длиной волны. Лучи с разной длиной волны создают ощущение различных цветов. По неоднозначному мнению ученых, число типов колбочек, воспринимающих цвета, колеблется. Так, Гельмгольц предполагал существование трех видов колбочек, Р. Гранит – 7 видов. Однако механизм цветового ощущения в настоящее время до конца не изучен. Ясно одно: в анализе цвета принимают участие не только рецепторы глаза, но и центральная нервная система.

Цветовая слепота

Цвет является составным и состоит из излучений с разной длиной волны, образующих часть спектра электромагнитных излучений. Длина волны измеряется в миллимикронах (ммк). Видимая глазом человека часть спектра состоит из излучений с длиной волны примерно от 380 до 750 нм (нанометров). В спектре различают семь цветов, которые условно называют основными. Не все люди одинаково хорошо могут различать цвета. Нарушение цветового зрения наблюдается приблизительно у 8 % мужчин и у 0,5 % женщин. Есть люди, которые не различают красный цвет (протанопы), другие не могут увидеть зеленый цвет (дейтеранопы), третьи – фиолетовый (тританопы). Очень редко встречаются люди, которые вообще не могут различать цвета. Они видят серый мир, окрашенный в различные оттенки. Причиной нарушения цветового восприятия считается недостаточное количество колбочек, воспринимающих цвета (или полное их отсутствие). О нарушениях цветоощущений и сегодня идет спор между учеными, но истина до сих пор не выявлена.

Что такое поле зрения?

Поле зрения – это пространство, видимое глазу при неподвижно устремленном взгляде. Различают центральное и периферическое зрение. Центральное зрение осуществляется за счет большого количества колбочек, тесно примыкающих друг к другу в районе желтого пятна. Каждая из колбочек связана с нейронами (биполярным и ганглиозным), которые, в свою очередь, передают импульсы головному мозгу. Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии глаза количество колбочек уменьшено и каждая из них окружена палочками. На периферии не каждая колбочка имеет свой собственный нейрон, здесь один нейрон приходится на группу колбочек. Периферическое зрение не настроено на различение деталей предметов, но благодаря ему мы улавливаем малейшее их перемещение. Боковое зрение имеет большое значение для восприятия внешнего мира и ориентации в нем. Это важно как для водителей, так и для работников производств, связанных с движущимися механизмами. Определение поля зрения производится с помощью специального прибора – периметра Форстера. Наибольшее поле зрения – к виску и кнаружи. Здесь оно достигает 100 %, к носу и кверху поле зрения уменьшается до 60 %, а книзу – до 50 %.

Что такое адаптация глаза?

Если человек выходит из темного помещения на яркий свет, то в первые секунды он обычно бывает ослеплен, но все очень быстро проходит, глаза привыкают к яркому светуадаптируются . Уменьшение чувствительности рецепторов глаза к свету называется световой адаптацией. При ней происходит выцветание зрительного пурпура. Этот процесс занимает несколько минут. Темновая адаптация глаза происходит при переходе из освещенного места в темноту. Чувствительность палочек при этом возрастает в 200–300 тысяч раз. В первые мгновения адаптация идет медленно, через 10–30 минут процесс значительно убыстряется. К концу часа адаптация достигает своего максимума.

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!