Средний мозг анатомия среднего мозга. Верхние бугорки четверохолмия Что находится в задних буграх четверохолмия

Для каждого человека важно знать, как он устроен. И одним из самых интересных органов для изучения является головной мозг, который до сих пор не удалось познать полностью. Немногие после курса школьной биологии помнят функции среднего мозга и назначение. Приходит необходимость разобраться в сложных медицинских терминах уже в зрелом возрасте, когда человек начинает посещать врачей или сам собирается поступить в медицинский ВУЗ.

Если вы желаете узнать, что такое средний мозг и его расположение, необязательно изучать сложные медицинские энциклопедии и учиться в медицинском институте. Сознательные пациенты перед походом в медучреждение желают больше узнать о недуге, и какие функции выполняет больной орган. Тогда больничные процедуры не будут казаться такими пугающими и непонятными.

Базовые сведения

Центральная нервная система содержит нейроны с отростками и глия. Головной мозг имеет всего пять отделов. Первый – продолговатый – продолжение спинного. Он передает информацию в другие отделы и обратно. Выполняет регулирующую функцию по отношению к координации движений. Второй – мост – здесь находятся центры среднего мозга, отвечающие за усвоение аудиоинформации и видеоинформации. Данный отдел выступает за координацию движений. Третий – мозжечок – соединяет задний и передний отделы. Четвертый – средний – ответственен за мимику, движения глазных яблок, через него проходят слуховые пути. Именно его и будем рассматривать. Пятый – передний – нормализует психическую деятельность.

Это интересно. Связи между размером мозга и умственными способностями у человека не существует. Гораздо важнее количество нервных связей.

Где находится

Местоположение соответствует названию органа. Он входит в состав стволовой части. Располагается под промежуточным и над мостом. На формирование среднего мозга человека оказал воздействие механизм восприятия видеоинформации во время исторического развития организма. Так уж происходил процесс эволюции, что наиболее развитым стал передний отдел. А через средний стали проходить проводящие каналы сигналов в различные отделы.

Как развивается средний мозг

Находящиеся в чреве своей матери дети должны пройти множество стадий развития. В течение эмбриональной стадии, средний головной мозг вырастает из небольшого пузырька и остается целостным на протяжении всей жизни. На всем протяжении развития в этой части появляются все новые клетки, они сжимают мозговой водопровод. При нарушениях на этом этапе, может развиться проблемы с мозговым водопроводом – частичная или полная закупорка Одно из опаснейших последствий – такая опасная болезнь, как гидроцефалия.

Полезная информация. Каждый раз после того, как человек запоминает информацию, формируются нейронные связи. Это означает, что структуры различных отделов, в том числе, среднего мозга, постоянно меняется, он не замирает в определенном состоянии.

Какую роль играет


Именно средний отдел регулирует мышечный тонус. Его роль соответствует его промежуточному положению. За счет того, что средний мозг имеет особое строение, в его функции входит передача информации. У него масса разных предназначений:

  • сенсорные – чтобы передавать тактильные ощущения;
  • двигательные – координация зависит от данной части среднего мозга;
  • рефлекторные – например, глазодвигательная, реакция на свет и звук.

За счет работы среднего отдела, человек может стоять и ходить. Без него человек бы не смог полноценно перемещаться в пространстве. Также, работа вестибулярного аппарата управляется на уровне среднего мозга.

Устройство органа

Известно, что средний мозг человека имеет различные части, каждая из которых выполняет свою роль. Четверохолмия – структура представляет собой парные холмы. Верхние – это визуальные и нижние – аудиальные.

В ножках располагается черное вещество. Благодаря ему человек не только лежит, а может осуществлять точные движения кистями рук и принимать пищу. В определенный момент средний отдел обрабатывает информацию о том, когда нужно поднести ложку ко рту, как прожевать пищу и какая функция позволит проглотить ее.

Полезно узнать: Головной мозг: функции, строение

Глазной двигательный нерв берет свое начало между ножек, откуда и выходит. Он отвечает за сужение зрачка и некоторые двигательные функции глазного яблока. Чтобы понять строение среднего мозга, необходимо узнать где он находится. Составлен он из промежуточного и больших полушарий большого мозга, устроен несложно и имеет всего два отдела. Четверохолмие на располагающихся неподалеку двух парных двухолмиях, которые образуют верхнюю стенку. Напоминают по внешнему виду пластину. Ножки – там располагаются проводящие каналы, идущие к полушариям переднего отдела и соединяющие его с нижними участками нервной системы.

Сколько частей имеет средний отдел

Всего существует три части. Дорсальная – крыша срединного отдела. Она разделяется на 4 холмика с помощью канавок, пересекающихся попарно. Два верхние холма – подкорковые центры регуляции зрения, а оставшиеся нижние – слуховые. Вентральная – это так называемые ножки мозга. Здесь базируются проводящие каналы к переднему отделу. Внутреннее пространство мозга – имеет вид полого канала.

Полезная информация. Если человек не будет дышать кислородом более пяти минут, мозг будет поврежден необратимо, что приведет к смерти.

Ядра


Внутри бугорков четверохолмия скапливается серое вещество, скопления которого называют ядрами. В качестве основной функции ядер называют иннервацию глаз. Они бывают следующих видов.

Ретикулярной формации – принимает участие в стабилизации работы скелетных мышц. Активизируют клетки коры мозга головы, а на спинной оказывают тормозящее действие. Глазодвигательного нерва – содержат волокна, иннервирующие сфинктер и глазные мышцы. Блокового нерва – снабжают нервами косую мускулу органа зрения. Черное вещество – окрас связан с пигментом меланином. Нейроны этого веществ сами синтезируют дофамин. Координируют мышцы лица, мелкие движения. Красные ядра среднего мозга – активируют нейроны мышц-сгибателей и мышц-разгибателей

Профилактика патологий


Мозг без интеллектуальной деятельности и физических нагрузок не может функционировать правильно. Обычно сбои в работе ЦНС наблюдаются у людей старше 70 лет. Но заболевания данной группы диагностируют у тех, кто после выхода на пенсию перестает поддерживать свое здоровье и вести здоровый образ жизни. Однако, бывают и врожденные патологии в среднем мозге, заболеть можно в любом возрасте.

Полезно узнать: Функции и строение моста головного мозга, его описание

Регулярно заниматься спортом в меру физических возможностей, гулять на свежем воздухе, делать гимнастику по утрам. Отказаться от табака и спиртных напитков. Перейти на здоровое питание, употреблять как можно больше свежих овощей и фруктов. Не есть продукты с консервантами и эмульгаторами. Тренировать ум – для этого можно читать книги, решать кроссворды, играть в шахматы, получать новые знания в интересующей области.

Избавиться от авитаминоза – принимать витамины и антиоксиданты. Поскольку мозг на 60% состоит из жиров, нельзя отказываться от масла, но оно должно быть натуральным. К примеру, отлично подойдет оливковое. Избегать стрессовых ситуаций. Не заниматься монотонной работой слишком часто, делать перерывы, переключаясь на другие занятия. Следить за уровнем АД – гипертония может стать причиной инсульта.

Четверохолмие среднего мозга представляет собой образование в форме пластинки, расположенной в крыше среднего мозга.

С эволюционной точки зрения у амфибий рыб, и рептилий есть только два бугорка, однако у вышестоящих животных четверохолмие, как структурное образование среднего мозга уже ярко обозначено.

  • Верхние бугорки структуры — colliculi superiores.
  • Нижние бугорки — colliculi inferiores.

Верхние бугорки немного больше нижних. Верхние при этом разделены впадиной — так называемым субпинеальным треугольником. От каждого бугорка отходят так называемые ручки — пучки проводящих волокон. Все ручки направлены к промежуточному мозгу. От верхнего бугорка ручка идёт к зрительному тракту, при этом проходит под подушкой . А от нижнего более широкое и плоское образование уходит под срединное коленчатое тело.

Бугорки четверохолмия представляют собой структуры с определённой функциональной самостоятельностью. Верхние бугры при этом ведут себя как подкорковые образования, работающие как центры зрительного анализатора, при этом действуют в тандеме с боковыми — латеральными коленчатыми телами, располагающимися в промежуточном мозгу.

Нижние же бугры — служат подкорковым образованиями, работающими как центры слуховых анализаторов. Здесь тандем образовывается уже с медиальными коленчатыми телами.

В этих же нижних буграх происходит и переключение зрительной информации на слуховую и обратно. Нервные пути от бугров четверохолмия пролегают к ретикулярной формации мозгового ствола и к так называемым мотонейронам, которые располагаются в спинном мозге.

Четверохолмие среднего мозга, структура и функции

По структуре и функциональной принадлежности различают полимодальные нейроны четверохолмия, и детекторные нейроны. Детекторные способны реагировать только на один вид раздражения. Например, на такой признак, как смена темноты на свет, или наоборот, или определение направления источника света.

Если нервные клетки отвечают на стимул только тогда, когда импульс движется через рецептивное поле только в определённом направлении, такие клетки проявляют дирекциональную чувствительность.

В бугорках нейроны структурируются в колонки, располагающиеся сверху — вниз — вглубь бугорков. Все нейроны, организованные в одну колонку имеют рецептивное поле, которое располагается на одном и том же участке поля зрения.

Нервные клетки, находящиеся в глубине бугорков отвечают за направление взгляда, они возбуждаются тогда, когда движение глаза ещё не начато. Лишь некоторые из семи слоистых структур верхнего бугорка четверохолмия связаны со зрением. Здесь обрабатывается информация и из других органов чувств.

Бугры четверохолмия призваны организовывать реакции «обращения внимания» или настораживания. Кроме этого они проявляют старт-рефлексы на звуковые или световые раздражители, которые ещё опознаны корой больших полушарий.

При этом активируется, возбуждение распространяется к другим органам и приводит к значительным соматическим реакциям: возникновению мышечного тонуса, усилению и ускорению сердечных сокращений.

Начинается избегание, организм готовится к оборонительным реакциям. Другими словами: в четверохолмии разрабатываются и приводятся в готовность ориентировочные рефлексы, как зрительные, так и слуховые.

Четверохолмный рефлекс проявляет себя как сторожевой. Если у четверохолмий отмечается повышенная возбудимость, то у человека может возникнуть чрезмерная, гипертрофированная реакция на внезапный раздражитель в виде света или звука.

Человек вскрикивает или вздрагивает, а может даже вскочить на ноги или убежать. Четверохолмие формирует процесс движений. Если четверохолмный рефлекс оказывается нарушенным в результате травмы или заболевания, человек затрудняется с переключением одного вида двигательной активности, или даже отдельных движений, на другой.

Средний мозг - это самый маленький по размеру отдел головного мозга. Он такой скромный, но очень важный - в головном мозге нет неважных отделов. Если смотреть на размер продолговатого мозга и моста, то каждый из них примерно по 3 сантиметра, а средний мозг - это всего 2 сантиметра. Средний мозг находится между мостом и промежуточным мозгом и относится к стволовым структурам.

Если смотреть на макроанатомию среднего мозга, мы видим, что его верхняя часть, крыша, - это четыре холмика, которые выступают на поверхности среднего мозга. Выделяют верхнюю пару холмиков (или переднюю) и нижнюю пару (или заднюю). В целом это называют четверохолмьем. Нижняя часть среднего мозга называется ножки мозга. Внутри ножек выделяют покрышку, основание. Границей между четверохолмием и ножками мозга является узкий и тонкий канал, который проходит через средний мозг, - он называется мозговой водопровод, или сильвиев водопровод. В XVII веке, когда анатомы стали всерьез разбираться с мозгом, эта структура была описана. Сильвиев водопровод соединяет две большие полости внутри нашего головного мозга - третий желудочек и четвертый желудочек.

Когда у эмбриона формируется нервная трубка, внутри трубки остается узкий канал. В спинном мозге он дает спинномозговой канал, а в головном мозге он местами расширяется, и возникает система желудочков. Четвертый желудочек находится под мозжечком, и его нижней границей является верхняя сторона продолговатого мозга и моста - так называемая ромбовидная ямка. Этот четвертый желудочек сужается, и канал ныряет внутрь среднего мозга и превращается в мозговой водопровод. Уже в промежуточном мозге мозговой водопровод опять расширяется и дает узкий щелевидный третий желудочек.

Холмики четверохолмья - это сенсорные центры среднего мозга. Сначала в эволюции появляется передняя пара холмиков, и это нейроны, которые обрабатывают зрительные сигналы. У рыб это самые главные зрительные центры, а у нас они выполняют вспомогательную функцию, и в передних верхних холмиках четверохолмья находятся клетки, которые реагируют на новые зрительные сигналы. Четверохолмью, строго говоря, почти все равно, что мы конкретно видим, главное, что что-то изменилось. Изменения - это прежде всего движение объектов в поле зрения. Тогда в четверохолмье срабатывают нейроны - детекторы новизны, и запускается очень характерная реакция поворота глаз в сторону нового сигнала. А если нужно, поворачивается и голова, и даже все тело. По сути дела, работа четверохолмья - это любопытство на самом его древнем уровне, это стремление мозга собрать новую информацию. Еще Иван Петрович Павлов назвал эту реакцию ориентировочным рефлексом. Ориентировочный рефлекс - это один из самых сложных врожденных рефлексов нашего организма, но он точно так же врожденно задан, как глотательный рефлекс или рефлекс одергивания руки от источника боли.

Нижние холмики четверохолмья появляются в эволюции значительно позже, и они относятся к слуховым центрам. Обработка слухового сигнала начинается на уровне продолговатого мозга и моста, где находятся ядра восьмого нерва, а дальше информация передается в нижние холмики четверохолмья, и они выполняют примерно ту же самую задачу, что и верхние холмики, - реагируют на новые слуховые сигналы. Если появился новый звук, или источник звука стал смещаться, или изменилась тональность, то тогда тоже запускается ориентировочный рефлекс, и мы смотрим, где что зашуршало, изменилось, потому что все это колоссально значимо.

С работой четверохолмья очень мощно связаны глазодвигательные центры. Внутри среднего мозга находятся мотонейроны, которые как раз управляют движениями глаз. Надо сказать, что движения глаз - это самые тонкие движения, которые выполняет наш организм. Мы, конечно, знаем, что у нас очень тонко двигаются пальцы или очень тонкими являются движения языка и мимика, но самые точные движения, оказывается, выполняют наши глазодвигательные мышцы, которые вращают глаз в костной орбите и настраивают наше зрение на анализ того или иного зрительного объекта.

С каждым глазом связано целых шесть глазодвигательных мышц, и они управляются тремя черепно-мозговыми нервами: шестым, четвертым и третьим. Шестой нерв называется отводящий, и его ядра находятся в верхней части моста особыми выступами, которые называются лицевые холмики. Четвертый и третий нервы - это нервы среднего мозга; четвертый нерв называется блоковым, а третий - глазодвигательным. Глазодвигательный нерв в этой системе самый главный, самый крупный, и четыре из шести глазодвигательных мышц управляются именно третьим нервом. На долю блокового нерва и отводящего приходится всего по одной глазодвигательной мышце. Волокна глазодвигательного нерва выходят на нижней стороне среднего мозга и направляются к глазу. Внутри третьего нерва находятся не только двигательные аксоны, аксоны мотонейронов, но и вегетативные аксоны, парасимпатические аксоны, которые управляют диаметром зрачка и формой хрусталика.

Черная субстанция, пожалуй, наиболее знаменитая структура среднего мозга. Здесь находятся дофаминовые нейроны, которые дальше направляют свои аксоны вверх, в большие полушария, и от выделения дофамина из этих аксонов зависит уровень нашей двигательной активности, зависят положительные эмоции, которые мы испытываем в ходе движений. Если черная субстанция повреждается, то тогда возникает заболевание, которое называется «паркинсонизм». К сожалению, черная субстанция - нежная структура, паркинсонизм - вторая по встречаемости нейродегенерация после болезни Альцгеймера. Поэтому болезнь Паркинсона очень активно исследуется, идет поиск лекарственных препаратов, идет поиск способов остановить и задержать эти нейродегенерации. Но это не единственная функция черной субстанции. Дофаминовые нейроны находятся только во внутренней части черной субстанции, в латеральной или боковой части черной субстанции находятся нервные клетки, которые в качестве медиатора используют гамма-аминомасляную кислоту (ГАМК). Эти клетки контролируют движения глаз и сдерживают избыточные глазодвигательные реакции, позволяя нам управлять работой третьего, четвертого и шестого глазодвигательных нервов.

Еще одна структура, которая связана с выделением дофамина и относится к среднему мозгу, - это вентральная тегментальная область. Ее аксоны направляются к коре больших полушарий, к прилежащему ядру прозрачной перегородки, и это система контроля уровня эмоций, потребностей, система, связанная со скоростью обработки информации в коре больших полушарий.

На его вентральной поверхности находятся два массивных пучка нервных волокон — ножки мозга, по которым проводятся сигналы из коры в нижележащие структуры мозга.

Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)

В среднем мозге присутствуют различные структурные образования: четверохолмие, красное ядро, черная субстанция и ядра глазодвигательного и блокового нервов. Каждое образование выполняет определенную роль и способствует регуляции целого ряда приспособительных реакций. Через средний мозг проходят все восходящие пути, передающие импульсы к таламусу, большим полушариям и мозжечку, и нисходящие пути, проводящие импульсы к продолговатому и спинному мозгу. К нейронам среднего мозга поступают импульсы через спинной и продолговатый мозг от мышц, зрительных и слуховых рецепторов по афферентным нервам.

Передние бугры четверохолмия являются первичными зрительными центрами, и к ним поступает информация от зрительных рецепторов. При участии передних бугров осуществляются зрительные ориентировочные и сторожевые рефлексы путем движения глаз и поворота головы в сторону действия зрительных раздражителей. Нейроны задних бугров четверохолмия образуют первичные слуховые центры и при получении возбуждения от слуховых рецепторов обеспечивают осуществление слуховых ориентировочных и сторожевых рефлексов (у животного напрягаются ушные раковины, оно настораживается и поворачивает голову в сторону нового звука). Ядра задних бугров четверохолмия обеспечивают сторожевую приспособительную реакцию на новый звуковой раздражитель: перераспределение мышечного тонуса, усиление тонуса сгибателей, учащение сокращений сердца и дыхания, повышение артериального давления, т.е. животное подготавливается к защите, бегу, нападению.

Черная субстанция получает информацию с рецепторов мышц и тактильных рецепторов. Она связана с полосатым телом и бледным шаром. Нейроны черной субстанции участвуют в формировании программы действия, обеспечивающей координирование сложных актов жевания, глотания, а также тонуса мышц и двигательных реакций.

Красное ядро получает импульсы с рецепторов мышц, от коры больших полушарий, подкорковых ядер и мозжечка. Оказывает регулирующее влияние на мотонейроны спинного мозга через ядро Дейтерса и руброспиналъный тракт. Нейроны красного ядра имеют многочисленные связи с ретикулярной формацией ствола мозга и совместно с ней регулируют мышечный тонус. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели.

Устранение связи красного ядра с ретикулярной формацией верхней части продолговатого мозга вызывает резкое повышение тонуса разгибательных мышц. Это явление называется децеребрационной ригидностью.

Основные ядра среднего мозга

Название

Функции среднего мозга

Ядра крыши верхнего и нижнего бугорков четверохолмия

Подкорковые центры зрения и слуха, от которых берет начало тектоспинальный путь, посредством которого осуществляются ориентировочные слуховые и зрительные рефлексы

Ядро продольного медиального пучка

Участвует в обеспечении сочетанного поворота головы и глаз на действие неожиданных зрительных раздражителей, а также при раздражении вестибулярного аппарата

Ядра III и IV пар черепно-мозговых нервов

Участвуют в сочетанием движении глаз за счет иннервации наружных мышц глаза, а волокна вегетативных ядер после переключения в цилиарном ганглии иннервируют мышцу, суживающую зрачок и мышцу ресничного тела

Красные ядра

Являются центральным звеном экстрапирамидной системы, поскольку на них заканчиваются пути от мозжечка (tr. cerebellotegmenlalis) и базальных ядер (tr. pallidorubralis) и от этих ядер начинается руброспинальный путь

Черная субстанция

Имеет связь с полосатым телом и корой, участвует в сложной координации движений, регуляции тонуса мышц и позы, а также в согласовании актов жевания и глотания, входит в состав экстрапирамидной системы

Ядра ретикулярной формации

Активирующие и тормозные влияния на ядра спинного мозга и различные зоны коры головною мозга

Серое центральное околоводопроводное вещество

Входит в состав антиноцицептивной системы

Структуры среднего мозга принимают непосредственное участие в интеграции разнородных сигналов, необходимых для координации движений. При непосредственном участии красного ядра, черной субстанции среднего мозга формируется нейронная сеть стволового генератора движений и, в частности, генератора движений глаз.

На основе анализа сигналов, поступающих в стволовые структуры от проприорецепторов, вестибулярной, слуховой, зрительной, тактильной, болевой и других сенсорных систем, в стволовом генераторе движений формируется поток эфферентных двигательных команд, посылаемых в спинной мозг по нисходящим путям: руброспинальному, реткулоспинальному, вестибулоспинальному, тектоспинальному. В соответствии с выработанными в стволе мозга командами становится возможным осуществление не просто сокращения отдельных мышц или мышечных групп, а формирование определенной позы тела, поддержание равновесия тела в различных позах, совершение рефлекторных и приспособительных движений при осуществлении различных видов перемещения тела в пространстве (рис. 2).

Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе (R. Schmidt, G. Thews, 1985): 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее

Структуры стволового генератора движений могут активироваться произвольными командами, которые поступают из моторных областей коры больших полушарий. Их активность может усиливаться или тормозиться сигналами сенсорных систем и мозжечка. Эти сигналы могут модифицировать уже выполняемые моторные программы так, что их исполнение изменяется в соответствии с новыми требованиями. Так, например, приспособление позы к целенаправленным движениям (как и организация подобных движений) возможно только при участии моторных центров коры больших полушарий мозга.

Важную роль в интегративных процессах среднего мозга и его ствола играет красное ядро. Его нейроны непосредственно участвуют в регуляции, распределении тонуса скелетных мышц и движений, обеспечивающих сохранение нормального положения тела в пространстве и принятие позы, создающей готовность к выполнению определенных действий. Эти влияния красного ядра на спинной мозг реализуются через руброспинальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга и оказывают возбуждающее влияние на а- и у-мотонейроны сгибателей и тормозят большинством ото нейронов мышц-разгибателей.

Роль красного ядра в распределении тонуса мышц и поддержании позы тела хорошо демонстрируется в условиях эксперимента на животных. При перерезке ствола головного мозга (децеребрации) на уровне среднего мозга ниже красного ядра развивается состояние, называемое децеребрационной ригидностью. Конечности животного становятся выпрямленными и напряженными, голова и хвост запрокинуты к спине. Это положение тела возникает вследствие нарушения баланса между тонусом мышц-антагонистов в сторону резкого преобладания тонуса разгибателей. После перерезки устраняется тормозное действие красного ядра и коры мозга на мышцы- разгибатели и сохраняется неизмененным возбуждающее действие на них ретикулярного и вестибулярного (Дейгерса) ядер.

Децеребрационная ригидность возникает немедленно после пересечения ствола мозга ниже уровня красного ядра. В происхождении ригидности важнейшее значение имеет у-петля. Ригидность исчезает после пересечения задних корешков и прекращения притока афферентных нервных импульсов к нейронам спинного мозга от мышечных веретен.

К происхождению ригидности имеет отношение вестибулярная система. Разрушение латерального вестибулярного ядра устраняет или снижает тонус экстензоров.

В осуществлении интегративных функций структур ствола мозга важную роль играет черная субстанция, которая участвует в регуляции тонуса мышц, позы и движений. Она участвует в интеграции сигналов, необходимых для координации работы множества мышц, участвующих в актах жевания и глотания, влияет на формирование дыхательных движений.

Через черную субстанцию на моторные процессы, инициируемые стволовым генератором движений, оказывают влияние базальные ганглии. Между черной субстанцией и базальными ганглиями существуют двусторонние связи. Имеется пучок волокон, проводящий нервные импульсы от полосатого тела к черной субстанции, и путь, проводящий импульсы в обратном направлении.

Черная субстанция посылает сигналы также к ядрам таламуса, и далее по аксонам нейронов таламуса эти потоки сигналов достигают коры. Таким образом, черная субстанция участвует в замыкании одного из нейронных кругов, по которым циркулируют сигналы между корой и подкорковыми образованиями.

Функционирование красного ядра, черной субстанции и других структур стволового генератора движений контролируется корой мозга. Ее влияние осуществляется как по прямым связям со многими ядрами ствола, так и опосредованно через мозжечок, который посылает пучки эфферентных волокон к красному ядру и другим стволовым ядрам.

Средний мозг состоит из четверохолмия и ножек мозга. Главные образования - красное ядро, которое расположено в среднем отделе мозговой ножки, черное ядро и черное вещество, ядра 3-го и 4-го нервов, ретикулярная формация, окружающая сильвиев водопровод.

Ядра четверохолмия, расположенные на спинальной стороне среднею мозга, соответствуют задним рогам спинного мозга, а красное ядро, черное вещество и ядра 3-го и 4-го черепно-мозговых нервов, расположенные на брюшной стороне, соответствуют передним рогам спинного мозга.

Участие среднего мозга в зрительных и слуховых рефлексах

В передних буграх четверохолмия оканчивается часть афферентных нервных волокон, которые являются нейритами вторых нейринов зрительного пути сетчатки. Эти волокна зрительного нерва контактируют с ядрами глазодвигательных нервов, расположенными в передних буграх. Ядра глазодвигательных нервов рефлекторно возбуждаются одновременно со зрительными нервами, что вызывает глаз и сужение зрачка. Так как передние бугры связаны с красным ядром и другими ядрами, то при этом происходят также движения тела. В зрачковом рефлексе участвует также серое вещество, расположенное между передними буграми четверохолмия и зрительным бугром.

Передние бугры участвуют в защитном смыкании век при внезапной вспышке , зажмуривании и отдергивании головы при внезапном приближении рассматриваемого объекта и повороте глаз и головы в его сторону. В передаче импульсов из сетчатки глаз в кору больших полушарий, вызывающих зрительные ощущения, передние бугры четверохолмия не участвуют. Поэтому их удаление у высших животных и человека не вызывает слепоты.

В задних буграх четверохолмия оканчиваются нейриты вторых нейронов слухового пути, что обеспечивает участие задних бугров и рефлекторных сокращениях мышц среднего уха, а также в рефлекторных движениях уха, головы и тела по направлению к .

Следовательно, четверохолмия не являются центрами зрения и слуха, но при действии на глаз и ухо световых и звуковых раздражителей они участвуют в сложных координированных рефлекторных движениях поворота туловища, головы, глаз и ушей в сторону раздражителей.

Роль среднего мозга в регуляции позы и движений

Красное ядро и окружающие его двигательные ядра имеют важнейшее значение тли осуществления всех движений, так как они рефлекторно регулируют тонус мускулатуры. После отделения среднего мозга от продолговатого у животных исчезает нормальное распределение тонуса. Система красного ядра - основной центр, участвующий и принятии активной позы и позволяющий производить ряд сложных двигательных актов. Красное ядро связано с мозжечком, зрительным бугром, полосатым телом и корой больших полушарий.

Оно, в свою очередь, посылает импульсы в спинной мозг по руброспинальному пути и в нижнюю оливу. При нарушении целости этих связей красного ядра с продолговатым и спинным мозгом резко усиливаются с проприоцепторов и развивается децеребрационная ригидность. Наступление децеребрационной ригидности в передних конечностях в большей мере зависит не от поступления афферентных импульсов из рецепторов мышц передних конечностей, а от поступления их из шейных мышц и вестибулярных аппаратов.

Черное вещество является нервным центром, координирующим акта еды (жевание, глотание и др.), а также центром регуляции пластического тонуса мускулатуры.

Так как, статические и статокинетические рефлексы резче проявляются после удаления больших полушарий и промежуточного мозга, то это доказывает, что средний мозг автоматически регулирует позу и движения благодаря поступлению импульсов из вестибулярного аппарата и проприоцепторов.

Чем выше развито животное, тем больше у него нарушаются координированные движения при удалении частей нервной системы, расположенных выше среднего мозга. Чем более развит животный организм, тем свободнее он принимает позы независимо от установочных рефлексов.