Что позволяет зрение. Стереоскопическое зрение: что это, как работает, как измеряется? Условия для стереоскопического зрения

Необычные и интересные факты о глазах и зрении человека являются самыми интересными медицинскими фактами – с помощью глаз человек воспринимает до 80% информации, получаемой извне.

Самый необычный и интересный факт про глаза и зрение состоит в том, что человек видит окружающий мир не глазом, а мозгом, функцией глаза является исключительно сбор необходимой информацию об окружающем мире со скоростью 10 единиц информации в секунду. Собираемая глазами информация передается в перевернутом виде (данный факт был впервые установлен и исследован в 1897 году американским психологом Джорджем Стреттоном (George Malcolm Stratton) и называется инвертирование) через оптический нерв в головной мозг, где в зрительной коре анализируется мозгом и визуализируется в завершенной форме.

Размытое или нечеткое зрение нередко вызвано не проблемами глаз, а затрудненностью восприятия зрительной корой головного мозга.

Человек – единственное существо на планете, имеющее белки.

Человеческий глаз содержит два рода клеток – и . Колбочки видят при ярком освещении и различают цвета, чувствительность палочек чрезвычайно мала. В темноте палочки способны приспособиться к новой обстановке, благодаря им у человека появляется ночное зрение. Индивидуальная чувствительность палочек каждого человека позволяет видеть в темноте в разной степени.

Один глаз содержит 107 миллионов клеток, все они чувствительны к свету.

В глазной впадине видно лишь 16% яблока.

Глазное яблоко взрослого человека составляет в диаметре ~24 миллиметра, вес – 8 грамм. Интересный факт: данные параметры одинаковы практически у всех людей. В зависимости от индивидуальных особенностей строения организма они могут различаться на доли процента. У новорожденного ребенка диаметр яблока ~18 миллиметров при весе ~3 грамма.

Извивающиеся частички в глазах именуются плавающими помутнениями. Плавающие помутнения – тени, отбрасываемые на сетчатку микроскопическими нитями белка.

Радужная оболочка глаз человека содержит 256 уникальных характеристик (отпечатки пальцев – 40) и повторяется у двух людей с вероятностью 0,002%. Используя данный интересный факт, таможенные службы Великобритании и США приступили к внедрению в службах паспортного контроля идентификацию по радужной оболочке.

Когда на зрение ложатся существенные нагрузки, наступает общее переутомление организма, равносильное стрессу . Вследствие переутомления развиваются необычно сильные (острые) головные боли, возникает ощущение усталости.

Витамин A (бета-каротин), содержащийся в моркови, важен для здоровья в целом, при этом прямая связь между употреблением овоща и улучшением зрения отсутствует . Начало веры в полезности моркови для зрения было положено англичанами во Вторую мировую войну, когда был изобретен новейший авиационный радар, позволявший британским летчикам эффективно обнаруживать немецкие самолеты в темное и ночное время суток. Для того чтобы скрыть существование данной технологии, командование британских военно-воздушных сил (Royal Air Force, RAF) распространило интересную для противника дезинформацию о том, что английские летчики обнаруживают ночью самолеты, благодаря употреблению моркови: применение морковное диеты улучшало зрение пилотов.

Узкая одежда оказывает отрицательное влияние на зрение человека. Узкая одежда затрудняет кровообращение, что сказывается на всех органах, включая глаза.

Самый простой способ проверить свое зрение – в ночное время найти на небе созвездие Большой Медведицы. Если в ручке ковша созвездия рядом со средней звездой удастся увидеть небольшую звездочку – зрение следует считать нормальной остроты.

Интересные факты о зрении известных людей

Популярные люди, актеры и политики, несмотря на достаток и успех, не всегда имеют хорошее зрение. В отдельных случаях, имея идеальное зрение, подчеркивают, что оно недостаточно хорошее. Мы собрали для Вас наиболее необычные, курьезные и интересные факты о зрении известных людей.

Например, третий президент компании Эли Лилли (ведущий мировой производитель лекарств для больных и больных), при котором фирма добилась колоссальных успехов и вошла в десятку крупнейших фармацевтических компаний планеты, был единственными представителем семьи Лилли, отличавшимся слабым зрением, носившим очки.

Повязка на глазу Нельсона

Интересный факт из истории о глазах великого британского адмирала Горацио Нельсона (Horatio Nelson). Нельсон действительно был ранен в правый глаз (при осаде крепости Кальви в 1794 году), и практически перестал им видеть, однако внешне глаз не был поврежден, необходимость носить повязку полностью отсутствовала. Интересно, что на всех прижизненных портретах Нельсон изображен без повязки на глазу, которая появилась на его изображениях и в киновоплощениях после его смерти . По замыслу авторов – повязка на глаз должна была подтвердить зрителю факт, что Нельсон был сильным, волевым и мужественным человеком.

Впервые адмирал Нельсон был представлен с повязкой на правом глазе в фильме режиссера Александра Корда «Леди Гамильтон» (1941 год), с Лоуренсом Оливье в заглавной роли.

Факт о взгляде Распутина

Известный исторический факт: Григорий Ефимович Распутин, фаворит семьи царя Николая II, тренировал глаза, добиваясь выразительности взгляда. По признанию окружающих, олицетворением жесткости и силы Распутина был именно «тяжелый», гипнотизирующий взгляд, благодаря которому Распутин утверждал свою власть при общении с людьми.

Интересных фактов об британско-американской актрисе Элизабет Роузмонд Тейлор достаточно много. Элизабет Тейлор была первой в истории Голливуда женщиной, трижды удостоенной престижной кинопремии «Оскар», а также первой в истории кинематографа актрисой, получившей гонорар за участие в фильме в размере одного миллиона долларов. Но нам наиболее интересен факт о глазах Тейлор: актриса обладала двойным рядом ресниц. Данная интересная аномалия называется дистихиаз (distichiasis ). Аномалия, при которой фиксируется факт появления дополнительного ряда ресниц позади ресниц нормально растущих, обычно является следствием генетической мутации. В некоторых случаях ресницы врастают прямо в роговицу.

Жизненный цикл ресницы составляет не более пяти месяцев, после чего она, погибая, выпадает. На верхнем и нижнем веке глаза человека – 150 ресниц.

Американский актер, режиссер, продюсер, сценарист, трехкратный номинант на премию «Оскар» Джонни Депп практически слеп на левый глаз и близорук на правый. Данный интересный факт о собственном зрении актер сообщил в интервью журналу «Rolling Stone» в июле 2013 года. Со слов Джонни Деппа, проблемы со зрением его преследуют с позднего детского возраста, примерно с пятнадцати лет.

Именно данным интересным фактом объясняется причина, по которой большинство героев Деппа имеют проблемы со зрением и носят очки.

Факт о глазах Джулии Робертс

В 2001 году в интервью журналу «Playboy» американская киноактриса Джулия Робертс сообщила читателям интересный факт о своих глазах: когда она нервничает, из ее левого глаза текут слезы.

Факт об очках Тимошенко

Известный украинский политик, государственный деятель, бывший премьер-министр, а по факту, руководитель Украины Юлия Владимировна Тимошенко носит очки. При этом у Юлии Тимошенко отличное зрение, ни дальнозоркостью, ни близорукостью она не страдает. Факт ношения очков в данном случае объясняется соблюдением имиджа.

Интересный факт о зрении Президента республики Беларусь Александра Григорьевича Лукашенко. У Президента республики Беларусь дальнозоркость составляет 2,5 диоптрии, при этом не существует ни одной официальной фотографии, на которой белорусский лидер был бы запечатлен в очках (за исключение солнцезащитных), данный интересный факт о зрении Александра Лукашенко официально никак не афишируется. Главнокомандующий Вооруженных сил союзного государства прекрасно обходится без очков, является превосходным стрелком. О существовании дальнозоркости зрения Александра Лукашенко можно косвенно предположить по интересным видео фактам: Президент без труда читает тексты, находящиеся достаточно далеко от глаз, с полной уверенностью обращается с оружием. Совершенно очевидно, что оптический прицел, при стрельбе, ему абсолютно не нужен.

Факты о нарушении зрения и заболеваниях глаз

Существует ряд необычных интересных фактов, прямо или косвенно связанных как с болезнями глаз, так и иными состояниями, вызывающими нарушение зрения.

В папирусе Эберса (Ebers Papyrus), обнаруженном немецким египтологом и писателем Георгом Эберсом (Georg Moritz Ebers) в Фивах (Верхний Египет) зимой 1872/1873 упоминается интересный медицинский факт об «открытии зрения в зрачках сзади глаз» , из чего можно предположить: древнеегипетская медицина знала о возможностях удаления катаракты (помутнения хрусталика глаз).

Катаракта (офтальмологическое заболевание, связанное с помутнением хрусталика) является следствием физиологического старения организма. Все люди подвержены катаракте, развивающейся в возрасте с 70 до 80 лет. С момента появления первых признаков катаракты до наступления момента, когда необходимо приступать к ее лечению, проходит 10 лет.

Афакия – состояние, характеризующееся отсутствием хрусталика, при котором люди видят ультрафиолетовый спектр света в виде беловато-синего или беловато-фиолетового цвета.

Герпес глаз фиксируется у 98% людей в возрасте от 60 лет.

В исключительных случаях из-за порока внутреннего уха его чувствительность настолько повышена, что человек способен слышать звук вращения глазных яблок .

Если на фотографии со вспышкой только один глаз красный – данный факт свидетельствует о вероятности наличия . Данная патология излечима.

Лейкокория (кошачий глаз) – необычное состояние, характеризующееся аномально белым бликом глаз. Лейкокория обычно проявляется у детей и указывает на ряд заболеваний: ретинобластому, токсокароз, катаракту. Ранняя диагностика лейкокории заключается в фотографировании глаза. Если одни глаз на фотографии красный (эффект красных глаз), а другой отсвечивает белым – данная комбинация является признаком лейкокории.

Факт шизофрении у человека диагностируется с точностью до 98 % при стандартном тесте на движение глаз.

Глаукома (синее помутнение глаза, группа глазных заболеваний, характеризующаяся повышением внутриглазного давления), инсульт, иные общие заболевания приводят к появлению слепых пятен в глазах.

Глаукома не приводит к серьезным нарушениям зрения, так как мозг и глаза способны адаптироваться в данной обстановке и способствовать исчезновению слепых пятен. Слепое пятно в пораженном глазу подавляется, здоровый компенсирует нарушение зрения.

Закрытоугольная глаукома (повышение внутриглазного давления в результате нарушения оттока водянистой влаги через дренажную систему глаза) может сопровождаться появлением рвоты, головной боли, тошноты, при этом пациент не жалуется на боль в глазу. Интересно, что острый приступ закрытоугольной глаукомы зачастую может быть классифицирован как острое желудочное заболевание, мигрень, зубная боль , грипп и менингит, так как приступ сопровождается симптомами, свойственными данным заболеваниям и состояниям.

Сахарный диабет 2 типа, бессимптомно развивающийся на протяжении жизни, первично диагностируется при осмотре зрения. При сахарном диабете 2 типа на задней стороне глаза выявляются кровоизлияния из кровеносных сосудов.

Люди, страдающие депрессией, действительно воспринимают окружающий мир в тусклых оттенках (мрачных тонах). При симптомах депрессии сетчатка слабее реагирует на стимуляцию показом контрастных картинок.

Врожденная цветовая слепота неизлечима и может передаваться по наследству. Людям, имеющих в роду цветослепых родственников, следует получить консультацию генетика в центре планирования семьи перед зачатием ребенка.

Косоглазие – врожденное или приобретенное нарушение параллельности зрительных осей глаз народом Майя считалось признаком красоты. Майя сознательно развивали косоглазие у детей, привязывая им каучуковый шарик в области переносицы на уровне глаз.

Относительно небольшое по площади государство – Израиль, занимает третье место в мире (после США и Германии) по количеству выполняемых операций на глазах. Данный факт совершенно не означает, что у израильтян плохое зрение: израильская медицина настолько сильна и авторитетна, что за медицинской помощью обращаются пациенты со всей планеты. ~30% операций по коррекции зрения приходится на две клиники « » и .

Говоря о глазных каплях, нельзя не упомянуть любопытную историю разработки офтальмологического средства «Окомистин» (действующее вещество Мирамистин). Разработка Мирамистина началась в СССР в 1973 году по программе «Космические биотехнологии» . Ученым ставилась задача разработать универсальное антисептическое средство, которое можно применять в условиях орбитальных станций (замкнутое пространство обитаемых космических станций, постоянная температура и влажность являются идеальной средой для размножения патогенных микроорганизмов). На тот момент не существовало универсального антимикробного средства, медицина располагала целым набором препаратов, каждый из которых действовал на отдельный вид микроорганизмов.

Интересно, что разработка нового препарата продолжались целых 15 лет и завершились победой советских ученых, создавших препарат БХ-14, позднее получивший название Мирамистин. Мирамистин получил широкое распространение, как в России, так и за ее пределами. Специально в интересах офтальмологии создан препарат-аналог на основе мирамистина – Окомистин , применяющийся сегодня при целом ряде заболеваний глаз, включая . Любопытно, что Окомистин настолько универсален, что его можно использовать и в качестве ушных капель.

Другой универсальный препарат, ранее производившийся в форме глазного геля, а сегодня широко применяющийся при варикозном расширении, в том числе, препарат Актовегин , интересен скорее не историей создания (хотя и его разрабатывали более пяти лет), а действующим веществом. Основой Актовегина является депротеинизированный (освобожденный от белка) гемодиализат, полученный из крови телят.

Факты о слезах и плаче

Самый интересный факт о глазах человека заключается в том, что когда глаза начинают сохнуть – они начинают выделять влагу . Слеза, выделяемая гардеровой или слезной железами, состоит из трех компонентов: жира, слизи и воды, в определенных пропорциях. При нарушении соответствующих пропорций, глаза становятся сухими, головной мозг отдает команду железе на выделение слезы, человек начинает плакать.

Удивительный факт: глаза новорожденного ребенка не вырабатывают слезы до достижения возраста от 6 до 8 недель.

При сильном плаче слезы поступают в нос по прямому каналу. Данным фактом объясняется выражение «не разводи сопли» .

Среднестатистическая женщина плачет 47 раз в год, мужчина – 7.

Космонавты не имеют возможности плакать в космосе. Слезы из-за гравитации собираются в маленькие шарики и пощипывают глаза.

Факты о глазах и оружии

Интересный факт о глазах, связанный с оружием и оптикой: слепящее действие света достигает максимальной силы в синей части спектра. По этой причине при стрельбе из огнестрельного оружия используются очки с желтыми линзами, позволяющие на 30% снизить слепящий эффект от вспышки огня при выстреле.

Лазерное оружие (пистолет) несмертельного действия, предназначенное для поражения элементов оптических систем и глаз человека, было разработано СССР в 1984 году группой конструкторов под руководством Виктора Самсоновича Сулаквелидзе. Оружие предназначалось для использования в космосе для самообороны космонавтов в условиях Холодной войны. Достоверно известный факт: дальность действия ослепляющего эффекта на глаза составляет 20 метров.

Заблуждения о глазах и зрении

Заблуждением является факт, что процесс курения (а точнее — табачный дым) никак не влияет на зрение. Дело в том, что глазам требуются значительное кровоснабжение, а вещества, присутствующие в табачном дыме, способствуют сокращению кровенаполнения сосудистой оболочки и сетчатки глаза, что приводит к развитию заболеваний зрительного нерва вследствие образования закупорки сосудов. В результате развивается помутнение хрусталика, дегенерация желтого пятна сетчатки, что приводит к ухудшению зрения и даже к слепоте. Пассивные курильщики страдают не меньше самих курильщиков: составляющие табачного дыма являются мощными аллергенами, могут вызвать хроническое раздражение конъюнктивы глаза.

Каротиноидный пигмент ликопин, содержащийся в значительных объемах в томатах, оказывает благотворное влияние на здоровье человека замедляя развитие катаракты, возрастных изменений сетчатки глаз, защищая сетчатку глаз от ультрафиолетового облучения, укрепляя витамином А. Однако для зрения курильщиков ликопин в капсулах вреден: под воздействием сигаретного дыма пигмент-антиоксидант сам окисляется и ведет себя как свободный радикал.

Другим заблуждением о глазах и зрении является вера, что излучение монитора или телевизора ухудшает зрение. На самом деле, зрение ухудшается из-за избыточных нагрузок на хрусталик, когда он фокусируется на мелких деталях происходящего на экране.

Существует заблуждение, что дальнозоркость – это преимущество, не отражающееся на состоянии организма. Данный факт актуален лишь в отношении молодых людей со слабой дальнозоркостью (менее 1,5 диоптрии). Средняя (2-4 диоптрии) и высокая (4 диоптрии и выше) степени дальнозоркости нередко сопровождаются головными болями, болью в глазах, надбровных дугах, повышенной утомляемостью глаз при работе вблизи.

Отчасти является заблуждением факт, что беременным женщинам с плохим зрением противопоказаны естественные роды. Сетчатка глаз у беременных женщин со средней и высокой степенью близорукости растягивается и истончается, риск ее отслоения и разрывов при родах увеличивается. Данный риск обуславливает замену естественных родов на кесарево сечение. Однако риск отслоения и разрыва сетчатки предупреждается проведением офтальмологической лазерной коагуляции, выполняемой амбулаторно в течение 10 минут. Профилактическая лазерная коагуляция показана до 30-й недели беременности.

В состоянии покоя человек моргает 15000 раз в сутки – один раз в шесть секунд. Моргание – наполовину рефлекторная функция. При моргании с поверхности глаза удаляются инородные предметы, глаз покрывается слезой. Слеза способствует насыщению глаза кислородом, выполняет антибактериальные функции. Интересный факт: процесс моргания занимает 100-150 миллисекунд, человек способен моргнуть пять раз в секунду.

За 12 часов человек моргает на протяжении 25 минут.

Женщины моргают в два раза чаще мужчин.

Японские ученые установили интересный факт: человек зачастую моргает при завершении какого-либо события, при паузе во время разговора с собеседником, в конце предложения при чтении, при смене сцены во время просмотра кинофильма или телепередачи. Используя компьютерную томографию исследователи нашли объяснение данному факту: при моргании в мозге резко падает активность нейросети внимания, что означает – мозг переходит в режим ожидания. Процесс моргания служит для обновления внимания сигналом для перезагрузки соответствующих нервных клеток.

Факты о чтении

Интересный факт: при быстром чтении глаза утомляются меньше , чем при медленном.

Текст с экрана монитора люди читают обычно на 25% медленнее, чем с бумажного носителя.

Текст, набранный мелким шрифтом, мужчины читают легче женщин.

Большинству людей в возрасте от 43 до 50 лет следует признать факт: рано или поздно им понадобятся очки для чтения. С возрастом хрусталик глаза теряет возможность фокусироваться. Для фокусировки на предметах, расположенных на расстоянии 0,5 –2 метра, хрусталик глаза должен менять форму с плоской на сферическую. Возможность менять форму с возрастом угасает, развивается дальнозоркость.

Примечания

Примечания и пояснения к статье «Интересные факты о глазах и зрении». Для возврата к термину в тексте – нажмите соответствующую цифру.

  • Колбочки – тип фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза. Колбочки – высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение. Чувствительность колбочек к свету объясняется наличием в них специфического пигмента – йодопсина.
  • Палочки – тип фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза. В сетчатке глаза человека содержится ~120 миллионов палочек, длина которых составляет 0,06 мм, диаметр 0,002 мм. Палочки чувствительны к свету благодаря наличию в них специфического пигмента родопсина. Наличие палочек и разных видов колбочек дает человеку цветное зрение.
  • Роговица , роговая оболочка – передняя наиболее выпуклая прозрачная часть глазного яблока, одна из светопреломляющих сред глаза. Радиус кривизны роговицы составляет ~7,8 мм. Диаметр роговицы с момента рождения и до 4 лет увеличивается крайне незначительно, вследствие чего глаза маленьких детей глаза кажутся больше, чем глаза взрослого человека.
  • Пигментация пептидные связи в определенных участках спирализованных областей коллагена (с выделением свободной аминокислоты оксипролин, в частности) является коллагеназа . Образующиеся в результате разрушения коллагеновых волокон (под воздействием коллагеназы) аминокислоты участвуют в построении клеток и восстановлении коллагена.

    Коллагеназа широко используется в медицинской практике для лечения ожогов в хирургии и для лечения гнойных заболеваний глаз в офтальмологии. В частности, коллагеназа входит в состав полимерных дренирующих сорбентов «Асептисорб» (Асептисорб-ДК) производства компании «Асептика», применяющихся при лечении гнойно-некротических ран.

  • Ленивый глаз (Амблиопия) – функциональное, обратимое понижение зрения, при котором один из двух глаз практически (или полностью) не задействован в зрительном процессе. При амблиопии глаза видят слишком разные изображения, при этом мозг не в состоянии совместить их в одно объемное. Результатом является подавление работы одного глаза.
  • Опухоль – вздутие в тканях организма, болезненное новообразование, патологический процесс, представленный новообразованной тканью, в которой изменения генетического аппарата клеток приводят к нарушению регуляции их дифференцировки и роста. Все опухоли подразделяются на две основные группы: доброкачественные и злокачественные (раковые).
  • Клиника (медицинский центр) Хадасса (Hadassah Medical Center,R07,R06,R06,R06,) – одна из крупнейших клиник Израиля, которую основала американская женская сионистская организация Хадасса. В двух кампусах клиники, расположенных в Иерусалиме находится 22 здания со 130 подразделениями и отделениями на 1100 больничных коек. Ежегодно клиника Хадасса оказывает медицинскую помощь более чем миллиону пациентов. У Хадасса 28 лечебных подразделений, специализирующихся на лечении, в частности, эндокринных, урологических, онкологических, офтальмологических, кардиологических и нефрологических заболеваний. Клинику Хадасса, в качестве клинической базы, использует Еврейский университет (No Ratings Yet)

3-11-2013, 19:05

Описание

Введение

Зрительная система человека достигла высочайшего совершенства. Ученые, работающие над созданием электронных или химических систем со сравнимыми характеристиками, могут лишь восхищаться ее чувствительностью, компактностью, долговечностью, высокой степенью воспроизводимости и изящной приспособляемостью к потребностям человеческого организма. Справедливости ради следует, конечно, отметить, что попытки создания соответствующих искусственных систем были начаты менее столетия назад, тогда как зрительная система человека формировалась в течение миллионов лет. Она возникла из некоего «космического» набора элементов - отбираемых, отбираемых и отбираемых до тех пор, пока не выпадала удачная комбинация. Мало кто сомневается, что эволюция человека носила «слепой», вероятностный характер, и проследить ее шаг за шагом совершенно невозможно. Издержки эволюции давно канули в Лету, не оставив следа.

Зрение занимает почти уникальное место в схеме эволюции. Можно допустить, например, что в дальнейшем эволюционное развитие приведет к увеличению объема мозга, усложнению нервной системы или к различным усовершенствованиям существующих функций. Однако невозможно представить, что чувствительность зрительного процесса заметно возрастет. Зрительный процесс представляет собой абсолютную конечную веху в цепи эволюции. Если принять во внимание, что в зрительном процессе «считается» каждый поглощенный фотон, то дальнейшее увеличение чувствительности маловероятно, если не увеличится поглощение. Законы квантовой физики устанавливают жесткий предел, к которому наша зрительная система приблизилась почти вплотную.

Мы сделали оговорку, что зрение занимает почти уникальное место, поскольку согласно определенным данным, некоторые другие процессы восприятия также достигли абсолютного предела в своей эволюции. Способность ряда насекомых (например, моли) «детектировать» отдельные молекулы служит свидетельством того, что и обоняние в иных случаях достигло квантового предела. Аналогично наш слух в пределе ограничен тепловым шумом окружающей среды.

Высокая чувствительность зрительного процесса не является привилегией только человека. Имеются явные свидетельства того, что менее совершенные виды животных и ночные птицы достигли здесь подобного уровня. По-видимому, рыбы, обитающие в темных глубинах океана, также должны использовать до предела ту скудную информацию, которая проникает к ним со случайными лучами света. Наконец, мы можем указать на фотосинтез как свидетельство того, что различные формы растительной жизни издавна научились использовать почти каждый падающий фотон, во всяком случае в пределах определенной спектральной области.

Основная цель этой главы - продемонстрировать высокую квантовую эффективность человеческого глаза в широкой области интенсивностей света. Для того чтобы выразить исходные данные о зрении человека через плотность фотонов на единицу площади сетчатки, необходимо знать» оптические параметры человеческого глаза. Их мы рассмотрим в следующем разделе.

Оптические параметры

На рис. 10 показано строение человеческого глаза.


Отверстие зрачка хрусталика меняется от 2 мм при большой освещенности до примерно 8 мм вблизи порога зрительного восприятия. Эти изменения происходят за время порядка десятых долей секунды. Фокусное расстояние хрусталика равно 16 мм. Это означает, что относительное отверстие оптической системы меняется от 1:2 при малых освещенностях до 1:8 при высоких освещенностях. Примерная зависимость площади зрачка от уровня освещенности показана на рис. 11.


Светочувствительный слой, называемый сетчаткой, состоит из дискретных светочувствительных клеток, палочек и колбочек, отстоящих друг от друга примерно на 2 мкм. Вся сетчатка - ее площадь близка к 10 см 2 - содержит 10 8 таких элементов. Колбочки, расположенные преимущественно в области центральной ямки, имеющей угловые размеры около 1°, работают при средних и высоких освещенностях и передают цветовые ощущения. Палочки, занимающие большую часть площади сетчатки, действуют вплоть до самых малых освещенностей и не обладают цветовой чувствительностью. Колбочки определяют предел разрешающей способности при высоких уровнях освещенности, который составляет 1-2", что близко к размерам дифракционного диска, соответствующего диаметру зрачка хрусталика, равному 2 мм. Исследование работы глаза и анатомическое изучение его строения показывают, что по мере удаления от центра сетчатки палочки объединяются во все большие и большие группы вплоть до нескольких тысяч элементов каждая. Свет, попадающий на сетчатку, проходит через слой нервных волокон, расходящихся от зрительного нерва к клеткам сетчатки.

Пространство между хрусталиком и сетчаткой заполнено водянистой средой, так называемым стекловидным телом, показатель преломления которого равен 1,5. Согласно различным оценкам, до сетчатки доходит лишь половина падающего на глаз света. Остальной свет отражается или поглощается.

Физическое время накопления фотонов глазом лежит в пределах от 0,1 до 0,2 с и, вероятно, ближе к последней цифре. Физическое время накопления эквивалентно времени экспозиции в фотографии. При переходе от высоких освещенностей к порогу зрительного восприятия время накопления возрастает не более чем в два раза. «Работе» глаза подчиняется закону взаимозаменяемости: при времени экспозиции меньше 0,1-0,2 с его реакция зависит только от произведения интенсивности света на время воздействия последнего.

Качественные показателиВ течение последних ста лет происходило непрерывное накопление данных, касающихся человеческого зрения. Блэкуэлл опубликовал результаты последних и наиболее полных измерений способности глаза различать отдельные пятна различного размера и контраста при изменении освещенности в широких пределах. На рис. 12 приведены данные, полученные Блзкузллом в интервалах освещенностей 10-9 - 10-1 ламб, контраста 1 - 100% и углового разрешения 3-100". Мы опустили данные, относящиеся к контрастам, меньшим 1%, и угловому разрешению ниже 3поскольку очевидно, что характеристики глаза в этой области ограничены не шумовыми факторами, а другими причинами; последние устанавливают абсолютный предел различимости контраста 0,5%, а углового разрешения 1-2". Геометрический предел разрешающей способности определяется конечным размером палочек и колбочек.На рис. 13 представлены аналогичные данные, по-лученные ранее Коннером и Ганунгом (1935), а также Коббом и Моссом (1928). Как видно, данные, приведенные на рис. 12 и 13, в общих чертах согласуются друг с другом. Однако существенное различие заключается в том, что, согласно данным Блэкуэлла, характеристики не улучшаются при изменении яркости в пределах 10-2-10-1 ламб, тогда как, по данным Кобба и Мосса, такое улучшение имеет место.На рисунках линии, идущие под углом 45°, представляют собой характеристики, которые следовало бы ожидать в том случае, если бы свойства системы были ограничены шумом, согласно соотношению (1.2). На рис. 13 экспериментальные точки довольно хорошо укладываются на прямые, соответствующие шумовым ограничениям и идущие под углом 45°. На рис. 12 экспериментальные кривые имеют вид изогнутых линий, которые касаются указанных прямых лишь на ограниченных участках. Такие отклонения можно, по-видимому, объяснить влиянием ограничений, не связанных с фотонным шумом.? Квантовая эффективность зрения человека

Для оценки квантовой эффективности глаза данные, приведенные на рис. 12 и 13, следует выразить через число фотонов, падающих на 1 см 2 сетчатки. Для этого предположим, что время накопления равно 0,2 с, пропускание хрусталика 0,5, а пределы раскрытия зрачка определяются данными Рива, представленными на рис. 11. Проделав такое преобразование, подставляем плотность фотонов в соотношение (1.3) , записанное в виде

C 2 *d 2 *?*n =k 2 =25 ,

где? - квантовый выход глаза (квантовая эффективность? 100*?%)- Пороговое отношение сигнал/шум k принимается равным 5.

На рис. 14 показана зависимость квантовой эффективности глаза (вычисленной по данным Блэкуэлла) от яркости объектов. В этих результатах более всего поражает относительно малое изменение квантовой эффективности при изменении интенсивности света на 8 порядков. Квантовая эффективность составляет 3% при предельно низких яркостях вблизи абсолютного порога (примерно 10 -10 ламб) и медленно убывает до примерно 0,5% при 0,1 ламб.

Конечно, это десятикратное изменение эффективности. Однако следует вспомнить, что в ранних работах для объяснения явления темнотой адаптации в подобных случаях предполагалось 1000- или 10000-кратное изменение квантовой эффективности. (Ниже мы рассмотрим этот вопрос подробнее.) Более того, даже это десятикратное изменение на самом деле может оказаться сильно завышенным. При расчете квантовой эффективности мы предполагали, что время экспозиции и множитель k постоянны, но, по некоторым данным, при низких освещенностях время экспозиции может быть вдвое большим, чем при высоких. Если это так, то квантовая эффективность изменяется лишь в пять раз. Далее, не исключено, что множитель k при низких освещенностях меньше, чем при высоких. Такое изменение k (точнее, k 2 ) может легко привести к появлению еще одного множителя 2, в результате оказывается, что квантовая эффективность изменяемся всего лишь в 2 раза при изменении интенсивности света в 10 8 раз.

Второй важный момент, который следует отметить, анализируя рис. 14, - это относительно большая величина квантовой эффективности.


Согласно имеющимся в литературе оценкам, чувствительное вещество сетчатки (родопсин) поглощает только 10% падающего света. Если это так, то квантовая эффективность (для белого света) по отношению к поглощенному свету составляет около 60% при низких освещенностях. Таким образом, остается весьма мало возможностей для улучшения самого механизма счета фотонов.
Однако трудно понять, чем обусловлено столь низкое поглощение (лишь 10%) падающего света, которое сформировалось в процессе эволюции. Возможно, что причиной этого послужил ограниченный выбор биологических материалов.

Некоторое уменьшение квантовой эффективности при высоких освещенностях можно приписать специфическим требованиям, которые предъявляются к системе, способной различать цвета. Если, как показывают последние данные, имеется 3 типа колбочек с различными спектральными характеристиками, то площадь, чувствительная к свету с данной длиной волны, при высоких освещенностях уменьшается вдвое.

Значения квантовой эффективности, представленные на рис. 14 нижней кривой, относятся к белому свету. Известно, что зрительная реакция на зеленый свет примерно в три раза выше, чем на то же самое полное число «белых» фотонов, то есть фотонов, распределенных по всему видимому спектру. Использование зеленого света (или зелено-голубого при низких освещенностях) должно было бы привести к увеличению квантовой эффективности втрое, как это показано на рис. 14. В таком случае квантовая эффективность при малых освещенностях составляла бы примерно 10%, и мы должны были бы предположить, что сетчатка поглощает не 10%, а по крайней мере 20% падающего света.

Следует вновь подчеркнуть, что значения квантовых эффективностей, приведенные на рис. 14, зависят от выбора параметров: времени накопления (0,2 с) и порогового отношения сигнал/шум {k = 5). Значения этих параметров определены недостаточно точно, особенно это касается данных Блэкуэлла.

Возможно, соответствующие уточнения приведут к более высоким значениям квантовой эффективности. Например, если предположить, что время накопления составляет 0,1 с, то квантовые эффективности окажутся вдвое больше, чем приведенные на рис. 14. Однако вряд ли следует затрачивать усилия на уточнение этих пара-метров; не лучше ли заняться разработкой усовершенствованной, не зависящей от этих параметров экспериментальной методики измерения квантовой эффективности.

Предпочтительный метод определения квантовой эффективности

В настоящее время существует исключительно простая методика довольно надежного определения квантовой эффективности глаза. Недавно разработанная телевизионная камера с кремниевым усилителем способна передавать изображения при низких уровнях освещенности, когда эти изображения явно ограничены шумами, точнее шумом, обусловленным частью падающих фотонов, которые создают фотоэлектроны на фотокатоде.

Существенно, что такие изображения, ограниченные только шумами, позволяют надежно определять квантовую эффективность фотокатода. Процедура заключается в том, что наблюдатель и телевизионная камера «разглядывают» один и тот же слабо освещенный объект с одинакового расстояния. Диафрагма на оптике камеры устанавливается в соответствии с раскрытием зрачка глаза наблюдателя. Затем наблюдатель сравнивает непосредственно видимый им слабо освещенный объект с изображением на кинескопе телевизионной системы. Если информация одинакова, то квантовая эффективность глаза наблюдателя равна измеренной эффективности фотокатода передающей трубки. Если наблюдатель видит больше или меньше, чем камера, то диафрагму регулируют до тех пор, пока различие не исчезнет, после чего квантовая эффективность глаза наблюдателя вычисляется по отношению диафрагм линз.

Основное достоинство метода сравнения «бок о бок» состоит в том, что он не зависит от времени зрительной экспозиции или выбора соответствующего порогового отношения сигнал/шум. Эти параметры, каковы бы ни были их точные значения, по существу остаются одинаковыми при рассмотрении наблюдателем самого объекта и его изображения на телевизионном экране, следовательно, при сравнении они исключаются. Более того, влияние памяти на эффективное время экспозиции в этих двух случаях, по-видимому, будет одинаковым.

Мы остановились на этом методе, поскольку сейчас он легкодоступен экспериментаторам, искушенным в исследовании зрительного процесса. Различные устройства, пригодные для сравнения, использовались как автором данной книги, так и другими исследователями для предварительных оценок квантовой эффективности при малых освещенностях. В одном из экспериментов использовалось устройство для сканирования движущимся световым пятном (рис. 15); Дж. Е. Рюди применил суперортикон усилителем изображения, а Т. Д. Рейнольде воспользовался многоступенчатым усилителем изображения. Все эти устройства давали изображения, ограниченные фотонным шумом, и всех случаях по предварительным оценкам квантовая эффективность составляла около 10% для низких уровней освещенности.



Серия изображений, представленных на рис. 15, показывает, какое максимальное количество информации может быть передано, различным заданным числом фотонов. Каждый фотон регистрируется как дискретная видимая точка. Информация, которую мы получаем, ограничена только статистическими флуктуациями, неизбежно проявляющимися при регистрации потока фотонов. В таблице дано полное число фотонов N. которое содержалось бы в изображении, если бы все оно равномерно освещалось с интенсивностью, соответствующей его наиболее ярким участкам.

Указанные в таблице яркости рассчитаны в предположении, что глаз использует один из каждых десяти падающих фотонов. При расчете учитывались и другие параметры: время накопления - 0,2 с, диаметр зрачка - примерно 6 мм. Иными словами, если объект заменить белым листом с указанной яркостью, вычислить число фотонов, попадающих в глаз за 0,2 с, и поделить это число на 10, то в результате мы получим число фотонов N. соответствующее данной величине яркости. Следовательно, приведенная серия изображений показывает, какое максимальное количество информации может в действительности воспринять наблюдатель при указанных яркостях, если квантовая эффективность его зрительного процесса равна 10%, а расстояние от объекта до наблюдателя составляет 120 см.

Сравнение различных оценок квантовой эффективности

Уже более столетия назад стало известно, что на абсолютном пороге видимости едва различима вспышка от маленького источника, при которой в глаз попадает примерно 100 фотонов. Так был установлен нижний предел квантовой эффективности, равный примерно 1%. Затем несколькими исследовательскими группами была выполнена серия экспериментов с целью выяснить, сколько из этих 100 фотонов на самом деле использует глаз. Если, например, глаз использовал бы все 100 фотонов, то переход от невидения к видению был бы достаточно резким и совершался бы при увеличении потока фотонов до 100. Если бы глаз использовал только несколько фотонов, то переход был бы размыт вследствие хаотического характера эмиссии фотонов. Таким образом, резкость перехода может служить мерой числа используемых фотонов и, следовательно, квантовой эффективности глаза

Идея такого эксперимента была не лишена определенной простоты и элегантности. К сожалению, в результате проведения подобных экспериментов оказалось, что число фотонов, которое используется глазом при пороговом восприятии, меняется в широком интервале от 2 до 50. Таким образом, вопрос о квантовой эффективности оставался открытым. Разброс полученных результатов, по-видимому, не удивит инженера- специалиста в области электроники или физики. Измерения были выполнены вблизи абсолютного порога видимости, когда к шуму фотонного потока легко примешивается шум от посторонних источников внутри самого глаза. Например, если произвести аналогичные измерения с фотоумножителем, то подобный разброс был бы обусловлен влиянием шума, связанного с термоэлектронной эмиссией с фотокатода или со случайным электрическим пробоем, возникающим между электродами. Все это справедливо для измерений вблизи абсолютного порога. Если же производить измерения отношения сигнал/шум при освещенности значительно выше пороговой, когда фотонный шум превышает шум, связанный с посторонними источниками, такая процедура дает надежное значение квантовой эффективности. Именно поэтому результаты измерений зрительной квантовой эффективности, выполненные при освещенностях, значительно превышающих абсолютный зрительный порог, более надежны.

Р. Кларк Джонс провел анализ тех же данных, на основании которых была получена кривая квантовой эффективности, представленная на рис. 14. Определенные им эффективности, в общем, примерно в десять раз меньше, чем показано на рис. 14; при расчетах он исходил из более короткого времени накопления (0,1 с) и гораздо меньшей величины k (1,2) . Джонс считает, что поскольку наблюдатель должен лишь выбрать одно из восьми возможных положений тестового объекта, то такая величина k обеспечивает надежность 50%. В количественном отношении это утверждение, разумеется, правильно.

Основной вопрос состоит в том, в действительности ли наблюдатели делают свои заключения о видимом именно таким образом. Если мы обратимся к рис. 4, а, то обнаружим, что k = 1,2 означает, что наблюдатель может заметить, с какой из восьми возможных площадок оператор удалил один или два фотона. Простое рассмотрение рис. 4, а показывает, что это невозможно. Подобные вопросы подчеркивают необходимость разработки такого метода измерений, который позволил бы избежать неоднозначностей, связанных с выбором правильных значений k или времени накопления. Описанный выше способ сравнения «бок о бок» человеческого глаза и электронного устройства, ограниченного фотонным шумом, представляет собой именно такую процедуру и заслуживает самого широкого применения.

В своих ранних оценках зрительной квантовой эффективности Де Врис также исходил из величины k = 1, и его результаты были значительно ниже значений, приведенных на рис. 14. Де Врис, однако, одним из первых указал на то, что наблюдаемая разрешающая способность глаза и его контрастная чувствительность могут быть объяснены фотонным шумом. Кроме того, он, как и автор этой книги, обратил внимание на то, что флуктуирующий, зернистый характер изображений, полученных при слабой освещенности, служит свидетельством дискретности света.

Барлоу в значительной степени избежал неоднозначности в выборе k , проводя измерения с помощью двух расположенных рядом тестовых световых пятен. ЕГО цель заключалась в том, чтобы установить, какое пятно ярче, причем относительные интенсивности пятен менялись. Как показал статистический анализ результатов, проведенный в предположении, что способность различать яркости- ограничена фотонным шумом, значения квантовой эффективности глаза лежат в интервале 5-10% при изменении яркости вплоть до величины, в 100 раз превышающей абсолютный зрительный порог. Барлоу ссылается на работы Баумгардта и Хехта, которые из анализа кривой вероятности обнаружения вблизи абсолютного порога получили квантовую эффективность, близкую к 7%.

Резюмируя, можно сказать, что большинство исследователей считают, что квантовая эффективность человеческого глаза лежит в пределах 5-10% при изменении интенсивности света от абсолютного порога до величины, в 100 раз его превышающей. Эта эффективность определена для длин волн вблизи максимума кривой чувствительности глаза (зелено-голубая область) и относится к свету, падающему на роговицу глаза. Если предположить, что до сетчатки доходит только половина этого света, то эффективность на сетчатке составит 10-20%. Поскольку, согласно имеющимся оценкам, доля света, поглощаемого сетчаткой, также лежит в этих пределах, то эффективность глаза, отнесенная к поглощенному свету, близка к 100%. Иначе говоря, глаз способен считать каждый поглощенный фотон.

Данные, приведенные на рис. 14, указывают еще на одно в высшей степени существенное обстоятельство: в области от абсолютного порога чувствительности до 0,1 ламб, то есть при изменении интенсивности, в 10 раз, квантовая эффективность уменьшается не более чем в 10 раз. В дальнейшем может оказаться, что этот фактор не превышает 2-3. Таким образом, глаз поддерживает высокий уровень квантовой эффективности при изменении интенсивности света в 10 8 раз! Мы используем это заключение при интерпретации явления темновой адаптации и появления зрительного шума.

Темновая адаптация

Одним из наиболее известных и вместе с тем удивительных аспектов зрительного процесса является темновая адаптация. Человек, входящий в темный зрительный зал с залитой светом улицы города, оказывается буквально слепым в течение нескольких секунд или даже минут. Затем постепенно он начинает видеть все больше и больше и через полчаса полностью привыкает к темноте. Теперь он может видеть объекты более чем в тысячу раз темнее тех, которые он едва различал в первый момент.

Эти факты свидетельствуют о том, что в процессе темновой адаптации чувствительность глаза увеличивается более чем в тысячу раз. Подобные наблюдения направили исследователей на поиски механизма или химической модели, которые объяснили бы столь сильные изменения чувствительности. Например, Хехт уделил особое внимание явлению обратимого выцветания чувствительного материала сетчатки, так называемого зрительного пурпура. Он утверждал, что при низких освещенностях зрительный пурпур совершенно не затрагивается и таким образом обладает максимальным поглощением. С увеличением освещенности он все более обесцвечивается и соответственно поглощает все меньше и меньше падающего света. Считалось, что длительное время темновой адаптации обусловлено большой продолжительностью процесса восстановления высокой плотности зрительного пурпура. Таким путем глаз восстанавливает свою чувствительность.

Однако подобные выводы противоречили результатам шумового анализа чувствительности глаза, который показал, что собственная чувствительность глаза не может изменяться более чем в 10 раз чем переходе от темноты к яркому свету. Достоинство метода шумового анализа состояло в том, что его результаты не зависит от конкретных физических или химических моделей самого зрительного процесса. Чувствительность измерялась по абсолютной шкале, при этом постулировались лишь квантовая природа света и хаотический характер распределения фотонов.

Как же тогда объяснить тысячекратное и даже большее усиление способности видеть, наблюдаемое в процессе темновой адаптации? Напрашивалась определенная аналогия между этим процессом и работой таких устройств, как радио- и телевизионные приемники. Если при перестройке приемника с сильной станции на слабую звук оказывается почти неслышимым, слушатель берется за ручку регулировки громкости и доводит уровень звучания слабой станции до удобной величины. Существенно, что чувствительность радиоприемника остается постоянной как при переходе от сильной станции к слабой, так и при регулировке громкости. Она определяется только характеристиками антенны и первой лампы усилителя. Процесс «поворота ручки громкости» меняет не чувствительность приемника, а лишь «уровень представления» слушателю. Вся операция перестройки с сильной на слабую станцию, включая и продолжительность процесса регулировки громкости, полностью аналогична весьма длительному процессу зрительной темновой адаптации.

За то время, пока осуществляется темновая адаптация, коэффициент усиления «усилителя» возрастает в результате химических реакций до нужного «уровня представления». Собственная чувствительность глаза остается почти постоянной в период темновой адаптации. Нам не остается ничего иного, как предположить, что в зрительном процессе участвует некий усилитель, действующий между сетчаткой и мозгом, и что коэффициент его усиления изменяется в зависимости от освещенности: при больших освещенностях он мал, а при низких - велик.

Автоматический контроль усиления

Вывод о том, что зрительный процесс обязательно включает в себя автоматический контроль усиления, мы сделали в предыдущем разделе на основании сильных изменений в кажущейся чувствительности, с которыми мы сталкиваемся при темновой адапта¬ции, и относительного постоянства собственной чув¬ствительности, которое следует из шумового анализа зрительного процесса.
К подобному же заключению мы придем, если рассмотрим другие, более прямые данные, встречаю¬щиеся в литературе. Известно, что энергия нервного импульса на много порядков больше энергии тех не¬скольких фотонов, которые требуются для запуска нервного импульса на абсолютном пороге чувствительности. Поэтому для генерации нервных импульсов нужен механизм с соответственно высоким коэффициентом усиления непосредственно на сетчатке. Из ранней работы Хартлайна по электрической регистрации зрительных нервных импульсов мечехвоста было известно, что частота нервных импульсов возрастает с увеличением интенсивности света не линейно, а лишь логарифмически. Это означает, что при высоких освещенностях коэффициент усиления меньше, чем при низких.

Хотя энергия нервного импульса точно не известна, приближенно ее можно оценить, предполагая, что запасенная энергия импульса соответствует напряжению 0,1В на емкости 10-9 Ф (это емкость 1см внешней оболочки нервного волокна). Тогда электрическая энергия составляет 10 -11 Дж, что в 10 8 раз больше энергии фотона видимого света. Мы, конечно, можем ошибиться в оценке энергии нервного импульса на несколько порядков величины, но это не ставит под сомнение сделанный нами вывод о том, что непосредственно на сетчатке должен происходить процесс чрезвычайно большого усиления, и только благодаря этому энергия нескольких фотонов может вызвать нервный импульс.

Прогрессирующее уменьшение усиления по мере возрастания интенсивности света отчетливо наблюдается в данных Хартлайна, согласно которым частота нервных импульсов при увеличении интенсивности света медленно возрастает по логарифмическому закону. В частности, при увеличении интенсивности света в 10 4 раз частота возрастает лишь в 10 раз. Это означает, что коэффициент усиления уменьшается в 10 3 раз.

Хотя конкретные химические реакции, лежащие в основе процесса усиления, не известны, по-видимому, вряд ли что можно предположить, кроме некой формы катализа. Фотон, поглощенный молекулой чувствительного материала (родопсина), вызывает изменение ее конфигурации. Последующие этапы процесса, в ходе которого возбужденный родопсин оказывает каталитическое действие на окружающий биохимический материал, пока не ясны. Однако разумно предположить, что каталитическое усиление будет уменьшаться при увеличении интенсивности света или числа возбужденных молекул, так как при этом должно уменьшаться количество катализируемого материала, приходящееся на одну возбужденную молекулу. Можно также предположить, что скорость истощения катализируемого материала (световая адаптация) велика по сравнению со скоростью его регенерации (темновая адаптация). Известно, что световая адаптация происходит в течение доли секунды, тогда как темновая адаптация может продолжаться до 30 мин.

Зрительный шум

Как мы неоднократно подчеркивали, наша зрительная информация ограничена случайными флуктуациями в распределении падающих фотонов. Следовательно, эти флуктуации должны быть видимыми. Однако мы замечаем это не всегда, во всяком случае, при нормальных освещенностях. Отсюда вытекает, что при каждом уровне освещенности коэффициент усиления оказывается в точности таким, чтобы фотонный шум был едва различим или, лучше сказать, почти неразличим. Если бы коэффициент усиления был больше, то это не дало бы дополнительной информации, а лишь способствовало бы увеличению шума. Если бы коэффициент усиления был меньше, то это привело бы к потере информации. Аналогично усиление телевизионного приемника следует выбирать так, чтобы шум находился на пороге видимости.

Хотя фотонный шум нелегко заметить при обычных освещенностях, автор на основании своих собственных наблюдений убедился, что при яркостях примерно 10 -8 -10 -7 ламб однородно освещенная стена приобретает такой же флуктуирующий, зернистый вид, как и изображение на экране телевизора при наличии сильных шумов. Более того, степень видимости этого шума сильно зависит от степени возбужденности самого наблюдателя. Такие наблюдения удобно производить непосредственно перед сном. Если во время наблюдений в доме раздается какой-то звук, предвещающий появление неожиданного или нежелательного посетителя, то поток адреналина мгновенно увеличивается и одновременно «видимость» шумов заметно возрастает. В этих условиях механизмы самосохранения вызывают увеличение коэффициента усиления зрительного процесса (точнее амплитуды сигналов, поступающих от всех органов чувств) до такого уровня, который гарантирует полное восприятие информации, то есть до уровня, когда шум легко наблюдаем.

Конечно, такие наблюдения субъективны. Де Врис - один из немногих, кто, помимо автора данной книги, отважился опубликовать свои сравнительные наблюдения. Однако многие исследователи в частных беседах рассказывали автору о подобных результатах.

Очевидно, что вышеописанные картины шумов обусловлены падающим потоком фотонов, поскольку они отсутствуют в «совершенно черных» участках изображения. Наличие лишь нескольких освещенных участков достаточно для того, чтобы величина коэффициента усиления установилась на таком уровне, при котором другие, гораздо более темные участки кажутся совершенно черными.

С другой стороны, если наблюдатель находится в совершенно темной комнате или его глаза закрыты, у него не создается зрительного ощущения однородного черного поля. Скорее он видит серию слабых, движущихся серых изображений, которые часто упоминались в более ранней литературе под названием «е15епНсЫ;» , то есть как нечто возникающее в пределах самой зрительной системы. Опять-таки появляется искушение рационально истолковать эти наблюдения, предположив, что ввиду отсутствия реального светового изображения, которое привело бы к установлению определенной величины коэффициента усиления, последний достигает максимальной величины в поисках объективной зрительной информации. При таком усилении обнаруживаются шумы самой системы, которые, по-видимому, связаны с процессами теплового возбуждения в сетчатке или возникают в каком-либо удаленном от нее участке нервной си« СТеМБ1.

Последнее замечание касается, в частности, процесса усиления зрительных ощущений, который, как говорят, происходит в результате приема различных веществ, вызывающих галлюцинации. Представляется весьма вероятным, что эффекты, вызываемые этими веществами, обусловлены увеличением коэффициента усиления мощного усилителя, находящегося в самой сетчатке.

Как мы уже отмечали, эмоциональное состояние, связанное с каким-то напряжением или повышенным вниманием наблюдателя, приводит к значительному увеличению усиления.

Послеобразы

Существование механизма контроля усиления на сетчатке позволяет дать очевидное объяснение различным наблюдениям, при которых человек смотрит на яркий объект, а затем переводит взгляд на нейтральную серую стену. При этом в первый момент человек еще видит некий переходной образ, который затем постепенно исчезает. Например, яркий черно- белый объект дает переходный дополнительный образ (послеобраз) в виде фотографического негатива оригинала. Яркий красный объект дает дополнительный цвет - зеленый. В любом случае в той части сетчатки, куда попадает изображение яркого объекта, усиление уменьшается, так что, когда на сетчатке отображается однородная поверхность, прежде яркие участки сетчатки дают в мозг сигнал меньшей величины и появляющиеся на них изображения кажутся темнее, чем окружающий фон. Зеленый цвет послеобраза ярко- красного предмета показывает, что механизм усиления не только локально меняется на различных участках сетчатки, но и на одном и том же участке действует независимо для трех цветовых каналов. В нашем случае усиление для красного канала моментально уменьшилось, что привело к появлению на нейтральной серой стене изображения в дополнительном цвете.

Стоит отметить, что послеобразы не обязательно всегда отрицательны. Если, глядя на ярко освещенное окно, закрыть глаза, затем мгновенно на некоторое время открыть" их, как бы пользуясь фотографическим затвором, и потом снова плотно закрыть, то в течение нескольких секунд или даже минут после- образ будет положительным (по крайней мере вначале). Это вполне естественно, так как время затухания любого процесса фотовозбуждения в твердом теле конечно. Известно, что глаз накапливает свет в течение 0,1-0,2 с, поэтому среднее время его фотовозбуждения также должно составлять 0,1-0,2 с, и за время порядка секунд фотовозбуждение спадает до все меньшего уровня; послеобраз остается видимым, поскольку усиление продолжает возрастать после того, как мы закроем глаза. Если в процессе наблюдения положительного образа в глаз попадает небольшое количество постороннего света, то этот образ немедленно превращается в отрицательный по причинам, указанным в предыдущем разделе. По мере того как посторонний свет возникает или исчезает, мы можем переходить от положительного послеобраза к отрицательному и обратно. Если в темной комнате смотреть на конец зажженной сигареты, движущейся по кругу, то зажженный конец будет восприниматься как полоска света конечной длины благодаря инерции зрительного восприятия (положительный послеобраз). При этом наблюдаемое изображение, подобно комете, имеет ярко-красную голову и голубоватый хвост. Очевидно, голубые компоненты света сигареты обладают большей инерцией, чем красные. Подобный эффект мы можем наблюдать, глядя на стену красноватого цвета: по мере уменьшения яркости до уровня ниже примерно 10 -6 ламб она приобретает синий оттенок. Обе серии наблюдений можно объяснить, если предположить, что коэффициент усиления для голубого цвета достигает больших величин, чем для красного; в результате восприятие голубого цвета сохраняется до меньших уровней возбуждения сетчатки, чем красного.

Видимость излучений высоких энергий

Зрительное восприятие инициируется электронным возбуждением молекул. Поэтому можно предположить существование определенного энергетического порога, но, вообще говоря, не исключено, что излучения высокой энергии будут также вызывать электронные переходы и окажутся видимыми. Если переход, вызывающий зрительное возбуждение, представляет собой резкий резонанс между двумя электронными энергетическими уровнями, то фотоны с большей энергией не будут эффективно возбуждать этот переход. С другой стороны, электроны или ионы высокой энергии могут возбуждать переходы в широком интервале энергий, и тогда они должны быть видимыми, поскольку на своем пути они оставляют плотные области возбуждений и ионизаций. В опубликованной ранее работе, где обсуждались проблемы видимости излучения с высокими энергиями, автор выразил некоторое удивление по поводу того, что до сих пор никто не сообщал о прямых визуальных наблюдениях космических лучей.

В настоящее время имеются некоторые данные, касающиеся проблемы видимости излучений в широком интервале высоких энергий. Прежде всего, уже известно, что ультрафиолетовая граница обусловлена поглощением в роговице. Люди, у которых по тем или иным причинам роговица была либо удалена, либо заменена более прозрачным веществом, действительно могут видеть ультрафиолетовое излучение.

О возможности видеть рентгеновское излучение немало говорилось на ранних стадиях исследования рентгеновских лучей. Публикации в этой области прекратились, когда стало известно о вредном воздействии рентгеновского излучения. Эти ранние наблюдения были неоднозначны, поскольку оставалось неясным, возбуждают ли рентгеновские лучи сетчатку непосредственно или посредством возбуждения флуоресценции в стекловидном теле. Некоторые более поздние и точные эксперименты говорят о том, что происходит прямое возбуждение сетчатки; об этом, в частности, свидетельствует восприятие резких теней от непрозрачных объектов.

Возможность визуального наблюдения космических лучей в настоящее время подтверждена рассказами космонавтов о том, что они видели полосы и вспышки света, когда кабина корабля находилась в темноте. Однако до сих пор остается неясным, связано ли это непосредственно с возбуждением сетчатки или с генерацией рентгеновского излучения в стекловидном теле. Космические лучи создают в любом твердом теле плотный след возбуждения, поэтому было бы странно, если бы они не могли вызвать непосредственное возбуждение сетчатки.

Зрение и эволюция

Способность живых клеток считать фотоны или, по меньшей мере, реагировать на каждый фотон возникла на ранних этапах развития растительной жизни. Квантовая эффективность фотосинтеза оценивается для красного света примерно в 30%. В процессе фотосинтеза энергия фотонов используется непосредственно в определенных химических реакциях. Она не усиливается. Растение использует свет для питания, но не для получения информации, если исключить гелиотропные эффекты и синхронизацию биологических часов.

Использование же света для получения информации означает, что непосредственно на рецепторе должен быть создан в высшей степени сложный усилитель, благодаря которому ничтожно малая энергия фотонов превращается в значительно большую энергию нервных импульсов. ТОЛЬКО таким путем глаз способен передавать информацию в мышцы или мозг. Такой усилитель, по-видимому, появился на ранних этапах развития животной жизни, поскольку многие простейшие животные обитают в темноте. Следовательно, искусство счета фотонов было освоено задолго до появления человека.

Счет фотонов, безусловно, явился существенным достижением эволюционного процесса. Он оказался также наиболее сложным шагом в развитии зрительной системы. Для выживания нужна была гарантия, что вся доступная информация может быть зарегистрирована. При наличии такой гарантии адаптация зрительной системы в зависимости от конкретных потребностей определенного животного представляется уже более легким и вторичным успехом.

Такая адаптация приобрела большое разнообразие форм. Большинство из них, по-видимому, обусловлено очевидными причинами. Мы приведем здесь лишь несколько примеров для того, чтобы подтвердить тесную связь между оптическими параметрами и условиями жизни животного.

Структура сетчатки дневных птиц, таких, как ястреб, в несколько раз тоньше, чем у ночных животных, например у лемура. Очевидно, что у высоколетающего ястреба более высокое разрешение зрительной системы и соответственно более тонкая структура сетчатки оправданы высокой яркостью освещения в середине дня. Более того, в поисках полевой мыши ястребу безусловно необходима большая детальность зрительного образа. С другой стороны, лемур при его ночном образе жизни имеет дело со столь низкими уровнями освещенности, что его зрительные образы, качество которых ограничено фотонным шумом, крупнозернисты и не требуют большего, чем крупнозернистая структура сетчатки. В самом деле, при столь малой интенсивности света выгодно иметь линзы с большой апертурой (f/D) = 1,0), хотя эти линзы неизбежно должны давать плохое качество оптического изображения (рис. 16).


Кривая спектральной чувствительности человеческого глаза хорошо соответствует максимуму распределения дневного солнечного света (5500А). В сумерках максимум чувствительности глаза смещается к 5100 А, что соответствует голубоватому оттенку света, рассеянного небом после захода солнца. Можно было бы ожидать, что чувствительность глаза должна простираться в красную область по крайней мере до той длины волны, где тепловое возбуждение сетчатки начинает конкурировать с фотонами, попадающими извне. Например, на абсолютном зрительном пороге 10 -9 ламб спектральная чувствительность глаза могла бы простираться примерно до 1,4 мкм, где такая конкуренция уже становится существенной. Остается не ясным, почему в действительности граница чувствительности глаза находится при 0,7 мкм, если только это ограничение не связано с отсутствием подходящего биологического материала.

Время накопления информации глазом (0,2 с) хорошо согласуется с временем нервной и мышечной реакции человеческой системы в целом. Наличие такой согласованности подтверждается тем, что специально сконструированные телевизионные камеры с временем релаксации 0,5 с или более оказываются явно неудобными и раздражающими в эксплуатации. Возможно, что у птиц время накопления зрительной информации меньше вследствие их большей подвижности. Косвенным подтверждением этому может служить тот факт, что некоторые трели или серии нот птицы «пропевают» столь быстро, что человеческое ухо воспринимает их как хор.

Наблюдается строгое соответствие между диаметром палочек и колбочек человеческого глаза и диаметром дифракционного диска в тот момент, когда отверстие зрачка близко к его минимальной величине (примерно 2 мм), которая устанавливается при высоких интенсивностях света. У многих животных зрачки имеют не круглую, а щелеподобную форму и ориентированы в вертикальном (например, у змей, аллигаторов) или в горизонтальном (например, у коз, лошадей) направлениях. Вертикальная щель обеспечивает высокую резкость изображения, ограниченную для вертикальных линий аберрациями линз, а для горизонтальных - дифракционными эффектами.

Вполне оправданы попытки убедительно объяснить приспособленность этих оптических параметров к образу жизни определенных животных. .
Зрительная система лягушки представляет собой поразительный пример адаптации в соответствии с ее образом жизни. Ее нервные связи устроены так, чтобы выделить движения привлекательных для лягушек мух и игнорировать постороннюю зрительную информацию. Даже в зрительной системе человека мы замечаем несколько усиленную чувствительность периферического зрения к мерцающему свету, что, очевидно, можно интерпретировать как охранную систему для предупреждения о надвигающейся опасности.

Наши рассуждения мы закончим несколько «домашним» замечанием. С одной стороны, мы подчеркивали, что человеческий глаз близко подошел к пределу, обусловленному квантовой природой света. С другой стороны, существует, например, выражение «видит как кошка», которое означает, что зрительная чувствительность домашней кошки в ее ночных похождениях значительно превышает нашу собственную. По-видимому, следует примирить эти два утверждения, заметив, что если бы мы решили разгуливать по ночам на четвереньках, то приобрели бы такую же способность ориентироваться в темноте, какой обладает кошка.

Итак, квантовая эффективность человеческого глаза меняется примерно от 10% при низких освещенностях до нескольких процентов при высоких освещенностях. Полный интервал освещенностей, в котором работает наша зрительная система, простирается от 10 -10 ламб при абсолютном пороге до 10 ламб при ярком солнечном свете.

Непосредственно на сетчатке имеется биохимический усилитель с коэффициентом усиления, вероятно, более 10 6 , который превращает малую энергию падающих фотонов в значительно большую энергию зрительных нервных импульсов. Коэффициент усиления этого усилителя изменяется в зависимости от освещенности, уменьшаясь при высоких освещенностях. Этими изменениями объясняется явление тем- новой адаптации и ряд эффектов, связанных с возникновением послеобразов. Зрительная система человека и животных служит свидетельством их эволюции и адаптации к внешним условиям.

Статья из книги: .

Глаз состоит из глазного яблока диаметром 22-24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой ). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.

Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.

Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6-8 градусов.

Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения. Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения. В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.

В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек. Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.

На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25-30 см.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50-60 минут пребывания в темноте.

Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8-10 минут чувство ослепления прекращается, и глаз снова видит.

Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1-1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали. Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45-50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света. Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

Дефекты зрения и их коррекция

При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

Близорукость

При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

Дальняя точка глаза

Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

Дальняя точка глаза

Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

Дальнозоркость

При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

Дальняя точка глаза

Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

Дальняя точка глаза

При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

Аметропия

Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

Астигматизм

При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать. На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.

Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями. Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.

Глаза помогают нам видеть окружающий мир, но как устроено зрение человека? Статья научит вас отличать центральное зрение от периферического, расскажет о строении слезных органов и . Вы узнаете много нового о цветовой передаче, поймете, что глаза дошкольников и стариков имеют ряд отличий. Что такое сетчатка, слепое пятно и ? Ответы находятся ниже.

Как устроен человеческий глаз

Чтобы воспринимать окружающее, глаз настраивается на солнечные лучи. Оптический диапазон зависит от падающих на роговицу лучей — они проходят сквозь переднюю камеру органа. Дальнейший путь свет проделывает через хрусталик, стекловидное тело и сетчатку — там обрабатываются поступающие образы. Внутриглазная жидкость питает хрусталик, циркулируя между двумя глазными камерами. Мозг воспринимает готовую информацию, поступающую по зрительному нерву. Ведущий глаз видит картинку наиболее четко — за это отвечает желтое пятно, расположенное в середине сетчатки.

Чтобы зрение человека не ослабевало, требуются постоянные «чистки». Роль чистильщиков, являющихся слезными фильтрами, выполняют ресницы. Веки защищают орган чувств от повреждений. Конъюнктива покрывает внутреннюю поверхность век и склеры. Научное определение гласит, что конъюнктива — это слизистая оболочка, препятствующая попаданию внутрь глаза инородных тел. Защитной реакцией служит выделение слезной жидкости.

Известный в психологии факт — человек рождается с недостаточно развитыми глазами. Этот орган чувств окончательно формируется у девятимесячных младенцев.

Особенности зрительного восприятия таковы, что мы наблюдаем не сам объект, а свет, отражающийся от его поверхности. Преломление света называется рефракцией . После того, как свет проецируется на сетчатку, происходит вот что:

  1. свет превращается в электроэнергию;
  2. формируется химический сигнал;
  3. этот сигнал попадает в зрительный нерв;
  4. мозг получает информацию.

Строение глазного яблока

Наш орган чувств крайне восприимчив к свету. Прочность и упругость — главные характеристики глаза. У младенцев, дошкольников и стариков цветовое зрение (и его острота) существенно различаются. Дело не только в строении, но и в этапах развития, которые мы преодолеваем за свою жизнь. Но об этом позже. Итак, глазное яблоко состоит из:

  • стекловидного тела;
  • конъюнктивы;
  • роговицы;
  • хрусталика;
  • зрачка;
  • внутренней камеры;
  • внутриглазного канала.

Само яблоко помещено в костную воронку, имеющую защитную функцию. Воронка называется глазницей. Орган чувств окутан жировым слоем, мышцами и волокнистой тканью. Яблоко окружено склерой, сетчаткой, сосудистой оболочкой, мышцами, связками и кровеносными сосудами. Особенности зрительного восприятия зависят от состояния всех перечисленных органов.

Центральное зрение

У дошкольников и взрослых центральное зрение играет ведущую роль. Центральная ямка отвечает за формы, поэтому мы различаем мелкие детали и очертания предметов. Цветовое зрение тут не играет роли, главная характеристика — острота.

Острота напрямую зависит от угла восприятия. Чем шире угол, тем острота ниже.

Пространственные точки в психологии имеют важное значение. Рассматривая особенности зрения с позиции углов и диапазонов, можно выявлять различные патологии. Ведущий глаз человека предоставляет хороший обзор, но идеальным считается бинокулярное восприятие действительности.

Периферическое зрение

Цветное зрение периферического плана связано с пространственной ориентацией человека. Определение своего местоположения возможно благодаря полю зрения. Вещи расположены в пределах координатной системы, которую наш мозг способен выстраивать.

Особенности зрительного восприятия не позволяют четко видеть все предметы, окружающие нас в пространстве, но при этом мы фиксируем их положение. Если периферическое восприятие пропадает, оптический диапазон резко сужается, и мы не можем свободно ориентироваться в окружающей среде. Такое бывает нечасто, но иногда случается. Поэтому медики разработали ряд тестов для проверки периферического мировосприятия и выявления патологий.

Восприятие цвета

Цветовое зрение человека настолько совершенно, что наши глаза способны воспринимать около 150 тысяч тонов и оттенков. Определение цвета происходит благодаря колбочкам — специальным светочувствительным клеткам, локализующимся в человеческом мозгу. Видеть ночью нам помогают палочки.

Каждый из трех типов колбочек «отвечает» за свой участок спектра, поэтому цветное зрение неоднородно. Первый тип колбочек более восприимчив к синим участкам спектра, второй — к зеленым, третий специализируется на красных оттенках. В психологии адекватное восприятие цветовой гаммы играет значимую роль. Особенно это касается дошкольников.

Мужское и женское зрение

У мужчин и женщин доминирующими являются разные виды зрения. Девушки различают больше оттенков и цветов, зато мужчины лучше концентрируются на отдельных предметах. У мужчин развитие зрительного восприятия тяготеет к центральному типу, у женщин — к периферическому.

Подобные различия обусловлены историческим развитием нашего общество. В древние времена мужчины были охотниками, а женщины заботились о домашнем очаге. Поэтому ведущий глаз мужчины должен выслеживать и поражать добычу на расстоянии. Историческая задача женщины — отслеживать изменения в среде обитания и быстро реагировать на них. К примеру, убить змею, проникшую в пещеру.

В темноте цветовое зрение женщин более эффективно. Ширина обзора помогает девушкам фиксировать большее количество мелких деталей. Зато мужчины хорошо отслеживают движущиеся объекты. На близких дистанциях дамы также чувствуют себя увереннее мужчин.

Как меняется зрение с годами

Острота колеблется в зависимости от возраста. Развитие зрительного восприятия может отнимать до 15 лет нашей жизни. У четырехмесячного младенца параметр остроты составляет 0,06, у годовалого — максимум 0,3 от нормы. Стопроцентное мировосприятие достигается нами в пятилетнем возрасте, иногда — в пятнадцатилетнем.

Приближение старости означает ухудшение зрительной остроты. Мышцы слабеют, размеры зрачков уменьшаются. Отсюда — плохое восприятие светового потока. Старики нуждаются в большем количестве света, чем молодые люди. Перепады яркости ощущаются болезненно, цвета распознаются хуже, снижается контрастность изображений.

В 65-летнем возрасте периферическое цветное зрение резко ухудшается. Поле восприятия образов сужено, боковой обзор размыт. Тут ничего не поделаешь — все человеческие органы подвержены механизмам старения.

Как определяются ведущие глаза

Функциональные особенности зрения человека позволяют утверждать, что наши глаза видят мир по-разному. Ведущий глаз воспринимает реальность лучше ведомого — это проявляется особенно сильно у тех, кто носит контактные линзы. В случае неподвижности зрительной оси ведущий глаз нацеливается на изображение лучше — это происходит благодаря явлению аккомодации. Когда объект надежно «зафиксирован», к процессу подключается ведомый глаз.

Чтобы выяснить, какое глазное яблоко является у вас ведущим, можно провести эксперимент с бумажным листом. Вам потребуются ножницы, лист и предмет для наблюдений. Порядок действий следующий:

  1. в бумаге прорезается небольшое отверстие;
  2. лист удерживается перед глазами на дистанции около 30 сантиметров;
  3. объект фиксируется глазами через вырезанное отверстие;
  4. глаза поочередно закрываются;
  5. если перед одним глазом (правым либо левым) после закрытия века объект продолжает наблюдаться, глазное яблоко считается ведущим.

Согласно данным психологов, у 30% земного населения ведущим является левый глаз.

Эта особенность свидетельствует о слабом психосоциальном здоровье. Такие люди излишне эмоциональны, они не выдерживают борьбу за важные административные должности. Как видите, на человеческое мировосприятие влияет множество факторов — возрастных, психосоциальных и даже гендерных. Тренировки и правильное питание помогут замедлить ослабление глаз, но в целом этот процесс неизбежен.

Орган зрения человека - глаза, с их помощью мозг получает визуальную информацию, необходимую нам для ориентации в пространстве и связи с внешним миром.

Световой поток, отраженный от предмета, проникает через роговицу, хрусталик и стекловидное тело глаза на сетчатку, где зарождается нервный импульс. По зрительному нерву он поступает в зрительные центры, расположенные в затылочных долях головного мозга.

Именно там происходит формирование единого изображения, полученного одновременно с двух глаз. Этот сложнейший процесс называется бинокулярным зрением, и это далеко не единственный интересный факт, связанный с нашими глазами и умением видеть.

Зрение человека: интересные факты

Сколько цветов глаз существует в мире, почему люди рождаются дальтониками и почему во время чихания глаза автоматически закрываются? Ответы на эти и другие интересные вопросы о зрении рассмотрим ниже.

Факт №1: размер имеет значение

Глазное яблоко человека имеет форму не правильного шара, как принято считать, а слегка сплюснутой спереди назад сферы. Вес глаза составляет примерно 7 г, а диаметр глазного яблока одинаковый у всех здоровых людей и равен 24 мм. Он может отклоняться от этого показателя при таких заболеваниях, как и дальнозоркость.

Факт №2: цвет глаз

Все дети рождаются с серо-голубыми глазами, и только спустя два года они приобретают свой настоящий цвет. Глаза человека бывают различных оттенков - в зависимости от концентрации в радужной оболочке глазного яблока пигмента меланина.

Самый редкий цвет глаз у человека - зеленый. Красные глаза характерны для альбиносов и объясняются полным отсутствием красящего пигмента и цветом кровеносных сосудов, просвечивающих через прозрачную радужку.

Радужка каждого человека индивидуальна, поэтому ее рисунок можно использовать для идентификации наравне с отпечатками пальцев.

Факт №3: свет и тьма

За способность человека видеть при свете и в темноте отвечают разные виды фоторецепторов сетчатки. Палочки более светочувствительны и помогают нам ориентироваться при отсутствии достаточного освещения.

Нарушение их функционирования вызывает развитие так называемой куриной слепоты — заболевания, при котором человек очень плохо видит при сумеречном освещении.

Благодаря колбочкам человек различает цвета. Глаз человека насчитывает в среднем 92 млн палочек и 4 млн колбочек.

Факт №4: вверх ногами

Изображение предметов, проецируемое на сетчатку глаза, оказывается перевернутым. Этот оптический эффект аналогичен проекции линзы в фотоаппарате. Так почему же мы видим окружающий мир нормально, а не кверху ногами?

В этом заслуга нашего мозга, который воспринимает изображение и автоматически приводит его в нормальное положение. Если некоторое время носить специальные очки, переворачивающие картинку, то поначалу все будет видеться перевернутым, а затем мозг снова приспособится и нормализует оптическое искажение.

Факт №5: дальтонизм

Заболевание, называемое также цветовой слепотой, названо по имени английского ученого Джона Дальтона. Он не различал красный цвет и изучал это явление, опираясь на собственные ощущения. Благодаря изданной им книге с подробным описанием заболевания, в обиход вошло слово «дальтонизм».

Согласно статистике, этому наследственному заболеванию подвержены в большинстве своем мужчины, и лишь 1% от числа дальтоников приходится на женщин.

Факт №6: ты - мне, я - тебе

Несмотря на все достижения современной медицины, невозможно совершить полную пересадку глаза от одного человека другому. Это связано с тесной связью глазного яблока с головным мозгом и невозможностью полностью восстановить нервные окончания — зрительный нерв.

На данный момент возможна лишь трансплантация роговицы, хрусталика, склеры и других частей глаза.

Факт №7: будьте здоровы!

Во время чихания глаза автоматически закрываются. Эта защитная реакция нашего организма закреплена на уровне рефлексов, так как при резком выходе воздуха через рот и нос давление в пазухах носа и кровеносных сосудах глаз скачкообразно повышается. Закрытые веки при чихании помогают избежать разрыва глазных капилляров.

Факт №8: далеко гляжу

Острота человеческого зрения в два раза ниже, чем у орла, что связано с особенностью строения человеческого глаза и способностью хрусталика изменять свою кривизну.

Область на сетчатке с самой высокой концентрацией фоточувствительных клеток называется «желтое пятно». А точка, в которой отсутствуют и палочки, и колбочки, носит название «слепое пятно». Этим местом глаза человек видеть не может.

Факт №9: болезни органов зрения

Согласно статистике Всемирной организации здравоохранения, с проблемой нарушения зрения в мире знакомы почти 300 млн человек. И 39 млн из них страдают слепотой!

Как правило, потеря зрения вызывается возрастной , также среди причин все чаще называется запущенный диабет.

Среди заболеваний органов зрения, которые поддаются корректировке с помощью очков, контактных линз или хирургического вмешательства, чаще всего встречаются дальнозоркость, близорукость и астигматизм. Чтобы не пропустить первые признаки болезни, необходимо посещать офтальмолога с профилактической целью один раз в год.

Факт №10: очки и линзы

Постоянное ношение правильно подобранных очков и контактных линз не приносит вреда глазам и не может ухудшить зрение человека. А вот пользу солнцезащитных очков переоценивать не стоит. Даже высококачественные стеклянные темные линзы таких очков не способны задерживать все ультрафиолетовые лучи, поэтому смотреть в них прямо на солнце не рекомендуется.