Электрическая схема сигнализатора температуры и влажности 8803. Датчик предотвращения протечки воды своими руками

Схема регулятора влажности, который предназначен для автоматического поддержания относительной влажности воздуха в диапазоне от 20 до 95 % с точностью не хуже ± 1,5 %.

Схема регулятора

Прибор состоит из гигрометрического датчика — гигристора R1, релейного устройства на транзисторах V2—V4, V7 и блока питания. На транзисторах V2—V4 релейного устройства собран триггер Шмитта.

При относительной влажности воздуха, ниже установленной на шкале переменного резистора R3, транзистор V4 открыт до насыщения, и на диоде V5 имеется такое напряжение, которое закрывает транзистор V2. Транзистор V7 выходного каскада также закрыт положительным напряжением на конденсаторе С2. Реле К1 обесточено.

Рис. 1. Схема регулятора влажности воздуха.

Воздух увлажняется. При увеличении относительной влажности сопротивление гигристора R1 уменьшается, а следовательно, увеличивается отрицательное напряжение на базе транзистора V2. Когда оно превысит напряжение на диоде V5, триггер Шмитта переключится: транзистор V2 откроется, a V4 закроется. Транзистор V7 откроется, сработает реле K1,-контакты которого управляют исполнительным механизмом.

Для повышения стабильности уровней срабатывания триггера Шмитта транзисторы V2 и V4 связаны через эмиттерный повторитель на транзисторе VЗ.

О включении напряжения питания и о режимах работы регулятора сигнализирует лампа H1. При включение регулятора в сеть и малой относительной влажности тог через лампу ограничивается резистором R9, и она светится слабо. Увеличение относительной влажности вызовет срабатывание реле К1, шунтирование резистора R9 контактами К1.1 и яркое свечение лампы Н1.

Детали и конструкция

В регуляторе реле К1 — РПУ-2 или РПГ на напряжение 24 В. В объектах с агрессивными или взрывоопасными средами реле К1 герметизируют.

Рис. 2. Конструкция датчика влажности воздуха.

Трансформатор Т1 намотан на магнитопроводе ШЛ12 X 16. Обмотка / содержит 5300 витков проводи ПЭВ-1 — 0,1, обмотка II — 480 витков провода ПЭВ-1 — 0,35, III — 145 витков провода ПЭВ-1 —0,21. Сигнальная лампа Н1 — КМ на 24 В и 35 мА.

Датчик влажности — гигристор R1 — можно изготовить самостоятельно из одностороннего фольгированного стеклотекстолита толщиной 1 мм по размерам, показанным на рисунке. Вытравленные электроды датчика серебрят или лудят, затем обезжиривают, покрывают насыщенным раствором хлористого лития или поваренной соли и просушивают.

Сопротивление изготовленного датчика 120...30 кОм при относительной влажности воздуха 20...55%. Для работы в условиях повышенной влажности (50...95 %) датчик выполняют из двустороннего стеклотекстолита без последующего покрытия влагочувствительным составом.

Датчик к регулятору подсоединяют экранированным проводом.

Налаживание

Налаживание регулятора начинают с подбора резистора R2 для установки границ шкалы резистора R3, а затем градуируют шкалу. Для этого гигристор и контрольный психрометр помещают в камеру с изменяющейся влажностью. Психрометром определяют влажность в камере и, изменяя сопротивление резистора R3, добиваются срабатывания реле К1.

Каждому значению влажности в камере соответствует свое положение движка резистора R3. По полученным точкам строят шкалу регулирования влажности.

При эксплуатациии автоматического регулятора следует избегать конденсации влаги на гигристоре. Изменение характеристик датчика от запыления можно предотвратить, установив его вертикально и поместив в защитный кожух.

Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.

Технические характеристики TL431

  • напряжение на выходе: 2,5…36 вольт;
  • выходное сопротивление: 0,2 Ом;
  • прямой ток: 1…100 мА;
  • погрешность: 0,5%, 1%, 2%;

TL431 имеет три вывода: катод, анод, вход.

Аналоги TL431

Отечественными аналогами TL431 являются:

  • КР142ЕН19А
  • К1156ЕР5Т

К зарубежным аналогам можно отнести:

  • KA431AZ
  • KIA431
  • HA17431VP
  • IR9431N
  • AME431BxxxxBZ
  • AS431A1D
  • LM431BCM

Схемы включения TL431

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.

Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

R3 = (Uпит. – Uh1 – Uda)/Ih1

где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.

Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.

Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.

Проверка исправности TL431

Выше приведенной схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветиться, то TL431 исправен.

Индикатор низкого напряжения

Разница данной схемы от предшествующей в том, что светодиод подключен по иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.

Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.

Индикатор изменения напряжения

Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:

В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).

Работа TL431 совместно с датчиками

Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.

Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить , то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.

Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.

Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.

Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.

TL431 в схеме со звуковой индикацией

Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.

Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.

Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.

Калькулятор для TL431

Для облегчения расчетов можно воспользоваться калькулятором:


(103,4 Kb, скачано: 21 590)
(702,6 Kb, скачано: 14 618)

Аварийная ситуация, возникающая в системе холодного или горячего водоснабжения, всегда доставляет много неприятностей не только владельцу квартиры, но и всем соседям, особенно проживающим на нижних этажах. После нарушения герметичности водопровода, растекающаяся из него вода проходит по строительным конструкциям, повреждает обои, натяжные потолки, декоративные покрытия.

Особую опасность она доставляет бытовой электропроводке, нарушая состояние изоляции и создавая непредвиденные токи утечек, которые снижают и дома.

Предотвратить развитие серьёзных последствий протечки воды позволяет система автоматического оповещения жильцов, оперативно срабатывающая при появлении первых признаков влаги. Собрать ее под силу любому домашнему мастеру, умеющему паять простые радиолюбительские устройства.

  1. биполярном транзисторе NPN конструкции 2N5551 ;
  2. микросхеме К561ЛА7 ;
  3. микросхеме К561ЛН2 .

Как сделать датчик влажности

Он является общим элементом для любой из трех рассматриваемых схем и работает за счет электропроводности воды.

Датчик делают из двух электродов, которые могут располагаться в или вертикали относительно друг друга.

Горизонтальная конструкция контактных площадок

В состав входят два сухих электрода, которые могут быть различной конфигурации. Их удобно вырезать из фольгированной стеклопластиковой или гетинаксовой платы, прорезав не ней изолирующие дорожки.

С формой и габаритами датчика влажности можно поэкспериментировать, тщательно подобрать их к конкретным условиям размещения. Если нет под рукой платы, то контактные площадки вырезают из обычной фольги или жести, наклеивая их на плоскую диэлектрическую поверхность.


На один электрод подводится положительный потенциал электроэнергии, а на другой - отрицательный. Они разнесены на одинаковое расстояние, отделены воздушным зазором, обладающим высокими диэлектрическими свойствами.

Когда на электродах появляется влага, то через ее слой начинает проходить электрический ток, который изменяет состояние электронной схемы датчика протечки, вызывая срабатывание световой и звуковой сигнализации.

Вертикальная конструкция контактных площадок

Две полоски фольги размерами примерно 10х40 мм (габариты условны и принципиального значения не имеют) закрепляют параллельными плоскостями на небольшом удалении так, чтобы исключить их самопроизвольное касание при работе.

Подключать датчик влажности к электронной схеме лучше короткими проводами или использовать экран или витую пару.

Совет! Повысить чувствительность самодельного датчика можно простым действием - положить его контактными площадками на кусочек туалетной бумаги или несколько слоев марли, расположенной в месте вероятной протечки воды на полу. За счет гигроскопичных свойств этих материалов даже при небольшой влажности возникает хороший токопроводящий слой.

Датчик протечки воды на транзисторе 2N5551

Это наиболее простая, но вполне надежная схема, которую может собрать даже начинающий радиолюбитель.

Состав деталей

Кроме датчика влажности для работы электрической схемы потребуется:

  • биполярный NPN транзистор 2N5551 или один из его аналогов: ВС517, ВС618, ВС 879, 2SD1207, 2SD1853, 2SD2088;
  • светодиод VD1;
  • элемент питания на 3 вольта, например, плоская литиевая батарейка;
  • трехвольтовый пьезоизлучатель;
  • соединительные провода.

Все эти детали помещаются в небольшую пластиковую коробочку, служащую корпусом и соединяются пайкой навесным монтажом.

Алгоритм срабатывания датчика протечки довольно прост. В сухом положении контактных площадок транзистор VT1 закрыт и через его полупроводниковый переход коллектор-эмиттер ток не проходит.

При появлении воды в датчике влажности между электродами возникает замыкание, положительный потенциал элемента питания поступает на базу транзистора и открывает переход от коллектора к эмиттеру.

Через пьезоизлучатель и параллельно подключенный светодиод начинает протекать ток. Включается звуковой и световой сигнал, оповещающие жильцов о повышенной влажности.

Сборку и работу подобной схемы на базе транзистора BC517 можно посмотреть в коротком видеоролике владельца “Руки из плеч”.

Датчик протечки воды на микросхеме К561ЛА7

Он работает по более сложной, но вполне доступной схеме, обладающей более высокой надежностью и чувствительностью.

Состав деталей

Кроме датчика влажности и микросхемы К561ЛА7 для сборки потребуется:

  • биполярный транзистор VT1 серии КТ315Г;
  • резисторы на 1 Мом,100 Ом и килооомные: 1,5 К, 10 К, 300 К;
  • два полярных конденсатора на 2,2 и 47 микрофарад для работы под напряжением до 16 вольт;
  • конденсатор на 200 пикофарад;
  • светодиод;
  • генератор звуковых волн ЗП-1;
  • переключатель SA-1;
  • источник питания.

Аналогами К561ЛА7 являются К176ЛА7, 564ЛА7, 164ЛА6, HFF4011BP, HCF4011BE, СD4011A, СD4011.


Схема не критична к уровню питающего напряжения и надежно работает при его пределах от 5 до 15 вольт.

Принцип работы электрической схемы

Когда на сухие контакты датчика влажности поступает напряжение от источника питания, то светодиод не горит, а звуковой генератор не вырабатывает сигналы: транзисторный переход эмиттер-коллектор находится в закрытом состоянии.


При появлении тока через датчик влажности сквозь ключи микросхемы потечет ток на базу транзистора, и он откроется. Загорится светодиод и сработает звуковая сигнализация.

Когда схема питается от сети, а не от автономного источника, то переключатель SA1 лучше перевести в нижнее положение. В этом случае светодиод станет сразу светиться, указывая на готовность датчика протечки к срабатыванию, а погаснет он при открытии транзистора.

Изменением емкости конденсатора С2 регулируют тональность звукового генератора.

Потребление тока электрической схемой составляет:

  • примерно 1 мКа в режиме ожидания;
  • 25 мА при срабатывании.

Датчик протечки воды на микросхеме К561ЛН2

Он работает по схеме, подобной предыдущей, тоже обладает высокой чувствительностью и надежностью.

Состав деталей

Кроме датчика влажности и микросхемы К561ЛН2 потребуется:

  • биполярный транзистор VT1 серии КТ3107Д;
  • резисторы на 3 Мом и 30 К три штуки, 430 К - два, 430 К и 57К - по одному;
  • полярный конденсатор на 100 микрофарад для работы под напряжением до 16 вольт;
  • конденсатор на 0,01 мк - два и 0,1 мк- тоже два;
  • генератор звуковых волн ЗП-22;
  • источник питания на 6÷9 вольт.

Принцип работы электрической схемы

При сухих контактах датчика влажности транзистор VD1 закрыт, а при появлении на них воды его полупроводниковый переход открывается и происходит запуск звукового генератора, выдающего сигнал тревоги.


Эта схема тоже обладает небольшим потреблением мощности. В режиме ожидания ток нагрузки источника напряжения не превышает 1 мКА, а при срабатывании он составляет порядка 3 мА.

Датчик протечки воды, собранный своими руками по любой из вышеприведенных электрических схем, можно установить в любом проблемном месте, где высока вероятность создания аварийной ситуации в системе водоснабжения под:

  • стиральной или посудомоечной машиной;
  • раковиной;
  • ванной;
  • системой питающих трубопроводов водоснабжения.

Его звуковое предупреждение своевременно оповестит жильцов квартиры о начале протечки воды, но не обеспечит ее автоматическое отключение. Выполнять такую функцию предназначены другие устройства, о которых рассказывает владелец видеоролика Remontkv.pro “Как не затопить соседей”.

Вода - это жизнь. Если она в кране, или в радиаторе отопления, это благо. А если она на полу вашей квартиры, или на потолке соседа снизу - это большие финансовые и моральные неприятности. Разумеется, необходимо регулярно проверять систему водоснабжения и отопления на предмет коррозии или трещин в пластиковых трубах. Однако прорыв воды обычно происходит внезапно, без признаков надвигающейся опасности. Хорошо, если в этот момент вы дома, и не спите. Но, по закону подлости, протечки возникают как раз в ночное время, или когда вас нет дома.

Простые правила борьбы с этой проблемой (особенно это касается старого жилого фонда, с изношенными сетями):

  • Регулярно осматривайте водопроводные трубы и элементы системы отопления на предмет дефектов, появления точечной ржавчины, герметичности соединений, и прочее.
  • Уходя из дому, перекрывайте входную задвижку на стояке.
  • Вне отопительного сезона закрывайте краны на батареях (если они имеются).
  • Используйте систему защиты от протечек.

Последний пункт списка мы рассмотрим подробнее.

Как сигнализировать об утечке воды

Решение вопроса пришло в быт из яхтенного мира. Поскольку судовые помещения нижнего яруса (особенно это касается трюмов) находятся ниже ватерлинии, в них регулярно скапливается вода. Последствия понятны, вопрос в том, как с этим бороться. Ставить для контроля отдельного вахтенного матроса нерационально. Тогда кто даст команду на включение откачной помпы?

Существуют эффективные тандемы: датчик наличия воды, и автоматическая помпа. Как только датчик обнаружит заполнение трюма, включается мотор помпы, и производится откачка.

Датчик воды - не что иное, как обычный поплавок на шарнире, соединенный с выключателем помпы. Когда уровень воды поднимается на 1–2 см, одновременно срабатывает сигнализация и мотор откачной помпы.

Удобно? Да. Безопасно? Разумеется. Однако такая система вряд ли подойдет для жилого дома.

  • Во-первых, если вода достигнет уровня 1–2 см по всей площади помещения, она через порог входной двери побежит на лестничную площадку (не говоря о соседях снизу).
  • Во-вторых, откачная помпа совершенно не нужна, поскольку необходимо немедленно найти и локализовать причину прорыва.
  • В-третьих, поплавковая система для помещений с плоским полом неэффективна (в отличие от плавсредств с килеватой формой днища). Пока наберется «нужный» для срабатывания уровень, от сырости развалится дом.

Стало быть, нужна более чувствительная система сигнализации от протечек. Это вопрос датчиков, а исполнительная часть бывает двух видов:

1. Только сигнализация. Она может быть световой, звуковой, или даже соединенной с GSM сетью. В этом случае вы получите сигнал на мобильный телефон, и сможете дистанционно вызвать аварийную бригаду.

2. Отключение подачи воды (к сожалению, такая конструкция не работает с системой отопления, только водопровод). После главной задвижки, которая подает воду от стояка в квартиру (не важно, до или после прибора учета), установлен электромагнитный клапан. При подаче сигнала от датчика, вода перекрывается, и дальнейший потоп останавливается.

Естественно, система отключения воды еще и сигнализирует о проблеме любым из вышеуказанных способов. Эти устройства в широком ассортименте предлагаются сантехническими магазинами. Казалось бы, материальный ущерб от потопа потенциально выше цены спокойствия. Однако большинство граждан живет по принципу «пока гром не грянет, мужик не перекрестится». А более прогрессивные (и рачительные) владельцы жилья, изготавливают датчик протечки воды своими руками.

Принцип работы датчиков протечек

Говоря о блок схеме - все очень просто. Некий элемент фиксирует жидкость в точке его размещения, и подает сигнал в исполнительный модуль. Который, в зависимости от настроек может подавать световые или звуковые сигналы, и (или) дать команду на перекрытие задвижки.

Как устроены датчики

Поплавковый механизм рассматривать не будем, поскольку в домашних условиях он не эффективен. Там все просто: основание закреплено на полу, на шарнире подвешен поплавок, который при всплытии замыкает контакты выключателя. Подобный принцип (только механический) применяется в бачке унитаза.

Чаще всего применяется контактный датчик, который использует естественную способность воды проводить электрический ток.

Разумеется, это не полноценный включатель, через который проходит напряжение 220 вольт. К двум контактным пластинам (см. иллюстрацию) подключается чувствительная схема, которая фиксирует даже небольшую силу тока. Датчик может быть отдельным (как на фотографии выше), или встроенным в общий корпус. Такое решение применяется на мобильных автономных датчиках, работающих от батарейки или аккумулятора.

Если у вас нет системы «умный дом», а вода подается без всяких электромагнитных клапанов, именно простейший датчик со звуковой сигнализацией можно использовать в качестве стартового варианта.

Самодельный датчик простейшей конструкции

Несмотря на примитивность, датчик достаточно эффективен. Домашних мастеров эта модель привлекает копеечной стоимостью радиодеталей, и возможностью сборки буквально «на коленке».

Базовый элемент (VT1) - NPN транзистор серии BC515 (517, 618 и им подобные). С его помощью подается питание на звуковой сигнализатор (B1). Это простейший готовый зуммер со встроенным генератором, который можно приобрести за копейки, или выпаять из какого-нибудь старого электроприбора. Питание требуется порядка 9 вольт (конкретно для этой схемы). Есть варианты под 3 или 12 вольтовые батарейки. В нашем случае используется элемент питания типа «Крона».

Как работает схема

Секрет в чувствительности перехода «коллектор-база». Как только через него начинает протекать минимальный ток, открывается эмиттер, и подается питание на звуковой элемент. Раздается писк. Параллельно можно подключить светодиод, добавляя визуальную сигнализацию.

Сигнал к открытию коллекторного перехода дает та самая вода, о наличии которой надо сигнализировать. Из металла, не подверженного коррозии, изготавливаются электроды. Это могут быть два кусочка медной проволоки, которую можно просто облудить. На схеме точки подключения: (Электроды).

Собрать такой датчик можно на макетной плате.

Затем прибор помещается в пластиковую коробочку (можно в мыльницу), в донышке которой проделаны отверстия. Желательно, чтобы при попадании воды, она не касалась монтажной платы. Если хочется эстетики, печатную плату можно вытравить.

Недостаток такого датчика - различная чувствительность к разным типам воды. Например, дистиллят от протекающего кондиционера может остаться незамеченным.

Исходя из концепции: недорогой автономный прибор, его нельзя интегрировать в единую систему защиты вашего дома, даже самодельную.

Более сложная схема, с регулятором чувствительности

Себестоимость такой схемы тоже минимальная. Выполняется на транзисторе КТ972А.

Принцип работы аналогичен предыдущему варианту, с одним отличием. Сформированный сигнал о наличии протечки (после открытия эмиттерного перехода транзистора), вместо сигнального устройства (светодиод или звуковой элемент), подается на обмотку реле. Подойдет любое слаботочное устройство, типа РЭС 60. Главное, чтобы напряжение питания схемы соответствовало характеристикам реле. А уже с его контактов, информацию можно подавать на исполнительное устройство: система «умный дом», сигнализация, GSM передатчик (на мобильный телефон), аварийный электромагнитный клапан.

Дополнительное преимущество такого исполнения - возможность настройки чувствительности. С помощью переменного резистора регулируется ток перехода «коллектор-база». Вы можете настроить порог срабатывания от появления росы или конденсата, до полноценного погружения датчика (контактной пластины) в воду.

Датчик протечки на микросхеме LM7555

Этот радиоэлемент является аналогом микросхемы LM555, только с меньшими параметрами потребления энергии. Информация о наличии влаги поступает с контактной площадки, обозначенной на иллюстрации, как «датчик»:

Для повышения порога срабатывания, ее лучше выполнить в виде отдельной пластины, соединенной с основной схемой проводами с минимальным сопротивлением.

Оптимальный вариант на фото:

Если вы не хотите тратить деньги на покупку подобного «концевика», его можно вытравить самостоятельно. Только обязательно покройте оловом контактные дорожки, для повышения коррозийной устойчивости.

Как только между дорожками появляется вода, пластина становится замкнутым проводником. Через встроенный в микросхему компаратор начинает протекать электрический ток. Напряжение быстро возрастает до порога срабатывания, при этом открывается транзистор (который выполняет роль ключа). Правая часть схемы - командно исполнительная. В зависимости от исполнения, происходит следующее:

  1. Верхняя схема. Срабатывает сигнал на так называемом «бузере» (пищалке), и светится опционально подключенный светодиод. Есть еще один вариант использования: несколько датчиков объединяются в единую параллельную схему с общим звуковым сигнализатором, а светодиоды остаются на каждом блоке. При срабатывании звукового сигнала, вы безошибочно определите (по аварийному свечению), какой именно блок сработал.
  2. Нижняя схема. Сигнал от датчика поступает на электромагнитный аварийный клапан, расположенный на стояке подачи воды. В этом случае, вода перекрывается автоматически, локализуя проблему. Если вас в момент аварии нет дома, потоп не случится, материальные потери будут минимальными.

Информация: Разумеется, можно своими руками изготовить и запорный клапан. Однако это сложное устройство лучше приобрести в готовом виде.

Схему можно выполнить по макету печатной платы, которая одинаково подойдет как для LM7555, так и для LM555. Устройство питается от напряжения 5 вольт.

Важно! Блок питания должен быть с гальванической развязкой от 220 вольт, чтобы опасное напряжение не попало в лужу воды при протечке.

На самом деле, идеальный вариант - использование зарядного устройства от старой мобилки.

Себестоимость подобной самоделки не превышает 50–100 рублей (на покупку деталей). При наличии в запасниках старой элементной базы, можно свести затраты к нулю.

Корпус - на ваше усмотрение. При таких компактных размерах, найти подходящую коробочку не составит труда. Главное, чтобы от общей платы до контактной пластины датчика, расстояние было не более 1 метра.

Общие принципы размещения датчиков протечки

Любой владелец помещения (жилого или офисного) знает, где проходят коммуникации водоснабжения или отопления. Потенциальных мест протечки не так много:

  • запорные краны, смесители;
  • соединительные муфты, тройники (особенно это касается пропиленовых труб, которые соединяются методом пайки);
  • вводные патрубки и фланцы бачка унитаза, стиральной или посудомоечной машины, гибкие шланги кухонных смесителей;
  • места подключения приборов учета (счетчиков воды);
  • радиаторы отопления (могут протекать как по всей поверхности, так и в местах соединения с магистралью).

Разумеется, в идеале, датчики должны быть расположены именно под этими устройствами. Но тогда их может быть слишком много, даже для варианта самостоятельного изготовления.

На самом деле, достаточно 1–2 датчиков на потенциально опасное помещение. Если это ванная комната, или туалет - как правило, имеется порожек входной двери. В этом случае, вода набирается, как в поддон, слой может достигать 1–2 см, пока жидкость не прольется через порог. В этом случае, место установки не критично, главное, чтобы датчик не мешал передвигаться по комнате.

На кухне датчики устанавливаются на пол под раковиной, за стиральной или посудомоечной машиной. Если возникнет протечка, она сначала образует лужицу, в которой и сработает сигнализация.

В остальных помещениях прибор устанавливается под радиаторами отопления, поскольку через спальню или гостиную трубы водоснабжения не прокладываются.

Не лишним будет установка датчика в нишу, по которой проходят стояки трубопроводов и канализации.

Наиболее критичные точки прорыва воды

При равномерном рабочем давлении, риск протечки минимален. Тоже самое относится к смесителям и кранам, если вы открываете (закрываете) воду плавно. Слабое место системы трубопроводов проявляет себя при гидроударах:

  • клапан подачи воды в стиральную машину при запирании создает давление, в 2–3 раза превышающее номинал водопровода;
  • то же самое, но в меньшей степени, относится к запирающей арматуре бачка унитаза;
  • радиаторы отопления (а также места их подключения к системе) зачастую не выдерживают тестовую опрессовку, которую проводят предприятия теплоснабжения.

Как правильно размещать датчики

Контактная пластина должна располагаться как можно ближе к поверхности пола, не касаясь его. Оптимальная дистанция: 2–3 мм. Если контакты разместить непосредственно на полу, будут возникать постоянные ложные срабатывания из-за конденсата. Большое расстояние снижает эффективность защиты. 20–30 миллиметров воды, это уже проблема. Чем раньше сработает датчик, тем меньше потери.

Справочная информация

Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы.

Классификация устройств

  • По количеству вторичных защитных устройств на объекте (запорных аварийных кранов с электромагнитным приводом). Датчики протечки не должны перекрывать все водоснабжение, если запорные системы разнесены по потребителям. Локализуется только линия, на которой обнаружена протечка.
  • По способу подачи информации об аварии водопровода (системы отопления). Местная сигнализация предполагает нахождение людей на объекте. Дистанционно передаваемая информация организуется с учетом оперативного прибытия владельца или ремонтной группы. В противном случае, она бесполезна.
  • Способ оповещения: локальная звуковая или световая сигнализация (на каждом датчике), или вывод информации на единый пульт.
  • Защита от ложных срабатываний. Как правило, точно настраиваемые датчики работают эффективнее.
  • Механическая или электрическая защита. Пример механики - системы «Аква стоп» на подающих шлангах стиральных машин. Сигнализация на таких устройствах отсутствует, сфера применения ограничена. Самостоятельное изготовление невозможно.

Вывод

Затратив немного времени, и минимум средств, вы сможете обезопасить себя от серьезных финансовых проблем, связанных с потопом в квартире.

Видео по теме

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).