Возрастные особенности органов внутренней секреции. Гормоны гипофиза: функции и возрастные изменения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Список литературы

Общая характеристика желез внутренней секреции у детей и подростков

Железы внутренней секреции образуют эндокринную систему, которая наряду с нервной системой оказывает регулирующее влияние на организм человека. Эндокринными железами называют органы, в которых образуется секрет, специфически влияющий на различные функции организма. Секрет эндокринных желез называют гормонами (биологически активные вещества). В отличие от других желез, эндокринные железы не имеют выводных протоков и их секрет выводится в кровь или лимфу. На основании этого принципа эндокринные железы называют железами внутренней секреции. К железам внутренней секреции (ЖВС) относят:

1) гипофиз,

2) щитовидную,

3) околощитовидные,

4) вилочковую,

5) надпочечники,

6) эпифиз,

7) поджелудочную и 8) половые.

Гипофиз, щитовидная железа, околощитовидные и надпочечники обладают только внутренней секрецией. Поджелудочная и половые характеризуются смешанной секрецией: в них не только образуются гормоны, но и осуществляется секреция веществ, не обладающих гормональной активностью.

Гормоны влияют на все функции организма. Они

1) регулируют обмен веществ (белковый, углеводный, жировой, минеральный, водный);

2) поддерживают гомеостаз (саморегуляция постоянства внутреннего состояния);

3) влияют на рост и формирование органов, систем органов и всего организма в целом;

4) под воздействием гормонов осуществляется тканевая дифференцировка;

5) они могут изменить интенсивность функционирования любого органа.

Для всех гормонов характерна специфичность действия. Явления, которые возникают при недостаточности одной из желез, могут исчезнуть при лечении гормонами такой же железы. Так, нарушения углеводного обмена можно ликвидировать только гормонами этой же железы инсулином. Все гормоны могут действовать на те или иные органы, расположенные на большом расстоянии от места выделения. Например, гипофиз расположен в полости черепа, а его гормон действует на многие органы, в том числе и половые железы, расположенные в полости таза. Гормоны оказывают эффект в очень небольших концентрациях, т.е. их биологическая активность очень высока. Таким образом, гормоны обладают рядом свойств:

Образуются в небольших количествах.

Обладают высокой биологической активностью.

Обладают строгой специфичностью действия.

Имеют дистанционный характер действия.

Исследования последних лет привели к созданию гипотез относительно механизма действия гормонов. Он неодинаков для разных гормонов. Считают, что гормоны действуют на клетки-мишени путем изменения физической структуры ферментов, проницаемости клеточной мембраны и воздействия на генетический аппарат клетки. Согласно первой гипотезе, гормоны, присоединяясь к ферментам меняют их структуру, что влияет на скорость протекания ферментативных реакций. Гормоны могут активизировать или тормозить действие ферментов. Этот механизм доказан только для некоторых из гормонов. Подобно этому не для всех гормонов доказано их влияние на проницаемость клеточной мембраны. Хорошо изучено влияние инсулина - гормона поджелудочной железы - на проницаемость клеточной мембраны по отношению к глюкозе. В настоящее время доказано, что почти всем гормонам свойственно действие через генетический аппарат.

Все ЖВС в целостном организме находятся в постоянном взаимодействии. Гормоны гипофиза регулируют работу щитовидной железы, поджелудочной, надпочечников, половых желез. Гормоны половых желез воздействуют на работу зобной железы, а гормоны зобной - на половые железы и т.д. Взаимодействие проявляется в том, что реакция того или иного органа нередко осуществляется только при последовательном воздействии ряда гормонов. Взаимодействие может осуществляться и посредством нервной системы. Гормоны одних желез воздействуют на нервные центры, а импульсы, идущие от нервных центров, меняют характер деятельности других желез.

Гормоны имеют важное значение в сохранении относительного физико-химического постоянства внутренней среды организма, называемого гомеостазом. Сохранению гомеостаза способствует гуморальная регуляция функций, проявляющая способность активировать или тормозить функциональную деятельность органов и систем.

В организме гуморальная и нервная регуляция функций тесно взаимосвязаны. С одной стороны, существует множество биологически активных веществ, способных оказывать влияние на жизнедеятельность нервных клеток и функций нервной системы, с другой - синтез и выделение в кровь гуморальных веществ регулируется нервной системой. Таким образом, в организме существует единая нервно-гуморальная регуляция функций, обеспечивающая способность к саморегуляции жизнедеятельности.

Например, мужские половые гормоны андрогены влияют на возникновение половых рефлексов, связанных деятельностью нервной системы. Нервная система через органы чувств, в свою очередь, подает сигналы о выработке половых гормонов в нужные моменты.

Гипоталамус играет важную роль в интеграции нервной и эндокринных систем. Это свойство обусловлено тесной связью гипоталамуса с гипофизом. Гипоталамус оказывает весьма существенное влияние на выработку гормонов гипофиза. Крупные нейроны гипоталамуса являются секреторными клетками, инкрет которых по аксонам поступает в заднюю долю гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяясь в воротную систему, спускаются к передней доле гипофиза, снабжая клетки этой части железы. Из обеих долей гипофиза его гормоны по сосудам поступают в эндокринные железы , гормоны которых в свою очередь, кроме воздействия на периферические ткани, оказывают влияние также на гипоталамус и переднюю долю гипофиза, тем самым регулируя потребность к выделению в том или ином количестве различных гормонов гипофиза.

Эндокринные влияния изменяются рефлекторно: импульсы с проприорецепторов, болевое раздражение, эмоциональные факторы, психические и физические напряжения влияют на секрецию гормонов.

Возрастные особенности желез внутренней секреции

Масса гипофиза новорожденного ребенка составляет 100 - 150 мг. На втором году жизни начинается его увеличение, которое оказывается резким в 4 - 5 лет, после чего до 11 лет наступает период медленного роста. К периоду полового созревания масса гипофиза в среднем составляет 200 - 350 мг, а к 18 - 20 годам - 500-650 мг. До 3-5 лет количество СТГ выделяется больше, чем у взрослых. С 3-5 лет норма выделения СТГ равна взрослым. У новорожденных количество АКТГ равно взрослым. ТТГ выделяется резко сразу после рождения и перед периодом полового созревания. Вазопрессин максимально выделяется к первому году жизни. Наибольшая интенсивность выделения гонадотропных гормонов отмечается в период полового созревания.

гомеостаз железа внутренняя секреция

У новорожденного масса щитовидной железы колеблется от 1 до 5 г. она несколько уменьшается к 6 мес., а затем начинается период быстрого ее увеличения, который продолжается до 5 лет. В период полового созревания увеличение продолжается и достигает массы железы взрослого человека. Наибольшее увеличение секреции гормонов отмечается в периоды раннего детства и периода полового созревания. Максимум активности щитовидной железы достигается в 21-30 лет.

После рождения ребенка происходит созревание околощитовидных желез , что находит отражение в увеличении с возрастом количества выделяемого гормона. Наибольшая активность околощитовидных желез отмечается в первые 4-7 лет жизни.

У новорожденного масса надпочечников составляет примерно 7 г. темпы роста надпочечников неодинаковы в различные возрастные периоды. Особенно резкое увеличение отмечается в 6-8 мес. и 2-4 г. Увеличение массы надпочечников продолжается до 30 лет. Мозговое вещество появляется позже, чем корковое. После 30 лет количество гормонов коры надпочечников начинает уменьшаться.

К концу 2 месяца внутриутробного развития в виде выростов появляются зачатки поджелудочной железы . Головка поджелудочной железы у младенца поднята немного выше, чем у взрослых и находится примерно у 10-11 грудного позвонка. Тело и хвост уходят влево и немного приподнимаются вверх. Весит она у взрослого человека чуть меньше 100 г. При рождении железа весит у малышей всего 2-3 г, имеет длину 4-5 см. К 3-4 месяцам масса ее увеличивается в 2 раза, к 3 годам достигает 20 г, а к 10-12 годам - 30 г. Устойчивость к глюкозной нагрузке у детей до 10 лет выше, а усвоение пищевой глюкозы происходит быстрее, чем у взрослых. Этим объясняется, почему дети любят сладкое и потребляют его в больших количествах без опасности для здоровья. С возрастом инсулярная ак-тивность поджелудочной железы снижается, поэтому диабет чаще всего развивается после 40 лет.

В раннем детском возрасте в вилочковой железе преобладает корковое вещество. В период полового созревания в ней увеличивается количество соединительной ткани. В зрелом возрасте происходит сильное разрастание соединительной ткани.

Масса эпифиза при рождении составляет 7 мг, а у взрослого - 100-200 мг. Увеличение размеров эпифиза и его массы продолжается до 4-7 лет, после чего он подвергается обратному развитию.

Список литературы

1. Анатомия и возрастная физиология, Учебно-методическое пособие. - Комсомольск-на-Амуре, 2004.

2. Бадалян Л.О., Детская неврология. - М, 1994.

3. Леонтьева Н.Н., Маринова В.В., Анатомия и физиология детского организма. - М, 1986.

4. Мамонтов С.Г., Биология. - М, 1991.

5. Михеев В. В, Мельничук П.В., Нервные болезни. - М, 1991

Размещено на Allbest.ru

Подобные документы

    Общая характеристика желез внутренней секреции. Исследование механизма действия гормонов. Гипоталамо-гипофизарная система. Основные функции желез внутренней секреции. Состав щитовидной железы. Аутокринная, паракринная и эндокринная гормональная регуляция.

    презентация , добавлен 05.03.2015

    Понятие внутренней секреции как процесса выработки и выделения активных веществ эндокринными железами. Выделение гормонов непосредственно в кровь в процессе внутренней секреции. Виды желез внутренней секреции, гормонов и их функции в организме человека.

    учебное пособие , добавлен 23.03.2010

    Особенности желез внутренней секреции. Методы исследования функции желез внутренней секреции. Физиологические свойства гормонов. Типы влияния гормонов. Классификация гормонов по химической структуре и направленности действия. Пути действия гормонов.

    презентация , добавлен 23.12.2016

    Железы внутренней секреции у животных. Механизм действия гормонов и их свойства. Функции гипоталамуса, гипофиза, эпифиза, зобной и щитовидной железы, надпочечников. Островковый аппарат поджелудочной железы. Яичники, желтое тело, плацента, семенники.

    курсовая работа , добавлен 07.08.2009

    Особенности строения и локализации желез внутренней секреции. Бранхиогенная и неврогенная группы, группа адреналовой системы. Мезодермальные и энтодермальные железы. Патологические варианты работы желез. Особенности патологии и болезней щитовидной железы.

    курсовая работа , добавлен 21.06.2014

    Деятельность гормональной и иммунной систем. Рост и развитие организма, обмен веществ. Железы внутренней секреции. Влияние гормонов надпочечников на метаболические процессы растущего организма. Критерии аэробной и анаэробной работоспособности у людей.

    реферат , добавлен 13.03.2011

    Изучение эндокринных желез человека как желез внутренней секреции, синтезирующих гормоны, выделяемые в кровеносные и лимфатические капилляры. Развитие и возрастные особенности гипофиза, щитовидной, паращитовидной, шишковидной, вилочковой и половой желез.

    учебное пособие , добавлен 09.01.2012

    Изучение строения периферических органов внутренней секреции: щитовидной и околощитовидной желез, надпочечников. Характеристика регулирующего действия эпифиза, гипофиза и гипоталамуса на жировой, минеральный обмен, биоритмы обмена веществ в организме.

    реферат , добавлен 21.01.2012

    Описание сущности и устройства желез. Классификация этих органов в человеческом организме. Причины гипофункции и гиперфункции желез. Функции гипофиза. Роль щитовидной железы в эндокринной системе. Деятельность надпочечников, поджелудочной железы.

    презентация , добавлен 10.09.2014

    Эндокринная система - железы внутренней секреции, выделяющие в организм физиологически активные вещества и не имеющие выводных протоков. Функции гормонов в организме человека. Строение гипоталамуса и гипофиза. Несахарный диабет. Паращитовидная железа.

Гипофиз (hypophysis, s.glandula pituitaria) находится в гипофизарной ямке турецкого седла клиновидной кости и отделен от полости черепа отростком твердой оболочки головного мозга, образующим диафрагму седла. Через отверстие в этой диафрагме гипофиз соединен с воронкой гипоталамуса промежуточного мозга. Поперечный размер гипофиза равен 10-17 мм, переднезадний - 5-15 мм, вертикальный - 5-10 мм. Масса гипофиза у мужчин равна примерно 0,5 г, у женщин - 0,6 г. Снаружи гипофиз покрыт капсулой.

В соответствии с развитием гипофиза из двух разных зачатков в органе различают две доли - переднюю и заднюю. Аденогипофиз, или передняя доля (adenohypophysis, s.lobus anterior), более крупная, составляет 70-80 % от всей массы гипофиза. Она более плотная, чем задняя доля. В передней доле выделяют дистальную часть (pars distalis), которая занимает переднюю часть гипофизарной ямки, промежуточную часть (pars intermedia), расположенную на границе с задней долей, и бугорную часть (pars tuberalis), уходящую вверх и соединяющуюся с воронкой гипоталамуса. В связи с обилием кровеносных сосудов передняя доля имеет бледно-желтый, с красноватым оттенком цвет. Паренхима передней доли гипофиза представлена несколькими типами железистых клеток, между тяжами которых располагаются синусоидальные кровеносные капилляры. Половина (50 %) клеток аденогипофиза являются хромафильными аденоцитами, имеющими в своей цитоплазме мелкозернистые гранулы, хорошо окрашивающиеся солями хрома. Это ацидофильные аденоциты (40 % от всех клеток аденогипофиза) и базофильные аденоциты {10 %). В число базофильных аденоцитов входят гонадотропные, кортикотропные и тиреотропные эндокриноциты. Хромофобные аденоциты мелкие, они имеют крупное ядро и небольшое количество цитоплазмы. Эти клетки считаются предшественниками хромофильных аденоцитов. Другие 50 % клеток аденогипофиза являются хромофобными аденоцитами.

Нейрогипофиз, или задняя доля (neurohypophysis, s.lobus posterior), состоит из нервной доли (lobus nervosus), которая находится в задней части гипофизарной ямки, и воронки (infundibulum), расположенной позади бугорной части аденогипофиза. Задняя доля гипофиза образована нейроглиальными клетками (питуициты), нервными волокнами, идущими от нейросекреторных ядер гипоталамуса в нейрогипофиз, и нейросекреторными тельцами.

Гипофиз при помощи нервных волокон (путей) и кровеносных сосудов функционально связан с гипоталамусом промежуточного мозга, который регулирует деятельность гипофиза. Гипофиз и гипоталамус вместе с их нейроэндокринными, сосудистыми и нервными связями принято рассматривать как гипоталамо-гипофизарную систему.

Гормоны передней и задней долей гипофиза оказывают влияние на многие функции организма, в первую очередь через другие эндокринные железы. В передней доле гипофиза ацидофильные аденоциты (альфа-клетки) вырабатывают сомотропный гормон (гормон роста), принимающий участие в регуляции процессов роста и развития молодого организма. Кортикотропные эндокриноциты секретируют адренокортикотропный гормон (АКТГ), стимулирующий секрецию стероидных гормонов надпочечниками. Тиротропные эндокриноциты секретируют тиротропный гормон (ТТГ), влияющий на развитие щитовидной железы и активирующий продукцию ее гормонов. Гонадотропные гормоны: фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ) и пролактин - влияют на половое созревание организма, регулируют и стимулируют развитие фолликулов в яичнике, овуляцию, рост молочных желез и выработку молока у женщин, процесс сперматогенеза у мужчин. Эти гормоны вырабатываются базофильными аденоцитами бета-клетки ). Здесь же секретируются липотропные факторы гипофиза, которые оказывают влияние на мобилизацию и утилизацию жиров в организме. В промежуточной части передней доли образуется меланоцитостимулирующий гормон, контролирующий образование пигментов - меланинов - в организме.

Нейросекреторные клетки супраоптического и паравентрикулярного ядер в гипоталамусе продуцируют вазопрессин и окситоцин. Эти гормоны транспортируются к клеткам задней доли гипофиза по аксонам, составляющим гипоталамо-гипофизарный тракт. Из задней доли гипофиза эти вещества поступают в кровь. Гормон вазопрессин оказывает сосудосуживающее и антидиуретическое действие, за что и получил также название антидиуретического гормона (АДГ). Окситоцин оказывает стимулирующее влияние на сократительную способность мускулатуры матки, усиливает выделение молока лактирующей молочной железой, тормозит развитие и функцию желтого тела, влияет на изменение тонуса гладких (неисчерченных) мышц желудочно-кишечного тракта.

Развитие гипофиза

Передняя доля гипофиза развивается из эпителия дорсальной стенки ротовой бухты в виде кольцевидного выроста (карман Ратке). Это эктодермальное выпячивание растет в сторону дна будущего III желудочка. Навстречу ему от нижней поверхности второго мозгового пузыря (будущее дно III желудочка) вырастает отросток, из которого развиваются серый бугор воронки и задняя доля гипофиза.

Сосуды и нервы гипофиза

От внутренних сонных артерий и сосудов артериального круга большого мозга к гипофизу направляются верхние и нижние гипофизарные артерии. Верхние гипофизарные артерии идут к серому ядру и воронке гипоталамуса, анастомозируют здесь друг с другом и образуют проникающие в ткань мозга капилляры - первичную гемокапиллярную сеть. Из длинных и коротких петель этой сети формируются воротные вены, которые направляют к передней доле гипофиза. В паренхиме передней доли гипофиза эти вены распадаются на широкие синусоидальные капилляры, образующие вторичную гемокапиллярную сеть. Задняя доля гипофиза кровоснабжается преимущественно за счет нижней гипофизарной артерии. Между верхними и нижними гипофизарными артериями имеются длинные артериальные анастомозы. Отток венозной крови из вторичной гемокапиллярной сети осуществляется по системе вен, впадающих в пещеристые и межпещеристые синусы твердой оболочки головного мозга.

В иннервации гипофиза участвуют симпатические волокна, проникающие в орган вместе с артериями. Постганглио-нарные симпатические нервные волокна отходят от сплетения внутренней сонной артерии. Помимо этого, в задней доле гипофиза обнаруживаются многочисленные окончания отростков нейросекреторных клеток, залегающих в ядрах гипоталамуса.

Возрастные особенности гипофиза

Средняя масса гипофиза у новорожденных достигает 0,12 г. Масса органа удваивается к 10 и утраивается к 15 годам. К 20-летнему возрасту масса гипофиза достигает максимума (530-560 мг) и в последующие возрастные периоды почти не меняется. После 60 лет наблюдается небольшое уменьшение массы этой железы внутренней секреции.

Гормоны гипофиза

Единство нервной и гормональной регуляции в организме обеспечивается тесной анатомической и функциональной связью гипофиза и гипоталамуса. Этот комплекс определяет состояние и функционирование всей эндокринной системы.

Главная железа внутренней секреции, вырабатывающая ряд пептидных гормонов, непосредственно регулирующих функцию периферических желез, - гипофиз. Это красновато-серое образование бобовидной формы, покрытое фиброзной капсулой массой 0,5-0,6 г. Он незначительно меняется в зависимости от пола и возраста человека. Общепринятым остается деление гипофиза на две доли, различные по развитию, строению и функциям: переднюю дистальную - аденогипофиз и заднюю - нейрогипофиз. Первый составляет около 70 % от общей массы железы и условно делится на дистальную, воронковую и промежуточную части, второй - на заднюю часть, или долю, и гипофизарную ножку. Железа расположена в гипофизарной ямке турецкого седла клиновидной кости и через ножку связана с мозгом. Верхняя часть передней доли прикрыта зрительным перекрестом и зрительными трактами. Кровоснабжение гипофиза весьма обильно и осуществляется ветвями внутренней сонной артерии (верхней и нижней гипофизарными артериями), а также ветвями артериального круга большого мозга. Верхние гипофизарные артерии участвуют в кровоснабжении аденогипофиза, а нижние - нейрогипофиза, контактируя при этом с нейросекреторными окончаниями аксонов крупноклеточных ядер гипоталамуса. Первые входят в срединное возвышение гипоталамуса, где рассыпаются в капиллярную сеть (первичное капиллярное сплетение). Эти капилляры (с которыми контактируют терминали аксонов мелких нейросекреторных клеток медиобазального гипоталамуса) собираются в портальные вены, спускающиеся вдоль гипофизарной ножки в паренхиму аденогипофиза, где вновь разделяются на сеть синусоидных капилляров (вторичное капиллярное сплетение). Так, кровь, предварительно пройдя через срединное возвышение гипоталамуса, где обогащается гипоталамическими аденогипофизотропными гормонами (рилизинг-гормонами), попадает к аденогипофизу.

Отток крови, насыщенной аденогипофизарными гормонами, из многочисленных капилляров вторичного сплетения осуществляется по системе вен, которые в свою очередь впадают в венозные синусы твердой мозговой оболочки и далее в общий кровоток. Таким образом, портальная система гипофиза с нисходящим направлением тока крови от гипоталамуса является морфофункциональным компонентом сложного механизма нейрогуморального контроля тропных функций аденогипофиза.

Иннервация гипофиза осуществляется симпатическими волокнами, следующими по гипофизарным артериям. Начало им дают постганглионарные волокна, идущие через внутреннее сонное сплетение, связанное с верхними шейными узлами. Прямой иннервации аденогипофиза от гипоталамуса нет. В заднюю долю поступают нервные волокна нейросекреторных ядер гипоталамуса.

Аденогипофиз по гистологической архитектонике представляет собой весьма сложное образование. В нем различают два вида железистых клеток - хромофобные и хр.омофильные. Последние в свою очередь делятся на ацидофильные и базофильные (детальное гистологическое описание гипофиза дано в соответствующем разделе руководства). Однако следует отметить, что гормоны, продуцируемые железистыми клетками, входящими в состав паренхимы аденогипофиза, из-за многообразия последних в какой-то степени различны по своей химической природе, а тонкая структура секретизирующих клеток должна соответствовать особенностям биосинтеза каждого из них. Но иногда в аденогипофизе можно наблюдать и переходные формы железистых клеток, которые способны вырабатывать несколько гормонов. Имеются сведения о том, что разновидность железистых клеток аденогипофиза не всегда определяется генетически.

Под диафрагмой турецкого седла находится воронковая часть передней доли. Она охватывает ножку гипофиза, контактируя с серым бугром. Эта часть аденогипофиза характеризуется наличием в ней эпителиальных клеток и обильным кровоснабжением. Она также гормонально-активна.

Промежуточная (средняя) часть гипофиза состоит из нескольких слоев крупных секреторно-активных базофильных клеток.

Гипофиз через свои гормоны осуществляет разнообразные функции. В его передней доле вырабатываются адренокортикотропный (АКТГ), тиреотропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), липотропные гормоны, а также гормон роста - соматотропный (СТО и пролактин. В промежуточной доле синтезируется меланоцитостимулирующий гормон (МСГ), а в задней накапливается вазопрессин и окситоцин.

АКТГ

Гипофизарные гормоны представляют группу белковых и пептидных гормонов и гликопротеидов. Из гормонов передней доли гипофиза наиболее изучен АКТГ. Он вырабатывается базофильными клетками. Основная его физиологическая функция - стимуляция биосинтеза и секреция стероидных гормонов корой надпочечников. АКТГ также проявляет меланоцитостимулирующую и липотропную активность. В 1953 г. он был выделен в чистом виде. В дальнейшем была установлена его химическая структура, состоящая у человека и ряда млекопитающих из 39 аминокислотных остатков. АКТГ не обладает видовой специфичностью. В настоящее время осуществлен химический синтез как самого гормона, так и различных, более активных, чем природные гормоны, фрагментов его молекулы. В структуре гормона два участка пептидной цепи, один из которых обеспечивает обнаружение и связывание АКТГ с рецептором, а другой - дает биологический эффект. С рецептором АКТГ, по-видимому, связывается за счет взаимодействия электрических зарядов гормона и рецептора. Роль биологического эффектора АКТГ выполняет фрагмент молекулы 4-10 (Мет-Глу-Гис-Фен-Арг-Три-Три).

Меланоцитостимулирующая активность АКТГ обусловлена присутствием в молекуле N-концевого участка, состоящего из 13 аминокислотных остатков и повторяющего структуру альфа-меланоцитостимулирующего гормона. Этот же участок содержит гептапептид, присутствующий в других гормонах гипофиза и обладающий некоторой адренокортикотропной, меланоцитостимулирующей и липотропной активностями.

Ключевым моментом в действии АКТГ следует считать активацию фермента протеинкиназы в цитоплазме с участием цАМФ. Фосфорилированная протеинкиназа активирует фермент эстеразу, превращающий эфиры холестерина в свободное вещество в жировых каплях. Белок, синтезированный в цитоплазме в результате фосфорилирования рибосом, стимулирует связывание свободного холестерина с цитохромом Р-450 и перенос его из липидных капель в митохондрии, где присутствуют все ферменты, обеспечивающие превращение холестерина в кортикостероиды.

Тиреотропный гормон

ТТГ - тиреотропин - основной регулятор развития и функционирования щитовидной железы, процессов синтеза и секреции тиреоидных гормонов. Этот сложный белок - гликопротеид - состоит из альфа- и бета-субъединиц. Структура первой субъединицы совпадает с альфа-субъединицей лютеинизирующего гормона. Более того, она в значительной степени совпадает у разных видов животных. Последовательность аминокислотных остатков в бета-субъединице ТТГ человека расшифрована и состоит из 119 аминокислотных остатков. Можно отметить, что бета-субъединицы ТТГ человека и крупного рогатого скота во многом сходны. Биологические свойства и характер биологической активности гликопротеидных гормонов определяются бета-субъединицей. Она также обеспечивает взаимодействие гормона с рецепторами в различных органах-«мишенях». Однако бета-субъединица у большинства животных проявляет специфическую активность только после соединения ее с альфа-субъединицей, выступающей в роли своеобразного активатора гормона. При этом последняя с одинаковой вероятностью индуцирует лютеинизирующую, фолликулостимулирующую и тиреотропную активности, определяемые свойствами бета-субъединицы. Обнаруженное сходство позволяет сделать заключение о возникновении этих гормонов в процессе эволюции из одного общего предшественника, бета-субъединица обусловливает и иммунологические свойства гормонов. Есть предположение, что альфа-субъединица защищает бета-субъединицу от действия протеолитических ферментов, а также облегчает транспортировку ее из гипофиза к периферическим органам-«мишеням».

Гонадотропные гормоны

Гонадотропины представлены в организме в виде ЛГ и ФСГ. Функциональное предназначение этих гормонов в целом сводится к обеспечению репродуктивных процессов у особей обоего пола. Они, как и ТТГ, являются сложными белками - гликопротеидами. ФСГ индуцирует созревание фолликулов в яичниках у самок и стимулирует сперматогенез у самцов. ЛГ вызывает у самок разрыв фолликула с образованием желтого тела и стимулирует секрецию эстрогенов и прогестерона. У самцов этот же гормон ускоряет развитие интерстициальной ткани и секрецию андрогенов. Эффекты действия гонадотропинов зависимы друг от друга и протекают синхронно.

Динамика секреции гонадотропинов у женщин меняется в ходе менструального цикла и достаточно подробно изучена. В преовуляторную (фолликулярную) фазу цикла содержание ЛГ находится на довольно низком уровне, а ФСГ - увеличено. По мере созревания фолликула секреция эстрадиола повышается, что способствует повышению продуцирования гипофизом гонадотропинов и возникновению циклов как ЛГ, так и ФСГ, т. е. половые стероиды стимулируют секрецию гонадотропинов.

В настоящее время структура ЛГ определена. Как и ТТГ, он состоит из 2 субъединиц: а и р. Структура альфа-субъединицы ЛГ у разных видов животных в значительной степени совпадает, она соответствует строению алфьа-субъединицы ТТГ.

Структура бета-субъединицы ЛГ заметно отличается от строения бета-субъединицы ТТГ, хотя имеет четыре одинаковых участка пептидной цепи, состоящих из 4-5 аминокислотных остатков. В ТТГ они локализуются в положениях 27-31, 51-54, 65-68 и 78-83. Так как бета-субъединица ЛГ и ТТГ определяет специфическую биологическую активность гормонов, то можно предположить, что гомологичные участки в структуре ЛГ и ТТГ должны обеспечивать соединение бета-субъединиц с альфа-субъединицей, а разные по структуре участки - отвечать за специфичность биологической активности гормонов.

Нативный ЛГ очень стабилен к действию протеолитических ферментов, однако бета-субъединица быстро расщепляется химотрипсином, а а-субъединица трудно гидролизуется ферментом, т. е. она выполняет защитную роль, предотвращая доступ химотрипсина к пептидным связям.

Что касается химической структуры ФСГ, то в настоящее время исследователи не получили окончательных результатов. Так же, как и ЛГ, ФСГ состоит из двух субъединиц, однако бета-субъединица ФСГ отличается от бета-субъединицы ЛГ.

Пролактин

В процессах репродукции активное участие принимает еще один гормон - пролактин (лактогенный гормон). Основные физиологические свойства пролактина у млекопитающих проявляются в виде стимуляции развития молочных желез и лактации, роста сальных желез и внутренних органов. Он способствует проявлению эффекта стероидов на вторичные половые признаки у самцов, стимулирует секреторную активность желтого тела у мышей и крыс и участвует в регуляции жирового обмена. Много внимания уделяется пролактину в последние годы как к регулятору материнского поведения, такая полифункциональность объясняется его эволюционным развитием. Он один из древних гипофизарных гормонов и обнаруживается даже у амфибий. В настоящее время полностью расшифрована структура пролактина некоторых видов млекопитающих. Однако до последнего времени ученые высказывали сомнения в существовании такого гормона у человека. Многие считали, что его функцию выполняет гормон роста. Сейчас получены убедительные доказательства наличия пролактина у человека и частично расшифрована его структура. Рецепторы пролактина активно связывают гормон роста и плацентарный лактоген, что свидетельствует о едином механизме действия трех гормонов.

Соматотропин

Еще более широким спектром действия, чем пролактин, обладает гормон роста - соматотропин. Как и пролактин, он вырабатывается ацидофильными клетками аденогипофиза. СТГ стимулирует рост скелета, активирует биосинтез белка, дает жиромобилизующий эффект, способствует увеличению размеров тела. Кроме того, он координирует обменные процессы.

Участие гормона в последних подтверждается фактом резкого увеличения его секреции гипофизом, например, при снижении содержания сахара в крови.

Химическая структура этого гормона человека в настоящее время полностью установлена - 191 аминокислотный остаток. Первичная структура его аналогична строению хорионического соматомаммотропина или плацентарного лактогена. Эти данные указывают на значительную эволюционную близость двух гормонов, хотя они проявляют различия в биологической активности.

Необходимо подчеркнуть большую видовую специфичность рассматриваемого гормона - например, СТГ животного происхождения неактивен у человека. Это объясняется как реакцией между рецепторами СТГ человека и животных, так и строением самого гормона. В настоящее время ведутся исследования по выявлению активных центров в сложной структуре СТГ, проявляющих биологическую активность. Изучаются отдельные фрагменты молекулы, проявляющие иные свойства. Например, после гидролиза СТГ человека пепсином был выделен пептид, состоящий из 14 аминокислотных остатков и соответствующий участку молекулы 31-44. Он не обладал эффектом роста, но по липотропной активности значительно превосходил нативный гормон. Гормон роста человека, в отличие от аналогичного гормона животных, обладает значительной лактогенной активностью.

В аденогипофизе синтезируется много как пептидных, так и белковых веществ, обладающих жиромобилизующим действием, а тропные гормоны гипофиза - АКТГ, СТГ, ТТГ и другие - оказывают липотропное действие. В последние годы особо выделены бета- и у-липотропные гормоны (ЛПГ). Наиболее подробно изучены биологические свойства бета-ЛПГ, который, помимо липотропной активности, оказывает также меланоцитостимулирующее, кортикотропинстимулирующее и гипокальциемическое действие, а также дает инсулиноподобный эффект.

В настоящее время расшифрована первичная структура овечьего ЛПГ (90 аминокислотных остатков), липотропных гормонов свиньи и крупного рогатого скота. Этот гормон имеет видовую специфичность, хотя структура центрального участка бета-ЛПГ у разных видов одинакова. Она определяет биологические свойства гормона. Один из фрагментов этого участка обнаруживается в структуре альфа-МСГ, бета-МСГ, АКТГ и бета-ЛПГ. Высказывается предположение, что эти гормоны в процессе эволюции возникли из одного и того же предшественника. у-ЛПГ обладает более слабой липотропной активностью, чем бета-ЛПГ.

Меланоцитостимулирующий гормон

Этот гормон, синтезирующийся в промежуточной доле гипофиза, по своей биологической функции стимулирует биосинтез кожного пигмента меланина, способствует увеличению размеров и количества пигментных клеток меланоцитов в кожных покровах земноводных. Эти качества МСГ используются при биологическом тестировании гормона. Различают два типа гормона: альфа- и бета-МСГ. Показано, что альфа-МСГ не обладает видовой специфичностью и имеет одинаковое химическое строение у всех млекопитающих. Молекула его представляет собой пептидную цепь, состоящую из 13 аминокислотных остатков. Бета-МСГ, напротив, обладает видовой специфичностью, и структура его различается у разных животных. У большинства млекопитающих молекула бета-МСГ состоит из 18 аминокислотных остатков, и только у человека она удлинена с аминного конца на четыре аминокислотных остатка. Следует отметить, что альфа-МСГ обладает некоторой адренокортикотропной активностью, и в настоящее время доказано его влияние на поведение животных и человека.

Окситоцин и вазопрессин

В задней доле гипофиза скапливаются вазопрессин и окситоцин, которые синтезируются в гипоталамусе: вазопрессин - в нейронах супраоптического ядра, а окситоцин - паравентрикуляторного. Далее они переносятся в гипофиз. Следует подчеркнуть, что в гипоталамусе вначале синтезируется предшественник гормона вазопрессина. Одновременно там же продуцируется белок-нейрофизин 1-го и 2-го типов. Первый связывает окситоцин, а второй - вазопрессин. Эти комплексы мигрируют в виде нейросекреторных гранул в цитоплазме вдоль аксона и достигают задней доли гипофиза, где нервные волокна заканчиваются в стенке сосудов и содержимое гранул поступает в кровь. Вазопрессин и окситоцин - первые гипофизарные гормоны с полностью установленной аминокислотной последовательностью. По своей химической структуре они представляют собой нонапептиды с одним дисульфидным мостиком.

Рассматриваемые гормоны дают разнообразные биологические эффекты: стимулируют транспорт воды и солей через мембраны, оказывают вазопрессорное действие, усиливают сокращения гладкой мускулатуры матки при родах, повышают секрецию молочных желез. Следует отметить, что вазопрессин обладает более высокой, чем окситоцин, антидиуретической активностью, тогда как последний сильнее действует на матку и молочную железу. Основным регулятором секреции вазопрессина является потребление воды, в почечных канальцах он связывается с рецепторами в цитоплазматических мембранах с последующей активацией в них фермента аденилатциклазы. За связывание гормона с рецептором и за биологический эффект отвечают разные участки молекулы.

Гипофиз, связанный через гипоталамус со всей нервной системой, объединяет в функциональное целое эндокринную систему, участвующую в обеспечении постоянства внутренней среды организма (гомеостаз). Внутри эндокринной системы гомеостатическая регуляция осуществляется на основе принципа обратной связи между передней долей гипофиза и железами-«мишенями» (щитовидная железа, кора надпочечников, гонады). Избыток гормона, вырабатываемого железой-«мишенью», тормозит, а его недостаток стимулирует секрецию и выделение соответствующего тропного гормона. В систему обратной связи включается гипоталамус. Именно в нем находятся чувствительные к гормонам желез-«мишеней» рецепторные зоны. Специфически связываясь с циркулирующими в крови гормонами и меняя ответную реакцию в зависимости от концентрации гормонов, рецепторы гипоталамуса передают свой эффект в соответствующие гипоталамические центры, которые координируют работу аденогипофиза, выделяя гипоталамические аденогипофизотропные гормоны. Таким образом, гипоталамус следует рассматривать как нейро-эндокринный мозг.

Использованная литература

  1. Лекции по анатомии и физиологии человека с основами патологии – Барышников С.Д. 2002
  2. Атлас анатомии человека – Билич Г.Л. – Том 1. 2014
  3. Анатомия по Пирогову – В. Шилкин, В. Филимонов – Атлас анатомии человека. 2013
  4. Атлас по анатомии человека – P.Tank, Th. Gest – Lippincott Williams & Wilkins 2008
  5. Атлас анатомии человека – Коллектив авторов – Схемы – Рисунки – Фотографии 2008
  6. Основы медицинской физиологии (второе издание) – Алипов H.H. 2013

Развитие и возрастные особенности желез внутренней секреции

Гипофиз . У новорожденного гипофиз имеет сферическую илитреугольную форму с верхушкой, направленной к задней поверхности турецкого седла (Атл., рис. 5, с. 21). У взрослого человека его размеры 1,5 х 2 х 0,5 см. У новорожденных детей масса гипофиза 0,1-0,15 г, увеличение в весе начинается на 2-м году жизни и к 10 годам она достигает 0,3 г. Особенно интенсивно масса гипофиза увеличивается в период полового созревания, в результате чего к 14 годам она становится равной у девушек 0,7 г, а у юношей 0,66 г.

Во время беременности масса гипофиза увеличивается до 1 г, что связано с повышением его функциональной активности. После родов масса гипофиза несколько уменьшается, но все же гипофиз у женщин весит больше, чем у мужчин того же возраста.

Гипофиз развивается из двух независимых эмбриональных зачатков. Аденогипофиз образуется из первичного ротового углубления (кармана), которое по мере развития зародыша обособляется от ротовой полости, клетки его стенок размножаются и образуют железистую ткань (отсюда название аденогипофиз, то есть железистый гипофиз).

Задняя доля и ножка гипофиза образуются из дна третьего желудочка. Паренхима задней доли состоит из тонких волокон нейроглии и эпендимы. Между волоконцами расположены клетки и обнаруживаются скопления нейросекрета, который спускается в заднюю долю гипофиза по аксонам нейросекреторных клеток из супраоптических и паравентрикулярных ядер гипоталамуса.

Эпифиз . Зачатки эпифиза у эмбриона появляются на 6-7-й неделе эмбриогенеза как выпячивание крыши промежуточного мозга. Ко второй половине беременности он уже сформирован. Первые признаки функционирования эпифиза обнаружены на 2-м месяце внутриутробного развития.

У новорожденного эпифиз имеет округлую форму, сплющенную, без ножки, он расположен между дольками среднего мозга и имеет углубление на его поверхности. При рождении имеет следующие размеры; длина 2-3 мм, ширина 2,5 мм, толщина - 2 мм. У взрослого соответственно 5-12 мм, 3-8 мм, 3-5 мм, масса 100-200 мг. Его вес увеличивается на первом году жизни и от 3 до 6 лет приобретает окончательную величину, а затем претерпевает возрастную инволюцию (обратное развитие). Полость эпифизарного желудочка может быть иногда еще открытой.

Эпифиз новорожденного содержит мелкие эмбриональные не дифференцированные клетки, исчезающие на 8-м месяце жизни, и большие клетки с везикулярным ядром. Существование этих двух видов меток приводит к тому, что внутри железы расположены темные и более светлые островки. Пигмент отсутствует, но появляется позже в большом количестве примерно в 14 лет. В возрасте 2 лет форма становится, как у взрослого.

Дифференцировка паренхимы начинается на 1-м году жизни, начиная с 3-го года, появляется глия, а до 5-7 лет заканчивается дифференцировка клеток эпифиза. Соединительная ткань быстро развивается в 6-8 лет, но максимальное развитие происходит после 14 лет.

В период новорожденности и раннего детства секреторная активность эпифиза нарастает и в возрасте 10-40 лет достигает максимального выражения, после чего наступает спад. Уровень мелатонина в крови подвержен значительным колебаниям, обусловленным действием таких факторов, как сон, свет, темнота, смена фаз менструального цикла у женщин, время года и др. Для мелатонина характерен циркадный ритм колебаний уровня в крови: максимальные значения в течение ночи, а минимальные днем. Следовательно, эпифизу принадлежит существенная роль в работе механизма «биологические часы» - периодичности функций организма в разное время суток.

Щитовидная железа. В процессе эмбриогенеза щитовидная железа закладывается в виде утолщения энтодермы, выстилающей дно глотки, на 3-й неделе внутриутробного развития, и постепенно формируются две ее боковые доли и перешеек (Атл., рис. 8, с. 23).

У новорожденного она заключена в толстую капсулу, образованную из двух листков. Наружный листок богат сосудами, образован короткими коллагеновыми волокнами. Внутренний листок богат клеточными элементами, образован длинными коллагеновыми и элластическими волокнами.

От капсулы отходят толстые перегородки, проникающие в железу; в железе от них отходят более тонкие перегородки, разделяющие дольки и узлы железы. У новорожденного узлы имеют форму пузырьков (фолликул), которые содержат коллоид (Атл. рис. 7, с. 22). Стенка каждого фолликула состоит из однослойного эпителия, вырабатывающего два йодосодержащих гормона. Количество фолликул, формирующих щитовидную железу и их размер, с возрастом увеличиваются.

Так, у новорожденных диаметр фолликула составляет 60-70 мкм, в возрасте 1 года - 100 мкм, 3 лет 120-150 мкм, 6 лет - 200 мкм, в 12-15 лет - 250 мкм. Фолликулярный эпителий щитовидной железы у новорожденных кубический или цилиндрический. По мере роста организма он заменяется на кубический или цилиндрический, который характерен для фолликулов щитовидной железы взрослого человека. К 15 годам масса и структура щитовидной железы становятся такими же, как у взрослого человека.

Расположение щитовидной железы по отношению к другим органам почти то же, что и у взрослого. Перешеек прикреплен к перстневидному хрящу короткой крепкой связкой. Краниальная половина расположена на гортани, а нижняя на трахее, которую не покрывает полностью, оставляя свободный участок высотой 6-9 мм и шириной 8 мм.

В это пространство может проникать краниальная часть вилочковой железы, заходящая в верхнее отверстие грудной полости. Латеральные дольки могут подниматься до уровня верхнего края щитовидного хряща около большого рога подъязычной кости. Они могут соприкасаться с нервно-сосудистым пучком шеи. Общая внутренняя сонная артерия покрыта щитовидной железой, только внутренняя яремная вена остается свободной.

Железа проникает между трахеей и артерией, достигая предпозвоночной фасции, с которой соединяется посредством свободных соединительных перемычек (Атл., рис. 9, с. 23). В борозде между трахеей и пищеводом расположен гортанный нерв, прилегающий к железе; слева железа прилежит к пищеводу, к которому она прикрепляется соединительно-тканными волокнами, справа она находится на расстоянии 1- 2мм от пищевода. Обычно поверхность соприкосновения между щитовидной железой, трахеей и пищеводом меньшая, чем у взрослого.

У новорожденного масса щитовидной железы колеблется от 1 до 5 г. Она несколько уменьшается к 6 месяцам, а затем начинается период ее увеличения, продолжающийся до 5 лет. С 6-7 лет период быстрого увеличения массы щитовидной железы сменяется медленным. В период полового созревания вновь отмечается быстрое увеличение массы щитовидной железы, вес ее достигает 18-30 г, то есть величин взрослого человека.



В 11-16 лет у девочек щитовидная железа растет быстрее, чем у мальчиков. В 10-20 лет ее вес удваивается или иногда утраивается.

У взрослого мужчины средняя длина боковых долей 5-6 см, толщина 1-2 см. У женщин размеры щитовидной железы несколько больше, чем у мужчин. После 50 лет масса и размеры щитовидной железы постепенно уменьшаются.

Околощитовидные железы . К концу внутриутробного развития околощитовидные железы - вполне сформированные анатомические образования, окруженные капсулой. У новорожденного они расположены, как у взрослого: верхние на задней поверхности щитовидной железы, в ее верхней половине; нижние располагаются на нижнем полюсе щитовидной железы. Выделяют 4 вида околощитовидных желез: компактный (содержит небольшое количество соединительной ткани), ретикулярный (имеет толстые соединительно-тканные перекладины), дольковый, или альвеолярный (тонкие перегородки), и губчатый. У новорожденного и ребенка до 2-летнего возраста обычно встречаются первые три типа, и особенно компактный тип. Количество желез может варьировать: обычно их 4, но может быть 3,2 и даже 1. Нижние околощитовидные железы больше верхних. В детском периоде отмечается их быстрый рост и замедление после периода полового созревания.

В процессе старения ткань околощитовидных желез частично замещается жировой и соединительной. У взрослого человека длина каждой железы 6-8 мм, ширина 3-4 мм, толщина около 2 мм, а масса от 20 до 50 мг. В ткани околощитовидных желез различают два вида клеток: главные и оксифильные . Главные клетки имеют небольшие размеры, крупное ядро и светлоокрашивающуюся цитоплазму. Оксифильные клетки крупнее, и в их цитоплазме обнаруживается оксифильная (то есть окрашивающаяся кислыми красками) зернистость. Исследования последних лет позволяют предполагать, что оксифильные клетки представляют собой стареющие главные клетки. Оксифильные клетки впервые появляются после 5-7 лет. По-видимому, впервые 4-7 лет жизни околощитовидные железы функционируют особенно активно.

Вилочковая железа. Вилочковая железа закладывается на 6-й неделе эмбрионального развития. У ребенка вилочковая железа расположена впереди трахеи, легочной артерии, аорты, верхней полой вены, сзади от грудины (Атл., рис. 12, с. 24). Имеет вид четырехугольной пирамиды, расположенной большей частью в грудной полости (основание), а раздвоенная верхушка - в шейной области. Вилочковая железа может быть трех типов: а) однодолевая , встречается редко, расположена полностью в грудной полости на расстоянии от щитовидной железы, иногда может иметь два маленьких рога; б) форма с двумя долями встречается в 70% случаев. Железа имеет две доли, разделенные срединной линией; в) третья форма многодолевая , которая встречается очень редко. Железа образована из 3-4 долей. У новорожденного она имеет розовый цвет, а у маленького ребенка бело-серый, в более старшем возрасте цвет становится желтоватым в результате процесса перерождения.

Вилочковая железа покрыта капсулой, от которой отходят междолевые перегородки. Доли вилочковой железы имеют две зоны: кортикальную, образованную из эпителиальных клеток, и мозговую, содержащую два слоя, состоящие из эпителиальных и ретикулярных волокон. В корковой части густо расположены лимфоциты, а в мозговой части находятся тельца Гассаля - концентрически расположенные веретенообразные эпителиальные клетки с большим светлым ядром. Тельца Гассаля претерпевают циклическое развитие: они образуются, затем распадаются, и остатки их поглощаются лимфоцитами и эозинофильными гранулоцитами. Полагают, что тельца Гассаля представляют собой секреторные клетки зобной железы.

По отношению к весу тела вилочковая железа тяжелее у мальчиков, чем у девочек. У новорожденного ее вес составляет 10-15 г, у грудного - 11-24 г, у маленького ребенка - 23-27 г, в 11-14 лет - в среднем 35-40 г, в 15-20 лет - 21 г, в 20-25 лет - около 19 г. Наибольший вес отмечается в период полового созревания. После 13 лет постепенно происходит возрастная инволюция (обратное развитие) вилочковой железы, и к 66-75 годам ее масса составляет в среднем 6 г. Таким образом, наибольшего развития вилочковая железа достигает в детском возрасте.

Тимусу принадлежит важная роль в иммунологической защите организма, в частности в образовании иммунокомпетентных клеток, то есть клеток, способных специфически распознавать антиген и отвечать на него иммунной реакцией (Бернет , 1961).

Дети с врожденным недоразвитием вилочковой железы обычно гибнут в возрасте 2-5 месяцев. Отмечено, что вилочковой железе принадлежит важная роль в противоопухолевой защите организма.

Следует отметить, что вилочковая железа тесно связана с другими органами внутренней секреции, в частности с надпочечниками. Так, например, увеличение секреции глюкокортикоидов при стрессе приводит к быстрому уменьшению размеров и массы вилочковой железы. При этом в железе и других лимфоидных органах вначале происходит распад лимфоцитов, а затем новообразование телец Гассаля. Наоборот, введение экстрактов вилочковой железы тормозит развитие и функцию коры надпочечников вплоть до значительной атрофии ее. Если у человека не произошла возрастная инволюция вилочковой железы, у него возникает недостаточность функции коры надпочечника и понижена сопротивляемость к действию стрессовых факторов.

Поджелудочная железа относится к железам смешанной секреции. Основная ее масса осуществляет экзокринную функцию - вырабатывает пищеварительные ферменты, выделяемые по протоку в полость двенадцатиперстной кишки (Атл., рис. 13, с. 25). Эндокринная функций присуща островкам Лангерганса. Островковая ткань составляет у человека не более 3%. Наибольшее количество ее находится в хвостовой части железы: в этом отделе содержится в среднем 36,0 островков на 1 мм 3 паренхимы, в теле - 22,4, в головке - 19,8 на 1 мм 3 ткани. В целом в поджелудочной железе человека насчитывают до 1800 тыс. островков. Величина их различна - от мелких (диаметр менее 100 мкм) до крупных (диаметр до 500 мкм). Форма островков - круглая или овальная (Атл., рис. 14, с. 25).

Поджелудочная железа человека закладывается между 4-й и 5-й неделями эмбрионального развития и отделяется от выпячивания кишечной трубки. Островки Лангерганса появляются на 10-11-й неделе эмбриогенеза, а к 4-5-му месяцу они достигают размеров, приближающихся к таковым у взрослого человека. Имеются предположения, что секреция инсулина и глюкагона начинается уже на ранних этапах эмбрионального развития (Фалин , 1966).

Клетки, составляющие островковый аппарат называют инсулцитами и различают несколько типов этих клеток. Большую часть этих клеток составляют В-клетки, продуцирующие инсулин. Второй тип клеток - А-клетки, которые располагаются либо по периферии островка, либо небольшими группами по всему островку. Они секретируют глюкогон.

Рост и развитие инсулярного аппарата особенно активны в первые месяцы жизни. Затем до 45-50 лет структура островков стабилизируется, после 50 лет их образование вновь активизируется (Шевчук , 1962). Следует отметить, что в молодом возрасте преобладают большие островки, в состав которых входят В-клетки, а в старческом - островки малого размера, состоящие главным образом из А-клеток. Это свидетельствует о том, что в детском и молодом возрасте преобладает секреция инсулина, а в старческом - секреция глюкогона.

Надпочечники. Надпочечники состоят из двух слоев: коркового и мозгового. Мозговое вещество находится в центре надпочечника и составляет около 10% всей ткани железы, а окружающий его корковый слой - примерно 90% массы этого органа. Надпочечники покрыты тонкой капсулой, состоящей из эластических волокон. Кора надпочечников состоит из эпителиальных столбов, расположенных перпендикулярно капсуле. В ней различают три зоны: клубочковую, пучковую и сетчатую (Атл., рис. 16, с. 26).

Клубочковая зона лежит под капсулой и состоит из железистых клеток, образующих как бы гроздья. Самая широкая зона - пучковая , включающая клетки, расположенные в виде прядей, идущих параллельно друг другу от клубочкового слоя к центру надпочечника. Наиболее глубоко, рядом с мозговым слоем, расположена сетчатая зона . Она состоит из рыхлой сети переплетающихся между собой клеток.

Между корой и мозговым веществом расположена тонкая, местами прерывающаяся соединительно-тканная капсула. Мозговое вещество состоит из крупных клеток, имеющих прямоугольную или призматическую форму.

В процессе эмбриогенеза закладка корковой части надпочечника у зародыша обнаруживается на 22-25-й день внутриутробного развития. На 6-й неделе эмбриогенеза в закладывающемся надпочечнике внедряются клетки из эмбриональной нервной трубки, дающие начало мозговому веществу надпочечника. Из таких же клеток дифференцируются симпатические ганглии. Следовательно, мозговая часть надпочечника имеет нервное происхождение.

Надпочечные железы плода очень велики: у 8-недельного зародыша человека по величине они равны почкам. Эти железы активно секретируют гормоны еще в эмбриональном периоде развития. Количество адреналина в 1 год составляет 0,4 мг, в 2года - 1,18 мг, в 4 года - 1,96 мг, в 5 лет - 2,92 мг, в 8 лет - 3,96 мг, в 10-19 лет - 4,29 мг.

После рождения масса надпочечника составляет 6,98 г, затем быстро уменьшается, и в 6 месяцев она составляет 1 / 4 первоначального веса. После 1-го года жизни масса надпочечников вновь увеличивается до 3 лет, а затем темпы роста снижаются и остаются замедленными до 8 лет, а затем вновь увеличивается (Атл., рис. 17, с. 27). В 11-13 лет масса надпочечников вновь увеличивается, особенно в период полового развития, и стабилизируется к 20-летнему возрасту.

Следует отметить значительное изменение темпов роста надпочечников в 6 месяцев для девочек, в 8 месяцев для мальчиков, в 2года для мальчиков, в 3 года для мальчиков (в этот последний период надпочечники у мальчиков растут быстрее, чем у девочек), в 4 года для детей обоего пола.

У женщин масса надпочечников больше, чем у мужчин. В возрасте 60-70 лет начинаются старческие атрофические изменения коры надпочечников.

Расположение надпочечников по отношению к другим органам отличается от таковых у взрослого. Правый надпочечник расположен между верхним краем двенадцатого грудного позвонка (может подниматьсядо десятого) и нижним краем первого поясничного позвонка. Левый надпочечник расположен верхним краем одиннадцатого грудного позвонка и нижним краем первого поясничного. У новорожденного надпочечники расположены более латерально, чем у взрослого. В результате роста почек надпочечники изменяют свое положение, это наблюдается в 6-месячном возрасте.

Параганглии - это эндокринные железы, а также добавочные органы эндокринной системы. Они являются остатками адреналовой , или хромаффинной, системы, продуцирующими главным образом кателохомины. Происходят они из симпатических нервов или из симпатических ветвей черепно-мозговых нервов и располагаются медиально или дорсально от узлов симпатического ствола.

Параганглии состоят из секреторных хромаффинных клеток, вспомогательных (обкладочных типа нейроглии) клеток и соединительной ткани; в эмбриогенезе они возникают и мигрируют вместе с нейробластами симпатической нервной системы. Другие параганглии являются нехромаффинными (преимущественно в местах разветвления парасимпатической нервной системы), в том числе глазничные параганглии, легочные, костно-мозговые, параганглии оболочек мозга, каротидный и параганглии по ходу сосудов туловища и конечностей.

Роль параганглиев заключается в мобилизации систем организма в период стресса, кроме того, они осуществляют регуляцию общих и местных физиологических реакций.

Параганглии обычно развиваются на первом году жизни, растут в течение второго года и затем претерпевают обратное развитие. В эмбриональном периоде появляется пояснично-аортальный параганглий, расположенный по обе стороны аорты на уровне надпочечников. Непостоянные параганглии могут появляться на уровне шейной и грудной симпатической цепочки. Параганглии, расположенные на аорте, могут быть соединены между собой, но после рождения их связь обрывается. К рождению пояснично-аортальные параганглии хорошо развиты, имеет лимфатические узлы.

Параганглии сонной артерии развиваются и дифференцируются поздно. У новорожденного железистые клетки находятся в большом количестве, соединительная ткань развита слабо. На первом году жизни развиваются многочисленные капилляры, которые окружают клетки. Специфические клетки еще встречаются в 23-летнем возрасте.

Надсердечные параганглии, их имеется два, верхний располагается между аортой и легочной артерией. У новорожденного группы клеток верхних надперикардовых параганглиев окружены артериями мышечного типа. В 8 лет они не содержат хромафиновых клеток, но продолжают расти до периода полового созревания и остаются у взрослого.

Эндокринная система организма человека представлена ​​железами внутренней секреции, вырабатывающих определенные соединения (гормоны) и выделяют их непосредственно (без протоков, выводящих) в кровь. В этом эндокринные железы отличаются от других (экзокринных) желез, продукт своей деятельности выделяют лишь во внешнюю среду через специальные протоки или без них. Железами внешней секреции является, например, слюнные, желудочные, потовые железы и др.. В организме существуют и смешанные железы, которые одновременно являются экзокринными и эндокринными. К смешанным желез относятся поджелудочная и половые железы.

Гормоны эндокринных желез с током крови разносятся по всему организму и выполняют важные регулирующие функции: влияют на , регулируют клеточную активность, рост и развитие организма, обусловливают смену возрастных периодов, влияют на работу органов дыхания, кровообращения, пищеварения, выделения и размножения. Под действием и контролем гормонов (в оптимальных внешних условиях) реализуется также вся генетическая программа жизни человека.

Железы по топографии расположены в разных местах организма: в области головы находятся гипофиз и эпифиз, в области шеи и грудной клетки расположены щитовидная, пара щитовидная и вилочковая (тимус) железы. В области живота находятся надпочечники и поджелудочная железы, в области малого таза — половые железы. В разных частях тела, преимущественно по ходу крупных кровеносных сосудов, расположенных небольшие аналоги эндокринных желез — параганглиев.

Особенности эндокринных желез в разном возрасте

Функции и строение желез внутренней секреции значительно меняются с возрастом.

Гипофиз считается железой всех желез так как своими гормонами влияет на работу многих из них. Эта железа расположена у основания головного мозга в углублении турецкого седла клиновидной (основной) кости черепа. У новорожденного масса гипофиза 0,1-0,2 г, в 10 лет он достигает массы 0,3 г, а у взрослых — 0,7-0,9 г. Во время беременности у женщин масса гипофиза может достигать 1,65 г. Железу условно делят на три части: переднюю (аденогипофиз), заднюю (негирогипофиз) и промежуточную. В области аденогипофиза и промежуточного отдела гипофиза синтезируется большинство гормонов железы, а именно соматотропный гормон (гормон роста), а также адренокортикотропный (АКТА), тиреотропные (ТГГ), гонадотропные (ГТГ), лютеотропный (ЛТГ) гормоны и пролактин. В области нейрогипофиза приобретают активной формы гормоны гипоталамуса: окситоцин, вазопрессин, меланотропин и Мизин-фактор.

Гипофиз тесно связан нейронными структурами с гипоталамусом промежуточного мозга , благодаря чему осуществляется взаимосвязь и координация нервной и эндокринной регулирующих систем. Гипоталамно — гипофизарный нервный путь (канатик, соединяющий гипофиз с гипоталамусом) насчитывает до 100 тысяч нервных отростков нейронов гипоталамуса, которые способны создавать нейросекрет (медиатор) возбуждающего или тормозного характера. Отростки нейронов гипоталамуса имеют конечные окончания (синапсы) на поверхности кровеносных капилляров задней доли гипофиза (нейрогипофиза). Попадая в кровь, медиатор далее транспортируется в передней долю гипофиза (аденогипофиз). Кровеносные сосуды на уровне аденогипофиза снова разделяются на капилляры, оплитають островки секреторных клеток и, таким образом, через кровь оказывают влияние на активность образования гормонов (ускоряют или замедляют). По схеме, которая описана, как раз и осуществляется взаимосвязь в работе нервной и эндокринной регулирующих систем. Кроме связи с гипоталамусом, в гипофиза поступают отростки нейронов от серого бугорка пидьзгирнои части больших полушарий, от клеток таламуса, что на дне 111 желудочка стволовой части головного мозга и от солнечного сплетения вегетативной нервной системы, которые также способны влиять на активность образования гормонов гипофиза.

Основным гормоном гипофиза является соматотропный , который регулирует рост костей, увеличение длины и массы тела. При недостаточном количестве соматотропного гормона (гипофункция железы) наблюдается карликовость (длина тела до 90-100 ом., Малая масса тела, хотя умственное развитие может проходить нормально). Избыток соматотропных гормонов в детском возрасте (гиперфункции железы) приводит к гипофизарного гигантизма (длина тела может достигать 2,5 и более метров, умственное развитие зачастую страдает). Гипофиз вырабатывает, как указывалось выше, адренокортикотропный гормон (АКТГ), гонадотропные гормоны (ГТГ), и тиреотропного гормона (ТГТ). Большее или меньшее количество указанных выше гормонов (урегулированных от нервной системы), через кровь влияет на активность, соответственно, надпочечников, половых желез и щитовидной железы, меняя, в свою очередь, их гормональную активность, а через это и влияя на активность тех процессов, которыми регулируются. В гипофизе также производятся меланофорний гормон, влияющий на цвет кожи, волос и на другие структуры организма, вазопрессин, регулирующий кровяное давление и водный обмен и окситоцина, влияющего на процессы выделения молока, тонус стенок матки и др..

Гормоны гипофиза . В период полового созревания особенно активны гонадотропные гормоны гипофиза, влияющих на развитие половых желез. Появление в крови половых гормонов в свою очередь тормозит активность гипофиза (обратная связь). Функция гипофиза стабилизируется в после пубертатный период (у 16 — 18 лет). Если активность соматотропных гормонов сохраняется и после завершения роста организма (после 20 — 24 лет) то развивается акромегалия, когда непропорционально большими становятся отдельные части тела, в которых еще не завершились процессы окостенения (например, значительно увеличиваются кисти рук, стопы ног, голова, уши и проч. части тела). За период роста ребенка гипофиз увеличивается по массе в два раза (с 0,3 до 0,7 г).

Эпифиз (масса до ОД г) наиболее активно функционирует до 7 лет , а дальше перерождается в неактивную форму. Эпифиз считается железой детства, так как эта железа вырабатывает гормон гонадолиберина, тормозящий до определенного времени развитие половых желез. Кроме этого эпифиз регулирует водно-солевой обмен, образуя вещества, подобные гормонам: мелатонин, серотонин, норадреналин, гистамина. Существует определенная цикличность образования гормонов эпифиза в течение суток: ночью синтезируется мелатонин, а в ночи — серотонин. Благодаря этому считается, что эпифиз выполняет роль своеобразного хронометра организма, регулирующий изменение жизненных циклов, а также обеспечивает соотношение собственных биоритмов человека с ритмами окружающей среды.

Щитовидная железа (масса до 30 граммов) расположена впереди гортани на шее. Основными гормонами этой железы является тироксина, трех-йодтиронин влияющих на обмен воды и минеральных веществ, на ход окислительных процессов, на процессы сгорания жира, на рост, массу тела, на физическом и умственном развитии человека. Наиболее активно железа функционирует в 5-7 и в 13-15 лет. Железа производит также гормон Тирокальцитонин, регулирующий обмен кальция и фосфора в костях (тормозит их вымывание из костей и уменьшает количество кальция в крови). При гипофункции щитовидной железы дети задерживаются в росте, у них выпадают волосы, страдают зубы, нарушается психика и умственное развитие (развивается заболевание микседема), теряется разум (развивается кретинизм). При гиперфункции щитовидной железы возникает базедова болезнь признаками которой являются увеличение щитовидной железы, изъятые глаза, резкое похудание и ряд вегетативных нарушений (повышенное сердцебиение, потливость и прочее). Болезнь также сопровождается повышением раздражительности, утомляемости, снижением работоспособности и др..

Паращитовидных желез (масса до 0,5 г) . Гормоном этих желез является паратгормон, который поддерживает количество кальция в крови на постоянном уровне (даже, если надо, за счет вымывания его из костей), а вместе с витамином Д влияет на обмен кальция и фосфора в костях, а именно, способствует накоплению этих веществ в ткани. Гиперфункция железы приводит к сверхсильной минерализации костей и окостенения, а также к повышенной возбудимости полушарий мозга. При гипофункции наблюдается тетания (судороги) и происходит смягчение костей. Эндокринная система организма человека содержит в себе множество важнейших желез и это одна из них .

Вилочковая железа (тимус) , как и костный мозг, является центральным органом иммуногенеза. Отдельные стволовые клетки красного костного мозга попадают в тимус с током крови и в структурах железы проходят этапы созревания и дифференциации, превращаясь в Т-лимфоциты (тимус — зависимые лимфоциты). Последние снова попадают в кровеносное русло и разносятся по организму и создают тимус-зависимые зоны в периферийных органах иммуногенеза (селезенке, лимфатических узлах и др.).. Тимус создает также ряд веществ (тимозин, тимопоэтина, тимусний гуморальный фактор и проч.), Которые, скорее всего, влияют на процессы дифференциации Г-лимфоцитов. Процессы иммуногенеза подробно описаны в разделе 4.9.

Тимус расположен в грудной костью и имеет две судьбы, покрытые соединительной тканью. Строма (тело) тимуса имеет ретикулярную сетчатку, в петлях которой расположены лимфоциты тимуса (тимоциты) и плазматические клетки (лейкоциты, макрофаги и др.).. Тело железы условно делится на более темную (корковую) и мозговую части. На границе коркового и мозгового частей выделяют крупные клетки с высокой активностью к делению (лимфобласты), которые считаются ростковых точками, потому что именно сюда попадают на созревание стволовые клетки.

Вилочковая железа эндокринной системы активно действует в 13-15 лет — в это время она имеет наибольшую массу (37-39г). После пубертатного периода масса тимуса постепенно уменьшается: в 20 лет она составляет в среднем 25 г, в 21-35 лет — 22 г (В. М. Жолобов, 1963), а в 50-90 лет — всего 13 г (W. Kroeman , 1976). Полностью лимфоидная ткань тимуса не исчезает до старости, но большая ее часть замещается на соединительную (жировую) ткань: если у новорожденного ребенка соединительная ткань составляет до 7% массы железы, то в 20 лет это достигает до 40%, а после 50 лет — 90 %. Вилочковая железа способна также к сроку сдерживать развитие половых желез у детей, а сами гормоны половых желез в свою очередь способны вызвать редукцию тимуса.

Надпочечники расположены над почками и имеют массу при рождении ребенка 6-8 г , а у взрослых — до 15 г каждая. Наиболее активно эти железы растут в период полового созревания, а окончательно созревают в 20-25 лет. Каждая надпочечников имеет два слоя ткани: внешний (пробковый) и внутренний (мозговой). Эти железы вырабатывают много гормонов, регулирующих различные процессы в организме. В коре желез образуются кортикостероиды: минералокортикоиды и глюкокортикоиды, регулирующих белковый, углеводный, минеральный и водно — солевой обмен, влияют на скорость размножения клеток, регулируют активизацию обмена веществ при мышечной деятельности и регулируют состав форменных элементов крови (лейкоцитов). Производятся также гонадокортикощы (аналоги андрогенов и эстрогенов), влияющие на активность половой функции и на развитие вторичных половых признаков (особенно в детской и в преклонном возрасте). В мозговой ткани надпочечников образуются гормоны адреналин и норадреналин, которые способны активизировать работу всего организма (аналогично действию симпатического отдела вегетативной нервной системы). Эти гормоны имеют исключительно важное значение для мобилизации физических резервов организма во время стрессов, при выполнении физических упражнений, особенно в период тяжелой работы, напряженных спортивных тренировок или соревнований. При чрезмерных волнениях во время спортивных выступлений у детей иногда может происходить ослабление мышц, угнетение рефлексов поддержания положения тела, по причине перевозбуждения симпатической нервной системы, а также вследствие чрезмерного выброса адреналина в кровь. В этих обстоятельствах может также наблюдаться усиление пластического тонуса мышц с последующим оцепенение этих мышц или, даже, оцепенение пространственной позы (явление каталепсии).

Важен баланс образования ГКС и минералокортикоидов. Когда недостаточно образуется глюкокортикоидов, то гормональный баланс смещается в сторону минералокортикоидов и это, между прочим, может снижать противодействие организма что к развитию ревматических воспалений в сердце и суставах, к развитию бронхиальной астмы. Избыток глюкокортикоидов подавляет воспалительные процессы но, если это превышение значительно, то может способствовать росту кровяного давления, содержания сахара в крови (развитии так называемого стероидного диабета) и даже может способствовать разрушению тканей сердечной мышцы, возникновение язвы стенок желудка и др..

. Эта железа, как и половые железы, считается смешанной, так как выполняет экзогенную (производство пищеварительных ферментов) и эндогенную функции. Как эндогенная, поджелудочная железа вырабатывает в основном гормоны глюкагон и инсулин, которые влияют на углеводный обмен в организме. Инсулин снижает содержание сахара в крови, стимулирует синтез гликогена в печени и мышцах, способствует усвоению мышцами глюкозы, задерживает воду в тканях, активизирует синтез белков и уменьшает образование углеводов из белков и жиров. Инсулин также тормозит образование гормона глюкагона. Роль глюкагона противоположно действию инсулина, а именно: глюкагон повышает содержание сахара в крови, в том числе за счет перехода гликогена тканей в глюкозу. При гипофункции железы уменьшается образование инсулина и это может вызвать опасную болезнь — сахарный диабет. Развитие функции поджелудочной железы продолжается примерно до 12 лет жизни детей и, таким образом, врожденные нарушения в ее работе зачастую проявляются именно в этот период. Среди других гормонов поджелудочной железы следует выделить липокаин (способствует утилизации жиров), ваготонин (активизирует парасимпатический отдел вегетативной нервной системы, стимулирует образование эритроцитов крови), центропеин (улучшает применение клетками организма кислорода).

В организме человека в разных частях тела могут встречаться отдельные островки железистых клеток, образующих аналоги эндокринных желез и имеют название параганглиев. Эти железы обычно образуют гормоны местного назначения, влияющие на ход тех или иных функциональных процессов. Например, ентероензимни клетки стенок желудка вырабатывают гормоны (инкреты) гастрина, секретина, холецистокинин, регулирующих процессы переваривания пищи; эндокард сердца продуцирует гормон атриопептид, действующий снижая на объем и давление крови. В стенках почек образуются гормоны эритропоэтин (стимулирует продукцию эритроцитов) и ренин (действует на кровяное давление и влияние на обмен воды и солей).

Масса гипофиза новорожденного ребенка составляет 100 - 150 мг. На втором году жизни начинается его увеличение, которое оказывается резким в 4 - 5 лет, после чего до 11 лет наступает период медленного роста. К периоду полового созревания масса гипофиза в среднем составляет 200 - 350 мг, а к 18 - 20 годам - 500-650 мг. До 3-5 лет количество СТГ выделяется больше, чем у взрослых. С 3-5 лет норма выделения СТГ равна взрослым. У новорожденных количество АКТГ равно взрослым. ТТГ выделяется резко сразу после рождения и перед периодом полового созревания. Вазопрессин максимально выделяется к первому году жизни. Наибольшая интенсивность выделения гонадотропных гормонов отмечается в период полового созревания.

гомеостаз железа внутренняя секреция

У новорожденного масса щитовидной железы колеблется от 1 до 5 г. она несколько уменьшается к 6 мес., а затем начинается период быстрого ее увеличения, который продолжается до 5 лет. В период полового созревания увеличение продолжается и достигает массы железы взрослого человека. Наибольшее увеличение секреции гормонов отмечается в периоды раннего детства и периода полового созревания. Максимум активности щитовидной железы достигается в 21-30 лет.

После рождения ребенка происходит созревание околощитовидных желез , что находит отражение в увеличении с возрастом количества выделяемого гормона. Наибольшая активность околощитовидных желез отмечается в первые 4-7 лет жизни.

У новорожденного масса надпочечников составляет примерно 7 г. темпы роста надпочечников неодинаковы в различные возрастные периоды. Особенно резкое увеличение отмечается в 6-8 мес. и 2-4 г. Увеличение массы надпочечников продолжается до 30 лет. Мозговое вещество появляется позже, чем корковое. После 30 лет количество гормонов коры надпочечников начинает уменьшаться.

К концу 2 месяца внутриутробного развития в виде выростов появляются зачатки поджелудочной железы . Головка поджелудочной железы у младенца поднята немного выше, чем у взрослых и находится примерно у 10-11 грудного позвонка. Тело и хвост уходят влево и немного приподнимаются вверх. Весит она у взрослого человека чуть меньше 100 г. При рождении железа весит у малышей всего 2-3 г, имеет длину 4-5 см. К 3-4 месяцам масса ее увеличивается в 2 раза, к 3 годам достигает 20 г, а к 10-12 годам - 30 г. Устойчивость к глюкозной нагрузке у детей до 10 лет выше, а усвоение пищевой глюкозы происходит быстрее, чем у взрослых. Этим объясняется, почему дети любят сладкое и потребляют его в больших количествах без опасности для здоровья. С возрастом инсулярная ак-тивность поджелудочной железы снижается, поэтому диабет чаще всего развивается после 40 лет.

В раннем детском возрасте в вилочковой железе преобладает корковое вещество. В период полового созревания в ней увеличивается количество соединительной ткани. В зрелом возрасте происходит сильное разрастание соединительной ткани.

Масса эпифиза при рождении составляет 7 мг, а у взрослого - 100-200 мг. Увеличение размеров эпифиза и его массы продолжается до 4-7 лет, после чего он подвергается обратному развитию.