Белки и их роль в организме. Коэффициент изнашивания по Рубнеру

Лекция № 1. Переваривание белков в желудочно-кишечном тракте. Азотистый баланс. Нормы белка в питании.

План лекции:

1. Биологическая роль белков.

2. Азотистый баланс и его формы.

3. Нормы белка в питании (коэффициент изнашивания, белковый минимум и белковый оптимум). Критерии полноценности пищевого белка.

4. Переваривание белков в ЖКТ. Характеристика ферментов желудочного, поджелудочного и кишечного сока. Роль соляной кислоты в переваривании белков. Механизм активации протеолитических ферментов.

5. Гормоны ЖКТ (строение, биологическая роль).

6. Процессы гниения белков в толстом кишечнике. Обезвреживание токсичных продуктов гниения белков. Образование индикана. Реакция определения индикана в моче, КДЗ.

Биологическая роль белков.

Белки выполняют следующие функции: пластическую (структурную), каталитическую, защитную, транспортную, регуляторную, энергетическую.

Азотистый баланс и его формы.

Азотистый баланс (А.Б.) – это разница между общим азотом, поступающим в организм с пищей и общим азом, выводимым из организма с мочой. Формы А.Б.: 1) азотистое равновесие (N пищи = N мочи+кала); 2) положительный азотистый баланс (N пищи ˃ N мочи+кала); 3) отрицательный А.Б. (N пищи ˂ N мочи+кала).

Нормы белка в питании (коэффициент изнашивания, белковый минимум и белковый оптимум). Критерии полноценности пищевого белка.

Белки состоят из 20-ти протеиногенных аминокислот.

Незаменимые аминокислоты – не могут синтезироваться в тканях человека и должны ежедневно поступать в организм с пищей. К ним относятся: валин, лейцин, изолейцин, метионин, треонин, лизин, триптофан, фенилаланин.

Частично незаменимые аминокислоты (аргинин и гистидин) могут синтезироваться в организме человека, но не покрывают суточную потребность, особенно в детском возрасте.

Заменимые аминокислоты могут синтезироваться в организме человека из промежуточных соединений обмена веществ.

Критерии полноценности пищевого белка: 1) биологическая ценность – это аминокислотный состав и соотношение отдельных аминокислот; 2) усвояемость белка в ЖКТ.

Полноценный белок содержит все незаменимые аминокислоты в оптимальных пропорциях и легко гидролизуется ферментами ЖКТ. Наибольшей биологической ценностью обладают белки яйца и молока. Они же легко усваиваются. Из растительных белков первое место занимают белки сои.

Коэффициент изнашивания – то количество эндогенного белка, который ежесуточно распадается до конечных продуктов. В среднем составляет 3,7 г азота/сутки, или 23 г белка/сутки.

Физиологический белковый минимум – то количество белка в пище, которое позволяет поддерживать азотистое равновесие в состоянии покоя. Для взрослого здорового человека – 40-50 г/сутки.

Белковый оптимум – то количество белка в пище, которое поддерживает полноценную жизнедеятельность. Для здорового взрослого человека – 80-100 г/сутки (1,5 г на кг массы тела).

Переваривание белков в ЖКТ. Характеристика ферментов желудочного, поджелудочного и кишечного сока. Роль соляной кислоты в переваривании белков. Механизм активации протеолитических ферментов.

Расщепление белков в ЖКТ идет гидролитическим способом. Ферменты называются – протеазы или пептидазы. Сам процесс гидролиза белков носит название – протеолиз. Пептидазы ЖКТ делятся на 2 группы:

1) эндопептидазы - катализируют гидролиз внутренних пептидных связей; к ним относятся ферменты: пепсин (желудочный сок), трипсин и химотрипсин (поджелудочный сок):

2) экзопептидазы - катализируют гидролиз концевых пептидных связей; к ним относятся ферменты: карбоксипептидызы (поджелудочный сок), аминопептидазы, три- и дипептидазы (кишечный сок).

Азотистый баланс азотистое равновесие.

Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.

Однако безбелковое питание заканчивается гибелью организма. Исключение даже одной незаменимой аминокислоты из рациона ведёт к неполному усвоению других аминокислот и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы.

При безбелковой диете в сутки выделяется 4гр азота,что составляет 25гр белка (КОЭФ-Т ИЗНАШИВАНИЯ).

Физиологический белковый минимум- минимальное количество белков в пище необходимое для поддержания азотистого равновесия- 30-50 г/сут.

ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖКТ. ХАРАКТЕРИСТИКА ПЕПТИДАЗ ЖЕЛУДКА, ОБРАЗОВАНИЕ И РОЛЬ СОЛЯНОЙ КИСЛОТЫ.

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.



Образование и роль соляной кислоты

Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов , которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. НСI образуется в обкладочных клетках желудочных желёз

Источником Н + является Н 2 СО 3 , которая образуется в обкладочных клетках желудка из СО 2 , диффундирующего из крови, и Н 2 О под действием фермента карбоангидразы

Диссоциация Н 2 СО 3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму. Ионы С1 - поступают в просвет желудка через хлоридный канал.

рН снижается до 1,0-2,0.

Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.

Пепсиноген - белок, состоящий из одной полипептидной цепи. Под действием НСl он превращается в активный пепсин В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.



У детей грудного возраста в желудке находится фермент реннин (химозин) , вызывающий свёртывание молока. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НСl и пепсина.

ещё одна протеаза - гастриксин. Все 3 фермента (пепсин, реннин и гастриксин) сходны по первичной структуре

КЕТОГЕННЫЕ И ГЛИКОГЕННЫЕ АМИНОКИСЛОТЫ. АНАПЛЕРОТИЧЕСКИЕ РЕАКЦИИ, СИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ (ПРИМЕР).

Катаболизм аминок-т сводится к образованию пируват, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат гликогенных аминокислоты - превращаются в пируват и промежуточные продукты ЦТК и образуют в конечном итоге оксалоацетат, могут использоваться впроцессе глюконеогенеза.

кетогенные аминок-ты в процессе катаболизма превращаются в ацетоацетат (Лиз, Лей) или ацетил-КоА (Лей) и могут использоваться в синтезе кетоновых тел.

гликокетогенными аминокислоты используется и для синтеза глюкозы, и для синтеза кетоновых тел, так как в процессе их катаболизма образуются 2 продукта - определённый метаболит цитратного цикла и ацетоацетат (Три, Фен, Тир) или ацетил-КоА (Иле).

Анаплеротические реакции - безазотистые остатки аминокислот используются для восполнения того количества метаболитов общего пути катаболизма, которое затрачивается на синтез биологически активных веществ.

Фермент пируваткарбоксилаза (кофермент - биотин), катализирующий эту реакцию, обнаружен в печени и мышцах.

2. Аминокислоты → Глутамат → α-Кетоглутарат

под действием глутаматдегидрогеназы или аминотрансфераз.

3.

Пропионил-КоА, а затем и сукцинил-КоА могут образоваться также при распаде высших жирных кислот с нечётным числом атомов углерода

4. Аминокислоты → Фумарат

5. Аминокислоты → Оксалоацетат

Реакции 2, 3 происходят во всех тканях (кроме печени и мышц), где отсутствует пируваткарбоксилаза.

VII. БИОСИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ

В организме человека возможен синтез восьми заменимых аминокислот: Ала, Асп, Асн, Сер, Гли, Глу, Глн, Про. Углеродный скелет этих аминокислот образуется из глюкозы. α-Аминогруппа вводится в соответствующие α-кетокислоты в результате реакций трансаминирования.Универсальным донором α-аминогруппы служит глутамат.

Путём трансаминирования α-кетокислот, образующихся из глюкозы, синтезируются аминокислоты

Глутамат также образуется при восстановительном аминировании α-кетоглутарата глутаматдегидрогеназой.

ТРАНСАМИНИРОВАНИЕ: СХЕМА ПРОЦЕССА, ФЕРМЕНТЫ, БИОРОЛЬ. БИОРОЛЬ АЛАТ И АСАТ И КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ИХ ОПРЕДЕЛЕНИЯ В СЫВОРОТКЕ КРОВИ.

Трансаминирование - реакция переноса α-аминогруппы с ак-ы на α-кетокислоту, в результате чего образуются новая кетокислота и новая ак. процесс трансаминирования легко обратим

Реакции катализируют ферменты аминотрансферазы, коферментом которых служит пиридоксальфосфат (ПФ)

Аминотрансферазы обнаружены как в цитоплазме, так и в митохондриях клеток эукариот. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина.

  • На первой стадии к пиридоксальфосфату в активном центре фермента с помощью альдиминной связи присоединяется аминогруппа от первого субстрата – ак-ы. Образуются комплекс фермент-пиридокса-минфосфат и кетокислота - первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований.
  • На второй стадии комплекс фермент-пиридоксаминфосфат соединяется с кетокислотой и через промежуточное образование 2 шиффовых оснований передаёт аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота - второй продукт реакции. Если альдегидная группа пиридоксальфосфата не занята аминогруппой субстрата, то она образует шиффово основание с ε-аминогруппой радикала лизина в активном центре фермента

Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глутамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат.

Наиболее распространёнными ферментами в большинстве тканей млекопитающих являются: АЛТ (АлАТ) катализирует реакцию транса-минирования между аланином и α-кетоглутаратом. Локализован этот фермент в цитозоле клеток многих органов, но наибольшее его количество обнаружено в клетках печени и сердечной мышцы. ACT (АсАТ) катализирует реакцию трансами-нирования между аепартатом и α-кетоглутаратом. образуются оксалоацетат и глутамат. Наибольшее его количество обнаружено в клетках сердечной мышцы и печени. органоспецифичность этих ферментов.

В норме в крови активность этих ферментов составляет 5-40 Е/л. При повреждении клеток соответствующего органа ферменты выходят в кровь, где активность их резко повышается. Поскольку ACT и АЛТ наиболее активны в клетках печени, сердца и скелетных мышц, их используют для диагностики болезней этих органов. В клетках сердечной мышцы количество ACT значительно превышает количество АЛТ, а в печени - наоборот. Поэтому особенно информативно одновременное измерение активности обоих ферментов в сыворотке крови. Соотношение активностей ACT/АЛТ называют "коэффициент де Ритиса". В норме этот коэффициент равен 1,33±0,42. При инфаркте миокарда активность ACT в крови увеличивается в 8-10 раз, а АЛТ - в 2,0 раза.

При гепатитах активность АЛТ в сыворотке крови увеличивается в ∼8-10 раз, a ACT - в 2-4 раза.

Синтез меланинов.

Виды меланинов

Реакция активация метионина

Активной формой метионина является S-аденозилметионин (SAM) - сульфониевая форма аминокислоты, образующаяся в результате присоединения метионина к молекуле аденозина. Аденозин образуется при гидролизе АТФ.

Эту реакцию катализирует фермент метионин аденозилтрансфераза, присутствующий во всех типах клеток. Структура (-S + -CH 3) в SAM - нестабильная группировка, определяющая высокую активность метильной группы (отсюда термин "активный метионин"). Эта реакция уникальна для биологических систем, так как, по-видимому, является единственной известной реакцией, в результате которой освобождаются все три фосфатных остатка АТФ. Отщепление метильной группы от SAM и перенос её на соединение-акцептор катализируют ферменты метилтрансферазы. SAM в ходе реакции превращается в S-аденозилгомоцистеин (SAT).

Синтез креатина

Креатин необходим для образования в мышцах высокоэнергетического соединения - кре-атинфосфата. Синтез креатина идёт в 2 стадии с участием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования.

Реакции трансметилирования используются также для:

  • синтеза адреналина из норадреналина;
  • синтеза анзерина из карнозина;
  • метилирования азотистых оснований в нуклеотидах и др.;
  • инактивации метаболитов (гормонов, медиаторов и др.) и обезвреживания чужеродных соединений, включая и лекарственные препараты.

Инактивация биогенных аминов также происходит:

метилированием с участием SAM под действием метилтрансфераз. Таким образом могут инактивироваться различные биогенные амины, но чаще всего происходит инактивация гастамина и адреналина. Так, инактивация адреналина происходит путём метилирования гидроксильной группы в ортоположении

ТОКСИЧНОСТЬ АММИАКА. ЕГО ОБРАЗОВАНИЕ И ОБЕЗВРЕЖИВАНИЕ.

Катаболизм аминокислот в тканях происходит постоянно со скоростью ∼100 г/сут. При этом в результате дезаминирования аминокислот освобождается большое количество аммиака. Значительно меньшие количества его образуются при дезаминировании биогенных аминов и нуклеотидов. Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Концентрация аммиака в крови воротной вены существенно больше, чем в общем кровотоке. В печени задерживается большое количество аммиака, что поддерживает низкое содержание его в крови. Концентрация аммиака в крови в норме редко превышает 0,4-0,7 мг/л (или 25-40 мкмоль/л

Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Так, повышение концентрации аммиака в мозге до 0,6 ммоль вызывает судороги. К симптомам гипераммониемии относят тремор, нечленораздельную речь, тошноту, рвоту, головокружение, судорожные припадки, потерю сознания. В тяжёлых случаях развивается кома с летальным исходом. Механизм токсического действия аммиака на мозг и организм в целом, очевидно, связан с действием его на несколько функциональных систем.

  • Аммиак легко проникает через мембраны в клетки и в митохондриях сдвигает реакцию, катализируемую глутаматдегидрогеназой, в сторону образования глугамата:

α-Кетоглутарат + NADH + Н + + NH 3 → Глутамат + NAD + .

Уменьшение концентрации α-кетоглутарата вызывает:

· угнетение обмена аминокислот (реакции транса-минирования) и, следовательно, синтеза из них нейромедиаторов (ацетилхолина, дофамина и др.);

· гипоэнергетическое состояние в результате снижения скорости ЦТК.

Недостаточность α-кетоглутарата приводит к снижению концентрации метаболитов ЦТК, что вызывает ускорение реакции синтеза оксалоа-цетата из пирувата, сопровождающейся интенсивным потреблением СО 2 . Усиленное образование и потребление диоксида углерода при гипераммониемии особенно характерны для клеток головного мозга. Повышение концентрации аммиака в крови сдвигает рН в щелочную сторону (вызывает алкалоз). Это, в свою очередь, увеличивает сродство гемоглобина к кислороду, что приводит к гипоксии тканей, накоплению СО 2 и гипоэнергетическому состоянию, от которого главным образом страдает головноймозг. Высокие концентрации аммиака стимулируют синтез глутамина из глутамата в нервной ткани (при участии глутаминсинтетазы):

Глутамат + NH 3 + АТФ → Глутамин + АДФ + Н 3 Р0 4 .

· Накопление глутамина в клетках нейроглии приводит к повышению осмотического давления в них, набуханию астроцитов и в больших концентрациях может вызвать отёк мозга.Снижение концентрации глутамата нарушает обмен аминокислот и нейромедиаторов, в частности синтез у-аминомасляной кислоты (ГАМК), основного тормозного медиатора. При недостатке ГАМК и других медиаторов нарушается проведение нервного импульса, возникают судороги. Ион NH 4 + практически не проникает через цитоплазматические и митохондриальные мембраны. Избыток иона аммония в крови способен нарушать трансмембранный перенос одновалентных катионов Na + и К + , конкурируя с ними за ионные каналы, что также влияет на проведение нервных импульсов.

Высокая интенсивность процессов дезаминирования аминокислот в тканях и очень низкий уровень аммиака в крови свидетельствуют о том, что в клетках активно происходит связывание аммиака с образованием нетоксичных соединений, которые выводятся из организма с мочой. Эти реакции можно считать реакциями обезвреживания аммиака. В разных тканях и органах обнаружено несколько типов таких реакций. Основной реакцией связывания аммиака, протекающей во всех тканях организма, является 1.) синтез глутамина под действием глутамин-синтетазы:

Глутаминсинтетаза локализована в митохондриях клеток, для работы фермента необходим кофактор - ионы Mg 2+ . Глутаминсинтетаза - один из основных регуляторных ферментов обмена аминокислот и аллостерически ингибируется АМФ, глюкозо-6-фосфатом, а также Гли, Ала и Гис.

В клетках кишечника под действием фермента глутаминазы происходит гидролитическое освобождение амидного азота в виде аммиака:

Образовавшийся в реакции глутамат подвергается трансаминированию с пируватом. ос-Аминогруппа глутаминовой кислоты переносится в состав аланина:


Глутамин - основной донор азота в организме. Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нуклеотидов, аспарагина, аминосахаров и других соединений.

МЕТОД КОЛ-В ОПРЕДЕЛЕНИЯ МОЧЕВИНЫ В СЫВОРОТКЕ КРОВИ

В биологических жидкостях М. определяют с помощью газометрических методов, прямых фотометрических методов, основанных на реакции М. с различными веществами с образованием эквимолекулярных количеств окрашенных продуктов, а также ферментативных методов с использованием главным образом фермента уреазы. Газометрические методы основаны на окислении М. гипобромитом натрия в щелочной среде NH 2 -СО-NH 2 + 3NaBrO → N 2 + CO 2 + 3NaBr + 2H 2 O. Объем газообразного азота измеряют с помощью специального аппарата, чаще всего аппарата Бородина. Однако этот метод обладает низкой специфичностью и точностью. Из фотометрических наиболее распространены методы, основанные на реакции М. с диацетилмонооксимом (реакция Ферона).

Для определения мочевины в сыворотке крови и моче используют унифицированный метод, основанный на реакции М. с диацетилмонооксимом в присутствии тиосемикарбазида и солей железа в кислой среде. Другим унифицированным методом определения М. является уреазный метод: NH 2 -СО-NH 2 → уреаза NH 3 +CO 2 . Выделившийся аммиак образует с гипохлоритом натрия и фенолом индофенол, имеющий синий цвет. Интенсивность окраски пропорциональна содержанию М. в исследуемой пробе. Уреазная реакция высокоспецифична, для исследования берут лишь 20 мкл сыворотки крови, разведенной в соотношении 1: 9 раствором NaCI (0,154 М). Иногда вместо фенола используют салицилат натрия; сыворотку крови разводят следующим образом: к 10 мкл сыворотки крови добавляют 0,1 мл воды или NaCI (0,154 М). Ферментативная реакция в обоих случаях протекает при 37° в течение 15 и 3-3 1 / 2 мин соответственно.

Производные М., в молекуле которой атомы водорода замещены кислотными радикалами, носят название уреидов. Многие уреиды и некоторые их галогензамещенные производные в медицине используют в качестве лекарственных средств. К уреидам относятся, например, соли барбитуровой кислоты (малонилмочевины), аллоксан (мезоксалилмочевина); гетероциклическим уреидом является Мочевая кислота.

ОБЩАЯ СХЕМА РАСПАДА ГЕМА. «ПРЯМОЙ» И «НЕПРЯМОЙ» БИЛИРУБИН, КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ЕГО ОПРЕДЕЛЕНИЯ.

Гем(гемоксигеназа)-биливердин(биливердинредуктаза)-билирубин(УДФ-глюкуранилтрансфераза)-билирубинмоноглюкуронид(УД-глюкуронилтрансфераза)-билирубиндиглюкуронид

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике конъ-югированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это прямая реакция Ван дер Берга. Неконъюгированный билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъюгированный илирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

МЕТОДЫ ОБНАРУЖЕНИЯ ГЕМА ГЕМОГЛОБИНА: ФИЗИЧЕСКИЙ (СПЕКТРАЛЬНЫЙ АНАЛИЗ ГЕМОГЛОБИНА И ЕГО ПРОИЗВОДНЫХ); ФИЗИКО-ХИМИЧЕСКИЙ (ПОЛУЧЕНИЕ КРИСТАЛЛОВ СОЛЯНОКИСЛОГО ГЕМИНА).

Спектральный анализ гемоглобина и его производных. Использование спектрографических методов при рассмотрении раствора оксигемоглобина выявляет в желто-зеленой части спектра между фраунгоферовскими линиями D и Е две системные полосы поглощения, у восстановленного гемоглобина в той же части спектра имеется лишь одна широкая полоса. Различия в поглощении излучения гемоглобином и оксигемоглобином послужили основой для метода изучения степени насыщения крови кислородом - оксигемометрии.

Карбгемоглобин по своему спектру близок к оксигемоглобину, однако при добавлении восстанавливающего вещества у карбгемоглобина появляются две полосы поглощения. Спектр метгемоглобина характеризуется одной узкой полосой поглощения слева на границе красной и желтой части спектра, второй узкой полосой на границе желтой и зеленой зон, наконец, третьей широкой полосой в зеленой части спектра

Кристаллы гемина или солянокислого гема-тина. С поверхности пятна соскабливается на предметное стекло и измельчается несколько крупинок. К ним добавляются 1-2 крупинки поваренной соли и 2-3 капли ледяной уксус- ной к-ты. Все накрывают покровным стеклом и осторожно, не доводя до кипения, нагревают. Присутствие крови доказывается появлением микрокристаллов буро-желтого цвета в виде ромбических табличек. Если кристаллы плохо сформированы, то имеют вид конопляного семени. Получение кристаллов гемина безусловно доказывает присутствие в исследуемом объекте крови. Отрицательный результат пробы не имеет значения. Примесь жира,ржавчина затрудняют получение кристаллов гемина

АКТИВНЫЕ ФОРМЫ КИСЛОРОДА: СУПЕРОКСИД АНИОН, ПЕРОКСИД ВОДОРОДА, ГИДРОКСИЛЬНЫЙ РАДИКАЛ, ПЕРОКСИНИТРИТ. ИХ ОБРАЗОВАНИЕ, ПРИЧИНЫ ТОКСИЧНОСТИ. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ АФК.

В ЦПЭ поглощается около 90% поступающего в клетки О 2 . Остальная часть О 2 используется в других ОВР. Ферменты, участвующие ОВР с использованием О2, делятся на 2 группы: оксидазы и оксигеназы.

Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н 2 О или Н 2 О 2 .

Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции.

Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот), синтезе жёлчных кислот и стероидов), в реакциях обезвреживания чужеродных веществ в печени

В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.

В невозбуждённом состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О 2 содержит 2 неспаренных электрона, которые располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.

Полное восстановление О 2 происходит в результате 4 одноэлектронных переходов:

Супероксид, пероксид и гидроксильный радикал - активные окислители, что представляет серьёзную опасность для многих структурных компонентов клетки

Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции

Повреждающее действие свободных радикалов на компоненты клетки. 1 - разрушение белков; 2 - повреждение ЭР; 3 - разрушение ядерной мембраны и повреждение ДНК; 4 - разрушение мембран митохондрий; проникновение в клетку воды и ионов.

Образование супероксида в ЦПЭ. "Утечка" электронов в ЦПЭ может происходить при переносе электронов с участием коэнзима Q. При восстановлении убихинон превращается в анион-радикал семихинона. Этот радикал нефермента-тивно взаимодействует с О 2 с образованием супероксидного радикала.

Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QH 2 -дегидрогеназного комплекса. Это происходит в результате неферментативного переноса ("утечки") электронов с QH 2 на кислород (

на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) "утечка" электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Сu и восстанавливающих О 2 без освобождения промежуточных свободных радикалов.

В фагоцитирующих лейкоцитах в процессе фагоцитоза усиливаются поглощение кислорода и образование активных радикалов. Активные формы кислорода образуются в результате активации NADPH-оксидазы, преимущественно локализованной на наружной стороне плазматической мембраны, инициируя так называемый "респираторный взрыв" с образованием активных форм кислорода

Защита организма от токсического действия активных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатион-пероксидазы, а также с действием антиоксидантов.

ОБЕЗВРЕЖИВАНИЕ АКТИВНЫХ ФОРМ КИСЛОРОДА. ФЕРМЕНТНАЯ АНТИОКСИДАНТНАЯ СИСТЕМА (КАТАЛАЗА, СУПЕРОКСИДДИСМУТАЗА, ГЛУТАТИОНПЕРОКСИДАЗА, ГЛУТАТИОНРЕДУКТАЗА). СХЕМЫ ПРОЦЕССОВ, БИОРОЛЬ, МЕСТО ПРОТЕКАНИЯ.

Супероксиддисмутаза катализирует реакцию дисмутации супероксидных анион – радикалов:
О2.- + О2.- = О2 + Н 2О2
В ходе реакции образовался пероксид водорода, он способен инактивировать СОД, поэтому супероксиддисмутаза всегда «работает» в паре скаталазой, которая быстро и эффективно расщепляет пероксид водорода на абсолютно нейтральные соединения.

Каталаза (КФ 1.11.1.6) – гемопротеин, который катализирует реакцию обезвреживания пероксида водорода, образующегося в результате реакции дисмутации супероксидного радикала:
2H2O2 = 2H2O + O2

Глутатионпероксидазакатализирует реакции, в которых фермент восстанавливает пероксид водорода до воды, а также восстановление органических гидропероксидов (ROOH) до гидроксипроизводных, и в результате переходит в окисленную дисульфидную форму GS-SG:
2GSH + H2O2 = GS-SG + H2O
2GSH + ROOH = GS-SG + ROH +H2O

Глутатионпероксидаза обезвреживает не только H2O2, но и разные органические липидные пероксилы, которые образуются в организме при активации ПОЛ.

Глутатионредуктаза (КФ 1.8.1.7) – флавопротеин с простетической группой флавинадениндинуклеотидом, состоит из двух идентичных субъединиц. Глутатионредуктаза катализирует реакцию восстановления глутатиона из окисленной его формы GS-SG, а все другие ферменты глутатионсинтетаз используют его:
2NADPH + GS-SG = 2NADP + 2 GSH

Это классический цитозольный фермент всех эукариот.Глутатионтрансфераза катализирует реакцию:
RX + GSH = HX + GS-SG

ФАЗА КОНЪЮГАЦИИ В СИСТЕМЕ ОБЕЗВРЕЖИВАНИЯ ТОКСИЧЕСКИХ ВЕЩЕСТВ. ВИДЫ КОНЪЮГАЦИИ (ПРИМЕРЫ РЕАКЦИЙ С ФАФС, УДФГК)

Конъюгация - вторая фаза обезвреживание веществ, в ходе которой происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков

1. Участие трансфераз в реакциях конъюгации

УДФ-глюкуронилтрансферазы. Локализированные в основном в ЭР уридин-дифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления

В общем виде: ROH + УДФ-С6Н9О6 = RO-C6H9O6 + УДФ.

Сульфотрансферазы. Цитоплазматические cульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SO3H) от 3"-фосфоаденозин-5"-фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам

Реакция в общем виде: ROH + ФАФ-SO3H = RO-SO3H + ФАФ.

Ферменты сульфотрансферазы и УДФ-глюкуронилтрансферазы участвуют в обезвреживании ксенобиотиков, инактивации лекарств и эндогенных биологически активных соединений.

Глутатионтрансферазы. Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтрансферазы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, билирубина, жёлчных кислот, В клетке ГТ в основном локализованы в цитозоле, но имеются варианты ферментов в ядре и митохондриях.

Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цис-теину карбоксильной группой радикала). ГТ обладают широкой специфичностью к субстратам, общее количество которых превышает 3000. ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глугатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Обезвреживание, т.е. химическая модификация ксенобиотиков с участием ГТ, может осуществляться тремя различными способами:

путём конъюгации субстрата R с глутатионом (GSH): R + GSH → GSRH,

в результате нуклеофильного замещения: RX + GSH → GSR + НХ,

восстановления органических пероксидов до спиртов: R-HC-O-OH + 2 GSH → R-HC-OH + GSSG + H2O

В реакции: ООН - гидропероксидная группа, GSSG - окисленный глутатион.

Сисгема обезвреживания с участием ГТ и глутатиона играет уникальную роль в формировании резистентности организма к самым различным воздействиям и является наиболее важным защитным механизмом клетки. В ходе биотрансформации некоторых ксенобиотиков под действием ГТ образуются тиоэфиры (конъюгаты RSG), которые затем превращаются в меркаптаны, среди которых обнаружены токсические продукты. Но конъюгаты GSH с большинством ксенобиотиков менее реакционно-способны и более гидрофильны, чем исходные вещества, а поэтому менее токсичны и легче выводятся из организма

ГТ своими гидрофобными центрами могут не-ковалентно связывать огромное количество ли-пофильных соединений (физическое обезвреживание), предотвращая их внедрение в липидный слой мембран и нарушение функций клетки. Поэтому ГТ иногда называют внутриклеточным альбумином.

ГТ могут ковалентно связывать ксенобиотики, являющиеся сильными электролитами. Присоединение таких веществ - "самоубийство" для ГТ, но дополнительный защитный механизм для клетки.

Ацетилтрансферазы, метилтрансферазы

Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы -SO2NH2, например в составе сульфаниламидов. Мембранные и цитоплазматические метилтрансферазы с участием SAM метилируют группы -Р=О, -NH2 и SH-группы ксенобиотиков.

Роль эпоксидгидролаз в образовании диолов

Во второй фазе обезвреживания (реакции конъюгации) принимают участие и некоторые другие ферменты. Эпоксидгидролаза (эпоксидгидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в диолы (рис. 12-8). Эпоксиды, образовавшиеся при микросомальном окислении, являются канцерогенами. Они обладают высокой химической активностью и могут участвовать в реакциях неферментативного алкилирования ДНК, РНК, белков Химические модификации этих молекул могут привести к перерождению нормальной клетки в опухолевую.

РОЛЬ БЕЛКОВ В ПИТАНИИ, НОРМЫ, АЗОТИСТЫЙ БАЛАНС, КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ,ФИЗИОЛОГИЧЕСКИЙ БЕЛКОВЫЙ МИНИМУМ. БЕЛКОВАЯ НЕДОСТАТОЧНОСТЬ.

АК содержат почти 95% всего азота, поэтому именно они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, у пациентов. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний. При без белковой диете азотистый баланс становится отрицательным. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.

аминокислоты, синтез которых сложен и неэкономичен для организма, очевидно, выгоднее получать с пищей. Такие аминокислоты называют незаменимыми. К ним относят фенилаланин, метионин, треонин, триптофан, валин, лизин, лейцин, изолейцин.

Две аминокислоты - аргинин и гистидин называют частично заменимыми. - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.

Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, про

Белковый минимум

наименьшее количество белка в пище, необходимое для сохранения азотистого равновесия (См. Азотистое равновесие) в организме. Уменьшение белка в пище ниже Б. м. приводит к распаду собственных белков организма. Б. м. зависит от индивидуальных особенностей организма, возраста, упитанности, а также от качества и количества других небелковых компонентов пищи (углеводов, жиров, витаминов и пр.). Количество белка, необходимое для человека или животного, меняется в связи с биологической ценностью пищевых белков, которая определяется содержанием в них различных аминокислот (См. Аминокислоты). Многие белки и белковые смеси неполноценны вследствие отсутствия в них определённых аминокислот, которые не могут быть синтезированы в организме человека и животных. Для составления пищевых рационов ориентируются на белковый оптимум, т. е. на количество белка, необходимое для полного обеспечения потребностей организма; для взрослого человека оно равно, в среднем, 80-100 г белка, при тяжёлом физическом труде - 150 г. См. Белки , Белковый обмен , Обмен веществ .

Г. Н. Кассиль.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Белковый минимум" в других словарях:

    Белковый минимум - – минимальное количество белка, способ ное поддерживать азотистое равновесие в организме; определяют на 1 кг живой массы животного: лошадь в покое 0,7 0,8, лошадь при работе 1,2 1,42; нелактирующая корова 0,6 0,7; лактирующая корова 1,0; овцы,… … Словарь терминов по физиологии сельскохозяйственных животных

    БЕЛКОВЫЙ ОБМЕН - БЕЛКОВЫЙ ОБМЕН,понятие, охватывающее приход белковых веществ в организме, их изменения в организме (см. Обмен веществ промежуточный) и выделение продуктов сгорания белка в виде мочевины, углекислоты, воды и других хим. соединений. Б. обмен… …

    Состояние животного организма, при котором количество выводимого (с мочой и калом) азота равно количеству азота, получаемому с пищей. Взрослый организм в норме находится в состоянии А. р. Средняя потребность взрослого человека в азоте 16… …

    - (от Изо... и греч. dýnamis сила, способность) изодинамии закон, возможность замены в рационе одних пищевых веществ другими в эквивалентных в энергетическом отношении количествах. Понятие И. было введено немецким физиологом М. Рубнером… … Большая советская энциклопедия

    Белковые вещества, протеины, сложные органические соединения, составляющие важнейшую часть протоплазмы каждой живой клетки. Б. состоят из углерода (50 55%), водорода (6,5 7,5%), азота (15 19%), кислорода (20,0 23,5%), серы (0,3 2,5%) и иногда… … Сельскохозяйственный словарь-справочник

    ДОМ ОТДЫХА - ДОМ ОТДЫХА, учреждение, имеющее целью предоставление рабочим и служащим возможности восстановить свои силы и энергию в наиболее благоприятных и здоровых условиях во время получаемого ими ежегодного отпуска. В отличие от санатория Д. о. не ставит… … Большая медицинская энциклопедия

    ОБЛИТЕРАЦИЯ - (лат. obliteratio уничтожение), термин, употребляемый для обозначений закрытия, уничтожения той или иной полости или просвета посредством разрастания^ ткани, идущего со стороны стенок данного полостного образования. Указанное разрастание чаще… … Большая медицинская энциклопедия

    ТУБЕРКУЛЁЗ - мед. Туберкулёз инфекционное заболевание, вызываемое мико бактериями туберкулёза и характеризующееся развитием клеточной аллергии, специфических гранулём в различных органах и тканях и полиморфной клинической картиной. Характерно поражение лёгких … Справочник по болезням

    ИНФЕКЦИОННЫЕ БОЛЕЗНИ - ИНФЕКЦИОННЫЕ БОЛЕЗНИ. В представлении римлян слово «infectio» заключало в себе понятие о группе острых болезней, сопровождавшихся лихорадкой, часто приобретавших повальное распространение и зависевших от загрязнения" воздуха… … Большая медицинская энциклопедия

    ПИТАНИЕ - ПИТАНИЕ. Содержание: I. Питание как соц. гигиеничес ая проблема. Про яема П. в свете исторического разв и тин человеческого общества....... . . 38 Проблема П. в капиталистическом обществе 42 Производство продуктов П. в царской России и в СССР … Большая медицинская энциклопедия

МЕТАБОЛИЗМ БЕЛКОВ

Белки являются незаменимым компонентом пищи. В отличие от белков - углеводы и жиры не являются незаменимыми компонентами пищи. Ежесуточно потребляется около 100 граммов белков взрослым здоровым человеком. Пищевые белки – это главный источник азота для организма. В смысле экономическом белки являются самым дорогим пищевым компонентом. Поэтому очень важным в истории биохимии и медицины было установление норм белка в питании.

В опытах Карла Фойта впервые были установлены нормы потребления пищевого белка - 118г/сутки, углеводов - 500г/сутки, жиров 56г/сутки. М.Рубнер первым определил, что 75% азота в организме находится в составе белков. Он составил азотистый баланс (определил, сколько азота человек теряет за сутки и сколько азота прибавляется).

У взрослого здорового человека наблюдается азотистое равновесие – «нулевой азотистый баланс» (суточное количество выведенного из организма азота соответствует количеству усвоенного).

Положительный азотистый баланс (суточное количество выведенного из организма азота меньше, чем количество усвоенного). Наблюдается только в растущем организме или при восстановлении белковых структур (например, в периоде выздоровления при тяжелых заболеваниях или при наращивании мышечной массы).

Отрицательный азотистый баланс (суточное количество выведенного из организма азота выше, чем количество усвоенного). Наблюдается при белковой недостаточности в организме. Причины: недостаточное количество белков в пище; заболевания, сопровождающиеся повышенным разрушением белков.

В истории биохимии проводились эксперименты, когда человека кормили только углеводами и жирами («безбелковая диета»). В этих условиях измеряли азотистый баланс. Через несколько дней выведение азота из организма уменьшалось до определенного значения, и после этого поддерживалось длительное время на постоянном уровне: человек терял ежесуточно 53 мг азота на кг веса в сутки (примерно 4 г азота в сутки). Это количество азота соответствует примерно 23-25г белка в сутки. Эту величину назвали "КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ". Затем ежедневно добавляли в рацион 10г белка, и выведение азота при этом повышалось. Но все равно наблюдался отрицательный азотистый баланс. Тогда в пищу стали добавлять 40-45-50 граммов белка в сутки. При таком содержании белка в пище наблюдался нулевой азотистый баланс (азотистое равновесие). Эту величину (40-50 граммов белка в сутки) назвали ФИЗИОЛОГИЧЕСКИЙ МИНИМУМ БЕЛКА.

В 1951 году были предложены нормы белка в питании: 110-120 граммов белка в сутки.

В настоящее время установлено, что 8 аминокислот являются незаменимыми. Суточная потребность в каждой незаменимой аминокислоте - 1-1.5 гр., а всего организму необходимо 6-9 граммов незаменимых аминокислот в сутки. Содержание незаменимых аминокислот в разных пищевых продуктах различается. Позтому физиологический минимум белка может быть разным для разных продуктов.


Сколько необходимо съедать белка для поддержания азотистого равновесия? 20 гр. яичного белка, либо 26-27 гр. белков мяса или молока, либо 30 гр. белков картофеля, либо 67 гр. белков пшеничной муки. В яичном белке содержится полный набор аминокислот. При питании растительными белками необходимо гораздо больше белка для восполнения физиологического минимума. Потребности в белке у женщин (58 граммов в сутки) меньше, чем у мужчин (70 г белка в сутки) – данные нормативов США.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ БЕЛКОВ В ЖЕЛУДОЧНО-KИШЕЧНОМ ТРАКТЕ

Переваривание не относится к процессам метаболизма, поскольку происходит вне организма (по отношению к тканям просвет желудочно-кишечного тракта является внешней средой). Задача переваривания - раздробить (расщепить) крупные молекулы пищевых веществ до маленьких стандартных мономеров, которые всасываются в кровь. Эти вещества, которые получаются в результате переваривания, уже лишены видовой специфичности. Но энергетические запасы, имеющиеся в пищевых веществах, сохраняются, и в дальнейшем используются организмом.

Все пищеварительные процессы являются гидролитическими, то есть не приводят к большой потери энергии - они не окислительные. Каждые сутки в организм человека всасывается примерно 100 граммов аминокислот, которые поступают в кровь. Еще 400 граммов аминокислот поступает ежесуточно в кровь в результате распада собственных белков тела. Все эти 500 г аминокислот представляют собой метаболический пул аминокислот. Из этого количества 400 граммов используется для синтеза белков тела человека, а оставшиеся 100 г ежедневно распадаются до конечных продуктов: мочевина, CO 2 . В процессе распада образуются также необходимые организму метаболиты, способные выполнять функции гормонов, медиаторов различных процессов и другие вещества (например: меланины, гормоны адреналин и тироксин).

Для белков печени период полураспада составляет 10 дней. Для белков мышц этот период составляет 80 дней. Для белков плазмы крови - 14 дней, печени - 10 дней. Но есть белки, которые распадаются быстро (для a 2 -макроглобулина и инсулина период полураспада - 5 мин).

Ежедневно ресинтезируется около 400 г белков.

Распад белков до аминокислот происходит путем гидролиза - присоединяется H 2 O по месту расщепления пептидных связей под действием протеолитических ферментов. Протеолитические ферменты называются ПРОТЕИНАЗАМИ или ПРОТЕАЗАМИ. Существует много разных протеиназ. Но по структуре каталитического центра все протеиназы делят на 4 класса:

1. СЕРИНОВЫЕ ПРОТЕИНАЗЫ - у них в каталитическом центре содержатся аминокислоты серин и гистидин.

2. ЦИСТЕИНОВЫЕ ПРОТЕИНАЗЫ - в каталитическом центре цистеин и гистидин.

3. КАРБОКСИЛЬНЫЕ ПРОТЕИНАЗЫ (АСПАРТИЛЬНЫЕ) в каталитическом центре содержат 2 радикала аспарагиновой кислоты. К ним относится пепсин.

4. МЕТАЛЛОПРОТЕИНАЗЫ. В каталитическом центре этих ферментов находятся гистидин, глутаминовая кислота и ион металла (карбоксипептидаза ”А”, коллагеназа содержат Zn 2+).

Все протеиназы различаются по механизму катализа и по условиям среды, в которой они работают. В каждой молекуле белка имеются десятки, сотни и даже тысячи пептидных связей. Протеиназы разрушают не любую пептидную связь, а строго определенную.

Как происходит узнавание "своей" связи? Это определяется структурой адсорбционного центра протеиназ. Пептидные связи отличаются только тем, какие аминокислоты участвуют в их образовании.

Структура адсорбционного центра такова, что она позволяет распознать радикал той аминокислоты, СООН-группа которой образует эту связь. В некоторых случаях для субстратной специфичности имеет значение аминокислота, аминогруппа которой образует гидролизуемую связь. А иногда обе аминокислоты имеют значение для определения субстратной специфичности фермента.

С практической точки зрения все протеиназы по их субстратной специфичности могут быть разделены на 2 группы:

1. МАЛОСПЕЦИФИЧНЫЕ ПРОТЕИНАЗЫ

2. ВЫСОКОСПЕЦИФИЧНЫЕ ПРОТЕИНАЗЫ

МАЛОСПЕЦИФИЧНЫЕ ПРОТЕИНАЗЫ :

У них адсорбционный центр имеет простое строение, их действие зависит только от тех аминокислот, которые формируют пептидную связь, гидролизуемую данным ферментом.

Пепсин

Это фермент желудочного сока. Синтезируется в клетках слизистой оболочки желудка в форме неактивного предшественника - пепсиногена. Превращение неактивного пепсиногена в активный пепсин происходит в полости желудка. При активации отщепляется пептид, закрывающий активный центр фермента. Активация пепсина происходит под действием двух факторов:

а) соляной кислоты (HCl)

б) уже образовавшегося активного пепсина - это называется аутокатализом.

Пепсин является карбоксильной протеиназой и катализирует гидролиз связей, образованных аминокислотами фенилаланином (Фен) или тирозином (Тир) в R 2 -положении (смотрите предыдущий рисунок), а также связь Лей-Глу . pH-оптимум пепсина равен 1.0-2.0 рН, что соответствует рН желудочного сока.

Реннин

В желудочном соке грудных детей переваривание белков осуществляет фермент РЕННИН, который расщепляет белок молока казеин. Реннин похож по строению на пепсин, но его рН-оптимум соответствует рН среды желудка грудного ребенка (рН=4.5). Реннин отличается от пепсина также механизмом и специфичностью действия.

Химотрипсин.

Синтезируется в поджелудочной железе в форме неактивного предшественника - химотрипсиногена. Активируется химотрипсин активным трипсином и путем аутокатализа. Разрушает связи, образованные карбоксильной группой тирозина (Тир), фенилаланина (Фен) или триптофана (Три) - в положении R 1 , либо крупными гидрофобными радикалами лейцина (лей), изолейцина (иле) и валина (вал) в том же положении R 1 (смотрите рисунок) .

В активном центре химотрипсина имеется гидрофобный карман, в который помещаются эти аминокислоты.

Трипсин

Синтезируется в поджелудочной железе в форме неактивного предшественника - трипсиногена. Активируется в полости кишечника ферментом энтеропептидазой при участии ионов кальция, а также способен к аутокатализу. Гидролизует связи, образованные положительно заряженными аминокислотами аргинином (Арг) и лизином (Лиз) в R 1 -положении . Его адсорбционный центр похож на адсорбционный центр химотрипсина, но в глубине гидрофобного кармана есть отрицательно заряженная карбоксильная группа.

Эластаза.

Синтезируется в поджелудочной железе в виде неактивного предшественника - проэластазы. Активируется в полости кишечника трипсином. Гидролизует пептидные связи в R 1 -положении, образованные глицином, аланином и серином .

Все перечисленные малоспецифичные протеиназы относятся к ЭНДОПЕПТИДАЗАМ, потому что гидролизуют связь внутри молекулы белка, а не на концах полипептидной цепи. Под действием этих протеиназ полипептидная цепь белка расщепляется на крупные фрагменты. Затем на эти крупные фрагменты действуют ЭКЗОПЕПТИДАЗЫ, каждая из которых отщепляет одну аминокислоту от концов полипептидной цепи.

ЭКЗОПЕПТИДАЗЫ.

Карбоксипептидазы.

Синтезируются в поджелудочной железе. Активируются трипсином в кишечнике. Являются металлопротеинами. Гидролизуют пептидные связи на “С”-конце молекулы белка . Бывают 2-х видов: карбоксипептидаза “А” и карбоксипептидаза “В”.

Карбоксипептидаза “А” отщепляет аминокислоты с ароматическими (циклическими) радикалами, а карбоксипептидаза “В” отщепляет лизин и аргинин.

Аминопептидазы.

Синтезируются в слизистой оболочке кишечника, активируются трипсином в кишечнике. Гидролизуют пептидные связи на “N”-конце молекулы белка . Существуют 2 таких фермента: аланинаминопептидаза и лейцинаминопептидаза.

Аланинаминопептидаза отщепляет только аланин, а лейцинаминопептидаза - любые “N”-концевые аминокислоты.

ДИПЕПТИДАЗЫ

Расщепляют пептидные связи только в дипептидах.

Все описанные ферменты относятся к МАЛОСПЕЦИФИЧНЫМ ПРОТЕИНАЗАМ. Они характерны для желудочно-кишечного тракта.

Действуя вместе, они вызывают тотальный протеолиз белковой молекулы до отдельных аминокислот, которые затем всасываются в кровь из кишечника.

Всасывание аминокислот происходит путем вторично-активного транспорта вместе с Na + (подобно глюкозе).

Часть аминокислот не всасывается и подвергается процессам гниения с участием микрофлоры в толстом кишечнике. Продукты гниения аминокислот могут всасываться и попадают в печень, где подвергаются реакциям обезвреживания. Подробнее об этом - смотрите учебник Коровкина, стр. 333-335.

Малоспецифичные протеиназы встречаются и в лизосомах.

ФУНКЦИИ ЛИЗОСОМАЛЬНЫХ МАЛОСПЕЦИФИЧНЫХ ПРОТЕИНАЗ:

1. Обеспечивают расщепление чужеродных белков, попавших в клетку.

2. Обеспечивают тотальный протеолиз собственных белков клетки (особенно при гибели клетки).

Таким образом, тотальный протеолиз - один из общих биологических процессов, необходимый не только для внутриклеточного пищеварения, но и для обновления стареющих белков клетки, и организма в целом. Но этот процесс находится под строгим контролем, который обеспечивают специальные механизмы, защищающие белки от избыточного действия протеаз.

МЕХАНИЗМЫ, ЗАЩИЩАЮЩИЕ БЕЛКИ ОТ ДЕЙСТВИЯ ПРОТЕИНАЗ:

1. Защита типа "клетки" - пространственная изоляция протеиназ от тех белков, на которые они могут подействовать. Внутриклеточные протеиназы сосредоточены внутри лизосом и отделены от белков, которые они могут гидролизовать.

2. Защита типа "намордника" . Заключается в том, что протеиназы вырабатываются в виде неактивных предшественников (проферментов): например, пепсиноген (в желудке) трипсиноген и химотрипсиноген (в pancreas) Во всех этих предшественниках активный центр фермента прикрыт фрагментом полипептидной цепи. После гидролиза определенной связи эта цепочка отрывается и фермент становится активным.

3. Защита типа “кольчуги“ . Защита белка-субстрата путем включения в его молекулу каких-либо химических структур (защитные группы, прикрывающие пептидные связи). Протекает тремя способами:

а) Гликозилирование белка . Включение в белок углеводных компонентов. Образуются гликопротеины. Эти углеводные компоненты выполняют некоторые функции (например, рецепторную функцию). Во всех гликопротеинах с помощью углеводной части обеспечивается также защита от действия протеиназ.

б) Ацетилирование аминогрупп . Присоединение остатков уксусной кислоты к свободным аминогруппам в молекуле белка.

Если протеиназа узнает место своего действия по наличию аминогруппы, то появление ацетильного остатка препятствует действию протеиназы на белок.

В) Амидирование карбоксильной группы. Защитный эффект аналогичен.

Г) Фосфорилирование радикалов серина или тирозина

4. Защита типа “сторожа“. Это защита белков с помощью эндогенных ингибиторов протеиназ.

Эндогенные ингибиторы протеиназ - это особые белки или пептиды, которые специально вырабатываются в клетке и могут взаимодействовать с протеиназой и блокируют ее. Хотя в связывании участвуют слабые типы связей, связывание протеиназы с эндогенным ингибитором прочное. Субстраты с высоким сродством к данной потеиназе могут вытеснять ингибитор из его комплекса с протеиназой, и тогда она начинает действовать. В плазме крови много таких ингибиторов и если появляется протеиназы, то ингибиторы их обезвреживают.

Обычно такие ингибиторы протеиназ являются специфическими по отношению к определенному классу протеиназ.

Белки являются незаменимым компонентом пищи. В отличие от белков - углеводы и жиры не являются незаменимыми компонентами пищи. Ежесуточно потребляется около 100 граммов белков взрослым здоровым человеком. Пищевые белки – это главный источник азота для организма. В смысле экономическом белки являются самым дорогим пищевым компонентом. Поэтому очень важным в истории биохимии и медицины было установление норм белка в питании.

В опытах Карла Фойта впервые были установлены нормы потребления пищевого белка - 118г/сутки, углеводов - 500г/сутки, жиров 56г/сутки. М.Рубнер первым определил, что 75% азота в организме находится в составе белков. Он составил азотистый баланс (определил, сколько азота человек теряет за сутки и сколько азота прибавляется).

У взрослого здорового человека наблюдается азотистое равновесие – «нулевой азотистый баланс» (суточное количество выведенного из организма азота соответствует количеству усвоенного).

Положительный азотистый баланс (суточное количество выведенного из организма азота меньше, чем количество усвоенного). Наблюдается только в растущем организме или при восстановлении белковых структур (например, в периоде выздоровления при тяжелых заболеваниях или при наращивании мышечной массы).

Отрицательный азотистый баланс (суточное количество выведенного из организма азота выше, чем количество усвоенного). Наблюдается при белковой недостаточности в организме. Причины: недостаточное количество белков в пище; заболевания, сопровождающиеся повышенным разрушением белков.

В истории биохимии проводились эксперименты, когда человека кормили только углеводами и жирами («безбелковая диета»). В этих условиях измеряли азотистый баланс. Через несколько дней выведение азота из организма уменьшалось до определенного значения, и после этого поддерживалось длительное время на постоянном уровне: человек терял ежесуточно 53 мг азота на кг веса в сутки (примерно 4 г азота в сутки). Это количество азота соответствует примерно 23-25г белка в сутки. Эту величину назвали "КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ". Затем ежедневно добавляли в рацион 10г белка, и выведение азота при этом повышалось. Но все равно наблюдался отрицательный азотистый баланс. Тогда в пищу стали добавлять 40-45-50 граммов белка в сутки. При таком содержании белка в пище наблюдался нулевой азотистый баланс (азотистое равновесие). Эту величину (40-50 граммов белка в сутки) назвали ФИЗИОЛОГИЧЕСКИЙ МИНИМУМ БЕЛКА.

В 1951 году были предложены нормы белка в питании: 110-120 граммов белка в сутки.

В настоящее время установлено, что 8 аминокислот являются незаменимыми. Суточная потребность в каждой незаменимой аминокислоте - 1-1.5 гр., а всего организму необходимо 6-9 граммов незаменимых аминокислот в сутки. Содержание незаменимых аминокислот в разных пищевых продуктах различается. Позтому физиологический минимум белка может быть разным для разных продуктов.

Сколько необходимо съедать белка для поддержания азотистого равновесия? 20 гр. яичного белка, либо 26-27 гр. белков мяса или молока, либо 30 гр. белков картофеля, либо 67 гр. белков пшеничной муки. В яичном белке содержится полный набор аминокислот. При питании растительными белками необходимо гораздо больше белка для восполнения физиологического минимума. Потребности в белке у женщин (58 граммов в сутки) меньше, чем у мужчин (70 г белка в сутки) – данные нормативов США.