Что такое дебит скважины и как его определить. Кислотность желудочного сока

Желудочное и дуоденальное содержимое.

Исследование основных показателей желудочного сока

Желудочный сок - продукт внешнесекреторной и экскреторной деятельности желез желудка, имеет сложный неорганический (вода, соляная кислота, хлориды, сульфаты, фосфаты, бикарбонаты, аммиак, натрий, калий, кальций, магний, водород) и органический (представлен веществами белковой и небелковой природы) состав, отличаясь от других пищеварительных секретов выраженной кислой реакцией, особенностями ферментов и высокомолекулярных соединений. Объем и состав его варьируют в зависимости от соотношения нервных и гуморальных факторов, вида и силы раздражителя, видовых и возрастных особенностей, давления в полости желудка.

В сутки у человека выделяется около 2–2,5 л сока - бесцветной жидкости (относительная плотность 1,002–1,007) без запаха. Его цвет и свойства меняются от присутствия слюны, желчи, крови, панкреатического и кишечного соков. При низкой кислотности и нарушении эвакуации он может приобрести запах за счет остатков забродившей пищи. Желудочный сок обладает выраженным бактерицидным и бактериостатическим свойствами, в происхождении которых ведущее значение имеет соляная кислота (HCl). Отличается также зависимость степени бактерицидности нейтрального или слабощелочного сока от интенсивности желудочного лейкопедеза. Основным энзиматическим процессом в полости желудка является начальный гидролиз белков. В клинической практике чаще всего проводятся лабораторные диагностические исследования желудочного содержимого с определением в нем: показателей кислотной секреции и активности ферментов; показателей цитопротекции; микробной флоры желудка.

Методы желудочного зондирования

Методы функционального исследования секреции желудка можно разделить на две группы:
1. Зондовые:
аспирационный, фракционный;
внутрижелудочной перфузии;
внутрижелудочного титрования;
внутрижелудочной рН-метрии.
2. Беззондовые:
проба с метиленовым синим (проба Сали);
исследования с применением ионообменных смол;
ацидотест;
определение уропепсина;
метод радиотелеметрии;
определение секреции с помощью индикатора конго красного;
тест с азуром А;
определение сывороточных пепсиногенов I группы.

Беззондовые методы в настоящее время применяются редко, поскольку существуют более информативные, безопасные и простые методы, такие как аспирационный, фракционный с пентагастриновой стимуляцией и внутрижелудочной рН-метрии. Исследования кислотопродуцирующей функции желудка в клинике стали возможны после предложения для зондирования желудка специального зонда и стимуляторов секреции соляной кислоты. Первоначально предлагались энтеральные пробные завтраки: мясной бульон; капустный сок; раствор кофеина.

Однако получаемые различными исследователями результаты значительно отличались друг от друга, что в конечном итоге заставило отказаться от применения этих пробных завтраков. Было открыто стимулирующее действие гистамина на секреторную функцию желудка. В настоящее время в клинической практике широко распространены субмаксимальный гистаминовый тест (0,008 мг/кг гистамина гидрохлорида подкожно) и более информативный максимальный гистаминовый тест (0,025 мг/кг гистамина гидрохлорида подкожно). Недостатком гистамина является возможность возникновения побочных эффектов (сосудистых реакций). Максимальная секреторная реакция желудка отмечается и при подкожном введении 6 мкг/кг С-концевого тетрапептида гастрина-пентагастрина, который практически не вызывает побочных реакций.

Аспирационный фракционный метод зондирования желудка. Фракционное аспирационное исследование секреции желудка в настоящее время проводится практически однотипно во всех клинических лабораториях и ориентировано на интегральный показатель - выработку соляной кислоты в единицу времени с учетом объема секреции.

Принцип зондирования. Получение чистого желудочного секрета путем активной аспирации на различных этапах секреторной деятельности желудка. Оборудование:
Тонкий зонд (полая резиновая трубка диаметром 4–5 мм, длиной около 1,5 м с метками на расстоянии 50–55 см и 70–75 см от слепого конца зонда).
Пробирки.
Штативы для пробирок.
Лоток.
Воронка.
Шприц вместимостью 20 мл, или водоструйный насос стандартной конструкции, или аспирационный вакуум-отсос.
Один из активных стимуляторов желудочной секреции.

Ход зондирования. Зондирование лучше проводить в специальном помещении. Перед исследованием секреторной функции желудка необходимо отменить медикаментозные препараты не менее чем за 24 часа до исследования и проводить его обычно утром после 14-часового голодания. Конец тонкого зонда помещают в глубине глотки на корень языка и предлагают сделать несколько неторопливых глотательных движений, благодаря чему зонд продвигается по пищеводу. Введение зонда до первой метки свидетельствует о том, что внутренний конец его находится в области дна желудка, а продвижение зонда до второй метки указывает на то, что он достиг привратника желудка. Необходимым условием полного извлечения желудочного содержимого является введение зонда на глубину, рассчитанную следующим образом: рост пациента в сантиметрах минус 100.

После введения зонда полностью извлекают содержимое желудка натощак, что составляет отдельную порцию для исследования. Затем в течение часа собирают секрет желудка, выделяющийся в результате стимулирующего влияния зонда и аспирации - базальная секреция (basal acid output, или ВАО). Потом начинают активную стимуляцию работы слизистой оболочки желудка введением энтерального или парентерального стимулятора, после чего желудочный сок собирают также в течение часа - стимулированная, или максимальная секреция (maximal acid output, или МАО). Аспирацию базального и стимулированного сока проводят в течение каждых 15 минут первого и второго часа зондирования. Таким образом, за каждый час получают 4 порции желудочного сока, которые составляют так называемое часовое напряжение соответствующего периода желудочной секреции. Полученные порции желудочного сока подвергают физико-химическому исследованию. Всего исследуют 9 порций: порция, полученная натощак, затем 4 порции в течение каждых 15 минут первого часа зондирования и 4 порции в течение второго часа зондирования.

Исследование желудочного содержимого

Исследование желудочного сока включает определение физических свойств, химическое и микроскопическое исследование.

Физические свойства. Количество. Измеряют каждую порцию желудочного сока и высчитывают его объем во все фазы секреторного цикла. Объем сока натощак не должен превышать 50 мл, в условиях базальной секреции объем сока за час может быть 50–100 мл, в фазе стимулированной секреции в ответ на пищевой раздражитель - 50–110 мл, на субмаксимальную стимуляцию гистамином 100–140 мл. Часовой объем желудочного сока в ответ на стимуляцию с применением максимальных доз гистамина по Кею составляет 180–220 мл.

Запах. У нормального желудочного содержимого запах отсутствует либо слегка кисловатый. При снижении содержания соляной кислоты или полном ее отсутствии желудочное содержимое приобретает своеобразный запах масляной, молочной или уксусной кислоты за счет образующихся продуктов брожения. Если в желудке развиваются гнилостные процессы вследствие гниения белка или распада раковой опухоли, желудочный сок приобретает гнилостный запах. Гнилостный запах может свидетельствовать и о нарушении эвакуации из желудка.

Цвет. Нормальное желудочное содержимое бесцветно. В присутствии желчи при ахилии, оно имеет желтый цвет, при наличии соляной кислоты - зеленый за счет того, что в кислой среде билирубин желчи окисляется в биливердин. Изменяется окраска желудочного содержимого и в присутствии крови. Под влиянием соляной кислоты гемоглобин крови превращается в солянокислый гематин, придавая желудочному содержимому более или менее интенсивную коричневую окраску. При отсутствии в желудочном содержимом соляной кислоты цвет его при примеси крови красный. Интенсивность окраски зависит от степени кровотечения.

Слизь. В норме присутствует в желудочном соке в небольшом количестве. Увеличение содержания слизи наблюдается при гастрите и других поражениях слизистой оболочки желудка. Слизь, плавающая на поверхности желудочного сока, представляет собой слюну, мокроту либо содержимое носовой части глотки, она насыщена воздухом, легкая, в виде грубых хлопьев и комков, диагностического значения не имеет.

Примеси. Остатки пищевых масс, которые могут быть обнаружены, говорят о нарушении эвакуации из желудка.

Химическое исследование. Химическое исследование желудочного содержимого дает возможность получить представление о кислото-, ферменто-, белковообразующей и других функциях желудка.

Исследование кислотообразующей функции желудка. Общая кислотность желудочного сока состоит из трех кислых валентностей: свободной (диссоциированной) соляной кислоты, связанной соляной кислоты и кислотного остатка. Под свободной кислотностью, концентрацией ионов водорода [Н+], следует понимать концентрацию свободной, полностью диссоциированной соляной кислоты.

Под связанной кислотностью следует понимать концентрацию ионов водорода, связанных карбоксильными группами белков и пептидов. В состав кислотного остатка входят органические кислоты (масляная, молочная, уксусная) и кислореагирующие фосфаты. Наиболее распространенный способ измерения кислотности желудочного сока - титрование его сильной щелочью (0,1 н раствор NaOH) в присутствии индикаторов, меняющих окраску в зависимости от рН среды.

Для определения общей кислотности желудочного сока применяется индикатор фенолфталеин, который в кислой среде остается бесцветным, а в щелочной, при рН 8,2–10,0, приобретает розовый цвет. Индикатор диметиламиноазобензол оранжевого цвета в присутствии свободной соляной кислоты при рН 2,4–4,0 становится красным, а при отсутствии ее - оранжевым или желтым. Индикатор ализаринсульфоновокислый натр, имеющий вишневую окраску, в кислой среде приобретает желтый цвет, а в зоне рН 4,3–6,3 - фиолетовый. В присутствии этого индикатора оттитровываются свободная соляная кислота и кислотный остаток желудочного содержимого.

Если индикатор диметиламиноазобензол при добавлении к желудочному соку изменяет свой цвет на красный, для титрования применяют метод Михаэлиса. Если диметиламиноазобензол меняет свою окраску на желтую, желудочный сок необходимо титровать по методу Тепфера. При определении кислотности желудочного сока титрационными методами нужно строго следить за изменением окраски в стаканчиках и точно отмечать уровень щелочи в бюретке.

Метод Михаэлиса. Реактивы: 1%-й спиртовой раствор фенолфталеина, 0,5%-й спиртовый раствор диметиламиноазобензола, 0,1 н раствор едкого натра.

Посуда и оборудование. Бюретки емкостью 25, 50 или 100 мл, штатив Бунзена, химические стаканчики емкостью 50 мл, воронки, пипетки градуированные емкостью 5 мл или 10 мл.

Ход исследования. В химический стакан отмеривают 5 мл профильтрованного через 2 слоя марли желудочного сока, затем вносят 1–3 капли раствора диметиламиноазобензола и 1–2 капли раствора фенолфталеина. Титруют 0,1 н. раствором едкого натра при постоянном помешивании. Предварительно отмечают уровень 0,1 н раствора едкого натра в бюретке (I уровень).

Определяют следующие величины:
количество щелочи, израсходованное на титрование желудочного сока от первоначального красного цвета до оранжевого (II уровень);
количество щелочи, израсходованное на титрование от оранжевого до лимонно-желтого (III уровень);
количество щелочи, затраченное на титрование от красного до стойкого розового цвета (IV уровень).

Расчет. Количество щелочи, пошедшей на титрование до первого изменения окраски (разница между II и I уровнем), определяет концентрацию свободной HCl в желудочном соке. Количество щелочи, пошедшей на все титрование, от красной окраски диметиламиноазобензола в резко кислой среде до красной окраски фенолфталеина в щелочной среде, т. е. разница между IV и I уровнем, соответствует общей кислотности. Количество щелочи, пошедшей на титрование до уровня, означающего среднее арифметическое между III и IV уровнем, соответствует концентрации всей HCl (т. е. сумме свободной и связанной), а концентрацию связанной HCl находят по разности между всей HCl и свободной HCl. Разность между общей кислотностью и всей HCl называют кислотным остатком. Таким образом, все кислореагирующие вещества определяют в одной порции.

Пример расчета. Уровень I в бюретке - 4, уровень II - 5,4 (желто-оранжевая окраска), уровень III - 6 (лимонно-желтый цвет), уровень IV - 6,8 (стойкий розовый). Среднее арифметическое между III и IV уровнем - 6,4. Для титрования было взято 5 мл желудочного сока, расчет ведется на 100 мл, поэтому количество щелочи, потраченной на разных этапах титрования, умножают на 20 (если титруют 10 мл желудочного сока, то умножают соответственно на 10).

Свободная HCl: 5,4–4=1,4х20=28
Общая кислотность: 6,8–4=2,8х20=56
Сумма свободной и связанной HCl: 6,4–4=2х20=48
Связанная HCl: 48–28=20
Кислотный остаток: 56–48=8

Унифицированное определение кислотности методом Тепфера. Реактивы:
1%-й спиртовый раствор фенолфталеина. Интервал перехода окраски при рН 8,2–10,0.
0,5% спиртовый раствор диметиламиноазобензола. Интервал перехода окраски при рН 2,9–4,0.
1%-й водный раствор ализаринсульфоновокислого натра. Интервал перехода окраски при рН 4,3–6,3.
0,1 н раствор едкого натра.

Ход исследования. В 2 стакана отмеривают по 5 мл профильтрованного желудочного сока. В первую порцию вносят по 2 капли диметиламиноазобензола и фенолфталеина и определяют концентрацию свободной HCl и общую кислотность. Во вторую порцию желудочного сока прибавляют каплю ализаринсульфоновокислого натра и титруют до перехода желтой окраски в слабо-фиолетовую. В зоне перехода этого индикатора нейтрализуются кислореагирующие вещества, кроме связанной HCl, которую находят по разности между объемом щелочи, пошедшей на нейтрализацию всех кислых валентностей желудочного сока (титрование с фенолфталеином), и объемом, пошедшим на титрование с ализаринсульфоновокислым натром. Все полученные величины умножают на 20 для перерасчета на 100 мл желудочного сока.

В тех случаях, когда объем полученного желудочного сока небольшой, применяют микрохимический способ определения кислотности. Оборудование. Микробюретка. Реактивы те же, что и для метода Михаэлиса.

Ход исследования. В стакан для титрования помещают 1 мл профильтрованного сока и 5 мл дистиллированной воды. Титруя из микробюретки, определяют концентрацию свободной HCl и общую кислотность по методу Михаэлиса.

Расчет. Содержание свободной HCl равно количеству щелочи, пошедшей на титрование до желто-оранжевой окраски (цвет семги) диметиламиноазобензола, умноженному на 100. Общей кислотности соответствует количество щелочи, пошедшей на все титрование, уменьшенное на 0,05 (индикаторная поправка) и умноженное на 100. При низкой кислотности индикаторная поправка должна быть равна 0,03.

Способы выражения кислотности. Традиционным способом выражения кислотности желудочного сока являются титрационные единицы (ТЕ) - объем 0,1 н едкого натра, необходимый для нейтрализации кислых валентностей в 100 мл желудочного сока. Последние годы концентрацию HCl в желудочном соке более принято выражать в миллимолях на 1 л желудочного сока. Известно, что 1 мл 0,1 н раствора едкого натра эквивалентен 1 мл 0,1 н раствора HCl (1 ТЕ), или 0,1 ммоль HCl, отсюда концентрация HCl в 100 мл сока, выраженная в миллимолях HCl, в 10 раз меньше, чем в титрационных единицах.

Пример. Если концентрация HCl 40 ТЕ, то это соответствует концентрации 4 ммоль в 100 мл сока, или 40 ммоль в 1 л сока. Таким образом, числовое значение концентрации HCl, выраженное в титрационных единицах, совпадает с числовым значением концентрации HCl, выраженным в миллимолях на 1 л (40 ТЕ=40 ммоль/л HCl).

Дебит соляной кислоты. Этот показатель отражает общее количество соляной кислоты, выделенной желудком за определенный отрезок времени. Обычно дебит определяется за 1 час и выражается в миллимолях (1 ммоль = 36,5 мг соляной кислоты).

Различают: Дебит свободной HCl; Связанной HCl. HCl (кислотная продукция). Последний показатель определяют, исходя из цифр общей кислотности. Дебит-час определяют только при условии получения всего желудочного содержимого за час. Величину кислотовыделения вычисляют по двум формулам, которые несколько отличаются друг от друга в зависимости от выражения дебита (в миллиграммах или в миллимолях) HCl.

Для расчета дебита HCl в миллиграммах применяют следующую формулу: D=V1 х E1 х 0,0365+V2 х E2 х 0,0365+..., где D - дебит HCl (мг); V - объем порции желудочного сока (мл); Е - концентрация HCl (ТЕ); 0,0365 - количество миллиграммов HCl в 1 мл сока при концентрации ее, равной 1 ТЕ.

Число слагаемых определяется числом порций за время исследования. Для расчета дебита HCl в миллимолях (для HCl эти величины совпадают) применяют другую формулу: D = ((V1 х E1)/1000)+((V2 х E2)/1000)+ ..., где D - дебит HCl (ммоль), а остальные обозначения те же, что и в предыдущей формуле.

Дебит соляной кислоты ">

Номограмма для определения дебита соляной кислоты.

Для облегчения подсчета дебит-часа HCl можно пользоваться номограммой. Линейкой соединяют нанесенные на противоположных ветвях кривой цифры, соответствующие объему и кислотности данной порции желудочного сока. В месте пересечения линейки с вертикальной линией находят значение дебита, выраженное в миллиграммах HCl или в миллимолях HCl.

Нормальные показатели кислотности. Базальная секреция.
Часовой объем - 50–100 мл

Свободная соляная кислота - 20–40 ммоль/л
Связанная соляная кислота - 10–20 ммоль/л

Дебит-час HCl - 1,5–5,5 ммоль/ч
Дебит-час свободной HCl - 1,0–4,0 ммоль/ч
Секреторная реакция желудка на пищевые пробные раздражители
Часовой объем - 50–110 мл
Общая кислотность - 40–60 ммоль/л
Свободная HCl - 20–40 ммоль/л
Связанная HCl - 10–20 ммоль/л
Кислотный остаток - 2–8 ммоль/л
Дебит-час HCl - 1,5–6,0 ммоль/ч
Дебит-час свободной HCl - 1,0–4,5 ммоль/ч

Секреторная реакция желудка на субмаксимальную гистаминовую стимуляцию.
Часовой объем - 100–140 мл
Общая кислотность - 80–100 ммоль/л
Свободная HCl - 65–85 ммоль/л
Связанная HCl - 12–23 ммоль/л
Кислотный остаток - 3,0–12 ммоль/л
Дебит-час HCl - 8,0–14,0 ммоль/ч
Дебит-час свободной HCl - 6,5–14,0 ммоль/ч

Секреторная реакция желудка на максимальную гистаминовую стимуляцию.
Часовой объем - 180–220 мл
Общая кислотность - 100–120 ммоль/л
Свободная HCl - 90–110 ммоль/л
Связанная HCl - 10–15 ммоль/л
Дебит-час HCl - 18–26 ммоль/ч
Дебит-час свободной HCl - 16–24 ммоль/ч

Метод внутрижелудочной перфузии. Одним из существенных недостатков аспирационного фракционного метода является невозможность аспирации сока. При соблюдении всех правил исследования удается получить не более 46,3–85% секретированного желудочного сока. В связи с этим предложен метод внутрижелудочной перфузии. Принцип метода основан на определении полноты аспирации каждой порции желудочного сока и вычислении величины кислотопродукции с учетом количества неаспирированного секрета.

Метод внутрижелудочного титрования. Аспирационные методы исключают такой важный компонент секреторной реакции на прием пищи, как растяжение желудка. Для исключения этого фактора был разработан способ внутрижелудочного титрования. Принцип метода заключается в титровании продуцируемой желудком кислоты щелочью непосредственно в полости желудка. Внутрижелудочное титрование используется для изучения секреторной реакции желудка на прием пищи или каких-либо ее ингредиентов.

Внутрижелудочная рН-метрия. В клинической практике активно применяется такой метод исследования кислотообразующей функции желудка, как внутрижелудочная рН-метрия с использованием оригинальных одно-, двух- и трехоливных рН-зондов конструкции Е.Ю. Линара. Преимуществом рН-метрии является возможность непрерывной одновременной регистрации рН в теле, антральном отделе желудка и в двенадцатиперстной кишке в условиях базальной и стимулированной (гистамином) желудочной секреции.

Беззондовые методы исследования желудочной секреции. Проба Сали. Основана на том, что только желудочный сок, содержащий соляную кислоту и пепсин, способен переваривать соединительную ткань (кетгут).

На небольшой кусочек кондомной резины высыпают 0,1 г метиленового синего, резину перевязывают распаренным кетгутом №5. Мешочек отмывают от остатков метиленового синего, попавшего на его поверхность, а затем повторно погружают в стаканчик с чистой водой для проверки герметизации. Если вода не окрашивается в синий цвет, мешочек завязан правильно и готов к употреблению.

Методика. Больной проглатывает натощак десмоидный мешочек, затем съедает завтрак. Через 3,5 и 20 часов после этого собирают три порции мочи. Определяют время и интенсивность окраски мочи метиленовым синим.

Оценка результатов. При гиперацидном состоянии окрашены все три порции мочи, причем 2-я и 3-я - в интенсивно синий цвет; при нормальной секреции 1-я порция не окрашена, 2-я окрашена в бледно-зеленый цвет; 3-я окрашена более интенсивно. Незначительное окрашивание только 3-й порции мочи наблюдается при гипоацидном состоянии.

Анацидное состояние характеризуется отсутствием окраски во всех трех порциях мочи больного. Если желудочное содержимое резко кислое (рН 1,5 и ниже), окраска мочи тоже отсутствует. Пепсиноген превращается в пепсин при рН 1,5–3. Если рН желудочного сока менее 1,5, в нем содержится только пепсиноген, который не способен к процессу переваривания. При получении по десмоидной пробе анацидного состояния рекомендуется повторить исследование, дав проглотить больному десмоидный мешочек после еды, т. е. на высоте желудочной секреции.

Проба с ацидотестом. Ацидотест состоит из таблеток кофеин-бензоата натрия и тест-драже (ВНР). Можно заменить таблетки кофеин-бензоата натрия в тесте контрольным завтраком. Состав завтрака: каша рисовая, 100 г мяса, 150 г хлеба, стакан чая.

Методика. После контрольного завтрака больному дают проглотить тест-драже, предварительно собрав его мочу в бутыль (контрольная моча). Через 1,5 часа снова собирают мочу и обе бутыли направляют в лабораторию. Контрольную и вторую порции мочи разбавляют водой до 200 мл; из каждой разбавленной порции наливают в пробирку 5 мл мочи, куда затем добавляют 5 мл 25%-й соляной кислоты.

Оценка результатов. Если в желудочном соке содержится свободная соляная кислота, то во второй пробирке появляется алое или розовое окрашивание. Ориентировочно кислотность желудочного сока можно определить по интенсивности окраски мочи во второй пробирке. Окраску в пробирке сравнивают с окраской колориметрической шкалы, приложенной к ацидотесту.

Исследование ферментообразующей функции

Унифицированный метод Туголукова. Принцип. Определение протеолитической активности желудочного сока по количеству расщепленного белка. Реактивы: 2%-й раствор сухой плазмы на 0,1 н растворе HCl. 10%-й раствор трихлоруксусной кислоты.

Оборудование.
Центрифужные пробирки (точно градуированные).
Пробирки химические.
Пипетки вместимостью 1, 2 и 10 мл.
Микропипетки вместимостью 0,1 мл.
Центрифуга.
Термостат.

Ход исследования. Желудочный сок, профильтрованный через бумажный фильтр, разводят в 100 раз (9,9 мл воды и 0,1 мл желудочного сока, отмеренного микропипеткой). В одну градуированную центрифужную пробирку помещают 1 мл разведенного сока (опыт), в другую - 1 мл предварительно прокипяченного разведенного сока (контроль). В обе пробирки добавляют по 2 мл 2%-го раствора сухой плазмы и ставят их в термостат при 37°С на 20 час. По прошествии этого времени в каждую пробирку приливают по 2 мл 10%-й трихлоруксуной кислоты, перемешивают стеклянной палочкой до однородной суспензии и центрифугируют 10 минут при 1500 об/мин.

Расчет. По разнице величин осадка в контроле и опыте определяют степень переваривания белка с последующим перерасчетом на количество пепсина. Показатель переваривания субстрата вычисляют по формуле: M = (A–B) x (40/A), где М - показатель переваривания; А - объем осадка в контроле; В - объем осадка в опыте; 40 - постоянная величина, установленная экспериментальным путем.

Для более объективной оценки кислотообразующей функции желудка вычисляют абсолютную кислотную продукцию за единицу времени, обычно за 1 ч (дебит-час). В зависимости от используемого при расчете показателя кислотности различают дебит-час свободной соляной кислоты (количество свободной соляной кислоты, выделившееся за 1 ч) и дебит-час соляной кислоты (общая кислотная продукция за 1 ч). Считают, что последний показатель, определяемый на основании величин общей кислотности, наиболее правильно отражает кислотообразующую функцию желудка.

Дебит-час (Д-Ч) выражают в миллимолях (или в миллиграммах) и вычисляют по формуле: где Y- объем порции желудочного содержимого, мл; Е- концентрация свободной соляной кислоты, или общая кислотность, титр. ед. (ммоль/л); 0,001 - количество миллимолей соляной кислоты в 1 мл желудочного содержимого при концентрации ее, равной 1 титп. ед.

Для выражения дебита (Д) в миллиграммах каждое из слагаемых умножают на молекулярную массу соляной кислоты (36).

Число слагаемых в формуле равно числу порций желудочного содержимого, полученных за время исследования (при расчете Д-Ч их обычно четыре).

Величина дебит-часа зависит от часового напряжения секреции (объем сока) и величины кислотности, поэтому следует добиваться максимально полного извлечения желудочного содержимого (соблюдение условия непрерывного откачивания сока).

Для облегчения вычисления дебита предложена номограмма. Пользуются номограммой следующим образом: соединяют линейкой цифры на противоположных ветвях кривой, соответствующие объему и кислотности порции желудочного сока, и находят значение дебита в месте пересечения линейки с вертикальной линией.

Общую кислотную продукцию в период базальной секреции обозначают В АО (basal acid output), при максимальной - МАО (maximal acid output), при субмаксимальной стимуляции гистамином - SAO. Показатели МАО зависят от массы обкладочных клеток и поэтому позволяют судить о морфологическом состоянии слизистой оболочки желудка.

Этот показатель отражает содержание щелочных субстанциий, оставшихся не связанными кислотой, и определяется в желудочном содержимом без свободной соляной кислоты. Принцип определения основан на добавлении к желудочному содержимому соляной кислоты до появления качественной реакции на свободную соляную кислоту.

К 5 мл профильтрованного желудочного содержимого добавляют 1 каплю 0,5 % спиртового раствора диметиламидоазобен-зола (в отсутствие свободной соляной кислоты цвет желтый) и титруют 0,1 н. раствором соляной кислоты до появления красного цвета. Израсходованное количество кислоты, умноженное на 20, соответствует дефициту соляной кислоты.

Согласно Ламблингу, дефицит соляной кислоты 40 мл и более указывает на полное прекращение секреции соляной кислоты (абсолютная ахлоргидрия). Если величина дефицита меньше, то соляная кислота выделяется и, соединяясь со слизью, образует кислый муцин - это относительная, или химическая, ахлоргидрия.

Чтобы выбрать мощность насоса и определиться с глубиной его погружения, нужно знать дебит водозаборного источника. В этой статье вы узнаете, что такое деби́т, как его рассчитывать, от каких факторов он зависит и что делать, если производительность водозаборного сооружения снизилась.

Определение дебита

Скважинный дебит - это объем воды, полученной за 1 час, то есть производительность за условный промежуток времени. Производительность водозаборной скважины - это нестабильная величина, которая зависит от ряда факторов, включая состояние и ресурс скважины, время года, плоскородиальное движение грунтовых вод и т.п. Тем не менее, вычислить потенциальные показатели дебита можно.

Динамика, статика, высота водяного столба и другие важные параметры

При расчетах дебита будут использованы следующие геологические термины:

  • Статический уровень - высота столба воды в состоянии покоя (без водозабора);
  • Динамический уровень - высота столба воды, когда приток равен оттоку (во время водозабора);
  • Высота водного столба - расстояние от статического уровня до дна водозаборного ствола;
  • Производительность насоса - объём жидкости, который подается насосом за условную единицу времени.

Чтобы опытным путём определить высоту водного столба, статический и динамический уровень потребуется:

  • погружной насос, например, ЭЦН-60-2100 или западный аналог;
  • шнур или толстая леска с грузом и поплавком;
  • мерная тара;
  • рулетка и секундомер.

Для точности результатов, до начала замеров не пользуйтесь скважиной как минимум 2-3 часа

Иллюстрации Замеры и их описание

Определяем глубину скважины от края оголовка до верхней точки фильтрующего элемента . Если глубина водозаборного ствола неизвестна, опускаем в него шнур с грузом на конце.

Опускаем груз до тех пор, пока он не достанет до песчаного дна, затем руками вытаскиваем шнур и меряем его длину. Из полученного числа вычитаем от 2 до 4 метров на сам фильтр и отстойник.


Определяем статический уровень . Определение предельного статического уровня выполняется при отключенном насосе!

Для определения статического уровня подвешиваем груз и поплавок на леске. Опускаем измеритель в скважину, пока леска не провиснет - значит поплавок коснулся воды. Вытаскиваем леску и меряем, сколько ее ушло в скважину.


Определяем динамический уровень . Для этого, откачивая воду, опускаем в оголовок леску с привязанным грузом и поплавком, и делаем это пока леска не ослабнет. Затем вытягиваем леску и меряем расстояние от того места, когда леска ослабла до поплавка.

Определяем динамический уровень вибрационным насосом . Для замера динамического уровня постепенно вытягиваем насос из скважины и слушаем, когда он начнет работать в критическом режиме (всухую). В этот момент ставим на шланге метку и вытягиваем насос полностью из скважины.

Меряем расстояние от метки до насоса и получаем расстояние до водного зеркала.


Определяем производительность насоса . Опускаем насос в скважину и оставляем его работать в течении часа. Затем заполняем насосом мерную тару, замеряя при этом время по секундомеру.

К примеру, бутыль объемом 5 л заполняется за 20 сек. Соответственно через минуту наберется 15 литров, а за час добыча максимально составит 900 литров = 0,9 м³.

Формула расчёта реального дебита

Теперь, вы знаете, как самому определить параметры для расчета дебита. Значения по результатам замеров вставляем в формулу: V/(Hд - Hст)×L = D

В формуле производительность насоса делим на разницу динамического и статического уровня. Полученное число умножаем на высоту столба воды (расстояние от верхней точки фильтра до статического уровня) и в результате получаем значение дебита.

Обращаю ваше внимание на то, что многие умножают не на расстояние от статического уровня до фильтра, а на общую глубину. Такие расчеты верны только, если скважина совершенная. Если же водозаборная скважина несовершенная и занята фильтром, эти расчёты имеют погрешность в большую сторону, что приводит к неправильному подбору насоса и к снижению его ресурса.

Допустим, проведя замеры, мы получили следующие результаты:

  • производительность насоса - 900 литров/час;
  • динамический уровень - 20 м;
  • статический уровень - 15 м;
  • вершина фильтра - находится на глубине 40 м.

Считаем высоту столба воды: 40 — 15 = 35 м. Вставляем определенные данные в формулу: 0,9 / (20 — 15) × 35 = 4,5. От посчитанного результата отнимаем 20% - это поправка на суточное изменение дебита.

В итоге дебит скважины составит 3,6 м³ в час, но можно посчитать и среднесуточную величину.

Формула расчёта удельного дебита

Увеличение производительности насоса приводит к снижению динамического уровня, а значит и к снижению фактического дебита. Поэтому при расчете, замеры динамики можно выполнять дважды - при разной интенсивности забора питьевой воды.

Определение удельного дебита значится как производительность скважины при снижении уровня воды на метр. Удельный дебит рассчитывается по формуле: Dуд=(V2-V1)/(h2-h1), где

  • V1 - объем воды, откачанный при первом заборе;
  • V2 - объем воды, откачанный при втором заборе;
  • h1 - понижение динамического уровня при первом заборе;
  • h2 - понижение динамического уровня при втором заборе.

Баланс между производительностью и глубиной скважины

Тем не менее, выбирая, на какую глубину устанавливать насос, учтите, что производительность водозаборного сооружения снижается пропорционально удалению от дна. То есть, на глубине 40 метров, где в условной шахте расположен фильтр, выдача воды будет максимальной и по расчетам составит 3,6 м³/час.

Для сравнения, на глубине 28 метров выдача составит 1,8 м³/час, а на глубине равной статическому уровню дебит будет совсем маленький. Чтобы обеспечить оптимальную производительность бытового водопровода насос устанавливаем на глубине от 28 до 35 м.

Родник иссяк - причины и решение проблемы

Снижение производительности скважины может быть вызвано следующими причинами:

  • Засорение . В ходе эксплуатации внутренний объем обсадной трубы и фильтрующий элемент заполняет песочек и выпадение известковых отложений. Решение проблемы - своевременная очистка или замена фильтрующего элемента.
  • Сезонные понижения производительности . Зимой и жарким летом эффективность горизонтального водоносного слоя снижается пропорционально реке озеру и другим внешним водоемам и это нормально. Но, если водозаборное сооружение пробурено грамотно, сезонные понижения незначительные и краткосрочные.
  • Истощенный водоносный горизонт . Проблема актуальна, если буровая компания по выполнении работ собрала все имущество и отбыла, не поставив заказчика в известность о том, что производительность водоносного горизонта может уменьшиться. Решение проблемы - найти другой артезианский горизонт, что для многих непосильная задача или выкопать поверхностный колодец. Но есть способ попроще - монтаж герметичного оголовка.

Повышение производительности скважины

Как с минимальными затратами увеличить производительность скважины? Самый простой способ - это монтаж герметичного оголовка.

Атмосферное давление на уровне моря при температуре 0°С показывает 760 мм ртутного столба. Рассчитаем атмосферное давление для воды зная, что плотность ртути в 13,6 раз выше плотности воды: 0,76 × 13,6 = 10,336 м.

Если наполнить скважину водой и установить герметичный оголовок мы уберем атмосферное давление. В итоге, если статический уровень был равен 15 м, и мы убрали атмосферное давление, которое равно примерно 10 метрам ртутного столба, то статический уровень поднимается до 5 метров от земли. Пропорционально статическому уровню, благодаря герметичному оголовку, повысится динамический уровень и увеличится производительность водозаборного сооружения.

Подведем итоги

Различают виды кислотности желудочного сока:

1.Общая кислотность – это сумма всех кислореагирующих веществ (свободная и связанная НС1, органические кислоты, кислые фосфаты) – в 100 мл желудочного сока. В норме общая кислотность составляет – 40- 60 ТЕ (титрационных единиц).

Кислотность выражается либо в титрационных единицах, либо в мл 0,1 нормального раствора едкого натра, израсходованного на титрование 100 мл желудочного сока, либо в миллимолях: 1 титрационная единица соответствует концентрации НС1 равной 1 ммолю.

2.Свободная НС1 в норме составляет -20- 40 ТЕ

3.Связанная НС1 (с белками) в норме составляет – 8-12 ТЕ.

Для оценки кислотообразующей функции желудка определяют не только кислотность, но и абсолютное количество НС1, выделеное за определенный промежуток времени:

Различают дебит-час свободной НС1 (количество свободной НС1, выделившейся за 1 час) и дебит-час соляной кислоты (общая кислотная продукция за 1 час). Считается, что последний показатель наиболее правильно отражает кислотообразующую функцию желудка. В характере секреции желудочного сока различают патологические состояния:

1. Гиперхлоргидрия- увеличение общей кислотности и свободной НС1 (язвенная болезнь желудка и 12-перстной кишки)

2. Гипохлоргидрия – уменьшение общей кислотности и свободной НС1.

3. Ахлоргидрия- отсутствие свободной НС1, общая кислотность снижена.

4. Ахилия- отсутствие секреции желудочного сока и ферментов.

9 . Изменения физико-химических свойств желудочного сока при патологии. При патологии изменяются физико- химические свойства желудочного сока.

1. Увеличение объема возможно при повышенной секреции или замедленной эвакуации пищи при спазме и стенозе привратника, а уменьшение объема при снижении секреции, ускоренной эвакуации пищи, при неполном закрытии привратника

2. Запах. Запах «прогорклого жира» - вызван летучими жирными кислотами и усилением окисления жирных кислот микроорганизмами; гнилостный запах- при гниении белков в желудке под действием ферментов микрофлоры, распаде опухоли, нарушении эвакуации пищи из желудка.

4. Цвет: при патологии желудочный сок, обычно не имеющий окраски, приобретает жёлтый или зеленоватый цвет за счёт примеси желчи. Желтоватый цвет желудочный сок приобретает в том случае, если в желудочном соке отсутствует соляная кислота. Желтоватый цвет обусловлен наличием билирубина (желчного пигмента), который при отсутствии НСI не может окислиться в биливердин. Таким образом, зеленоватый цвет обусловлен наличием желчи в присутствии НСI. Красноватый или коричневый цвет наблюдается при наличии крови.Коричневый цвет или цвет «кофейной гущи» наблюдается при наличии крови, если есть в желудочном соке НСI. Кислота, воздействуя на гемоглобин крови, окисляет его в солянокислый гематин, имеющий коричневую окраску. Красноватый цвет приобретает желудочный сок, если имеется кровь, но нет НСI.

4,0 ммоль/ч означает:

А) нормальную секрецию свободной соляной кислоты

б) высокую секрецию свободной соляной кислоты

в) низкую секрецию свободной соляной кислоты

г) резко сниженную секрецию свободной соляной кислоты

д) резко повышенную секрецию свободной соляной кислоты

124. При попадании крови пациента на незащищенные кожные покровы нужно:

а)вымыть водой с мылом, обработать 70% раствором этилового спирта

Б)обработать их 70% раствором этилового спирта, вымыть водой с мылом, повторить обработку 70% раствором этилового спирта

в)вымыть водой с мылом, обработать 5% спиртовой настойкой йода

125. При загрязнении неповрежденных кожных покровов кровью пациента необходимо

А)удалить кровь тампоном, обработать кожные покровы 70 градусным спиртом, промыть проточной водой с мылом, вновь обработать 70 градусным спиртом

б)кровь смыть под струёй воды с мылом

в)смыть кровь, обработать кожные покровы йодом

126. Показатель WBC (white blood cells) на гематологическом аппарате это:

127. Показатель RBC (red blood cells) на гематологическом аппарате это:

А) абсолютное содержание эритроцитов

б) концентрация гемоглобина в цельной крови

в) абсолютное содержание лейкоцитов

г) средний объём эритроцита в кубических микрометрах (мкм) или фемтолитрах (фл)

128. Показатель MCV на гематологическом аппарате это:

а) абсолютное содержание эритроцитов

б) концентрация гемоглобина в цельной крови

в) абсолютное содержание лейкоцитов

Г) средний объём эритроцита в кубических микрометрах (мкм) или фемтолитрах (фл)

129. Показатель HGB (Hb, hemoglobin) на гематологическом аппарате это?:

а) абсолютное содержание эритроцитов

Б) концентрация гемоглобина в цельной крови

в) абсолютное содержание лейкоцитов

г) средний объём эритроцита в кубических микрометрах (мкм) или фемтолитрах (фл)

130. Показатель MCHC на гематологическом аппарате это:

г) средний объем тромбоцитов

131. Показатель MCV на гематологическом аппарате это:

а) абсолютное содержание тромбоцитов

б) среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах



г) средний объем тромбоцитов

д) средняя концентрация гемоглобина в эритроците

132. Показатель MCH на гематологическом аппарате это:

а) абсолютное содержание тромбоцитов

Б) среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах

в) средний объём эритроцита в кубических микрометрах

г) средний объем тромбоцитов

д) средняя концентрация гемоглобина в эритроците

133. Показатель PLT на гематологическом аппарате это:

А) абсолютное содержание тромбоцитов

б) среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах

в) средний объём эритроцита в кубических микрометрах

г) средний объем тромбоцитов

д) средняя концентрация гемоглобина в эритроците

134. Показатель MPV (mean platelet volume) на гематологическом аппарате это:

а) абсолютное содержание тромбоцитов

б) среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах

в) средний объём эритроцита в кубических микрометрах

Г) средний объем тромбоцитов

д) средняя концентрация гемоглобина в эритроците

135. Показатель MCVна гематологическом аппарате это:

а) абсолютное содержание тромбоцитов

б) среднее содержание гемоглобина в отдельном эритроците в абсолютных единицах

В) средний объём эритроцита в кубических микрометрах

г) средний объем тромбоцитов

д) средняя концентрация гемоглобина в эритроците

136. Показатель PDW на гематологическом аппарате это:



б) средний объем тромбоцитов

137. Показатель HCT на гематологическом аппарате это:

а) относительная ширина распределения тромбоцитов по объёму, показатель гетерогенности тромбоцитов.

б) средний объем тромбоцитов

в) тромбокрит, доля (%) объёма цельной крови, занимаемую тромбоцитами.

Г) гематокрит (норма 0,39-0,49), часть (% = л/л) от общего объёма крови, приходящаяся на форменные элементы крови.

д) концентрация гемоглобина в цельной крови

138. Показатель PCT (platelet crit) на гематологическом аппарате это:

а) относительная ширина распределения тромбоцитов по объёму, показатель гетерогенности тромбоцитов.

б) средний объем тромбоцитов

В) тромбокрит, доля (%) объёма цельной крови, занимаемую тромбоцитами.

г) гематокрит (норма 0,39-0,49), часть (% = л/л) от общего объёма крови, приходящаяся на форменные элементы крови.

д) концентрация гемоглобина в цельной крови

139. Показатель концентрации гемоглобина в цельной крови на гематологическом аппарате это:

а) PCT (platelet crit)

Г) HGB (Hb, hemoglobin)

д) MPV (mean platelet volume)

140. Показатель среднего объема тромбоцитов на гематологическом аппарате это:

а) PCT (platelet crit)

г) HGB (Hb, hemoglobin)

Д) MPV (mean platelet volume)

141. Показатель абсолютного содержание лейкоцитов на гематологическом аппарате это:

А) WBC (white blood cells)

г) HGB (Hb, hemoglobin)

д) MPV (mean platelet volume)

142. Показатель среднего объёма эритроцита на гематологическом аппарате это:

а) WBC (white blood cells)

г) HGB (Hb, hemoglobin)

д) MPV (mean platelet volume)

143. Показатель гематокрита на гематологическом аппарате это:

а) WBC (white blood cells)

г) HGB (Hb, hemoglobin)

д) MPV (mean platelet volume)

144. Показатель среднего содержание гемоглобина в отдельном эритроците на гематологическом аппарате это:

а) WBC (white blood cells)

145. Показатель средней концентрации гемоглобина в эритроците на гематологическом аппарате это:

а) WBC (white blood cells)

146. Показатель абсолютного содержание тромбоцитов на гематологическом аппарате это:

а) WBC (white blood cells)

Г) PLT (platelets)

147. Показатель абсолютного содержание эритроцитов на гематологическом аппарате это:

а) WBC (white blood cells)

В) RBC (red blood cells)

г) PLT (platelets)

148. Показатели Эритроцитарного индекса:

А) (MCV, MCH, MCHC):

б) (MPV, PDW, PCT):

в)(LYM, MXD, GRAN)

149. Показатели Лейкоцитарного индекса:

а) (MCV, MCH, MCHC):

б) (MPV, PDW, PCT):

В)(LYM, MXD, GRAN)

150. Показатели тромбоцитарного индекса:

а) (MCV, MCH, MCHC):

Б) (MPV, PDW, PCT):

в)(LYM, MXD, GRAN)

151. Показатель RDW-SD на гематологическом аппарате это:

152. Показатель RDW-CV на гематологическом аппарате это:

а) относительная ширина распределения эритроцитов по объёму, стандартное отклонение.

Б) относительная ширина распределения эритроцитов по объёму, коэффициент вариации

в) неспецифический индикатор патологического состояния организма.

г) среднее содержание гемоглобина в эритроците.

153. Показатель ESR(СОЭ) это:

а) относительная ширина распределения эритроцитов по объёму, стандартное отклонение.

б) относительная ширина распределения эритроцитов по объёму, коэффициент вариации

В) неспецифический индикатор патологического состояния организма.

г) среднее содержание гемоглобина в эритроците.

154. Гемоглобин (Hb, Hgb) в анализе крови это:

А)основной компонент эритроцитов,

б) основной компонент лейкоцитов,

в) основной компонент лимфоцитов,

г) основной компонент тромбоцитов,

155. На гематологическом анализаторе содержание лейкоцитов измеряется в:

156. На гематологическом анализаторе содержание гемоглобина указывается в:

157. На гематологическом анализаторе содержание эритроцита указывается в:

Сколько процентов составляет форменные элементов крови:

159. Объем плазмы крови:

№ 5 Вариант

160. Сколько процентов занимает постаналитический этап в лаборатории:

161. Сколько процентов занимает постаналитический этап вне лаборатории:

162. Сколько процентов занимает преаналитический этап вне лаборатории:

163. Сколько процентов занимает преаналитический этап в лаборатории:

164. Скольки % спиртом нужно обрабатывать руки перед забором крови:

165. С какой концевой фаланги пальца производят забор крови:

166. Глубина прокола при заборе крови с пальца:

167. Норма гемоглобина у женщин:

а) 130-160 г/л

Б) 120-140 г/л

в) 125-145 г/л

г) 160- 240 г/л

д) 105-125 г/л

168. Норма гемоглобина у мужчин:

А) 130-160 г/л

б) 120-140 г/л

в) 125-145 г/л

г) 160- 240 г/л

д) 105-125 г/л

169. Моча приобретает фруктовый запах при:

а). пиелонефрит

Б). диабетической коме

в). цистите

г). нефротический синдром

д) циррозе

170. Протеинурия может сопровождать:

а. острый гломерулонефрит

б. хронический гломерулонефрит

в. острый пиелонефрит

Г. все перечисленное верно

171. Причиной глюкозурии является:

а. употребление избыточного количества сахара

б. гиперсекреции тироксина

в. стрессовые ситуации

Г. все перечисленное верно

д. сахарный диабет

172. В моче больных острым гломерулонефритом наблюдается:

а. значительная полиурия, относ. плотность 1,030 - 1,035, глюкозурия, кетонурия

б. боль. кол - во лейкоц., эритроц. до 100 в п/зр, много полиморф эпителия

В. значит. кол-во неизм.Er, Le немного, гиалин. цил-ры и клетки почеч. эпителия

г. полиурия, изостенурия, гипостенурия, Л 8-10 в/зр, эр 3-4, почеч. эпит, ед. цилиндры

173. Фильтрация мочи - это:

А. переход жидкости с растворен. в ней вещ-ми из плазмы крови в первич. мочу

б. обрат. всасыв.из первичной мочи в кровь воды с раствор. в ней вещ - ми

в. добавочное выделение из плазмы крови в мочу чужерод. для орган-ма вещ-ств

г. образование конечной мочи

174. Реабсорбция мочи - это:

а. переход жидкости с растворенными в ней веществами из плазмы крови в первичную мочу

Б. обратное всасывание из первичной мочи в кровь воды с растворенными в ней веществами

в. образование первичной мочи из плазмы крови

г. выделение из плазмы крови в мочу чужеродных для организма веществ

д. верно 1 и 3 пункт

175. Почки осуществляют регуляцию:

а. артериального давления

б. электролитного состава внутренней среды

в. эритропоэза

Г. все перечисленное верно

176. На основании пробы Земницкого можно судить о:

а. протеинурии

б. гематурии

в. лейкоцитурии

Г. выделительной и контцентрационной способности почек

д. глюкозурии

177. Увеличение удельного веса мочи- это:

а. энурез

б. дизурия

в. изостенурия

Г. гиперстенурия

д. гипостенурия

178. К элементам организованного осадка мочи не относятся:

а. лекоциты, эритроциты

б. соли кислой мочи

в. соли щелочной мочи

г. эпителий, цилиндры

Д. верно 2 и 3 пункт

179. Качественные пробы на обнаружение белка:

а. проба с 3% сульфосалициловой кислотой

б. с 20% сульфосалициловой кислотой

в. кольцевая проба Геллера

г. проба Гайнеса

Д. верно 2 и 3 пункт

180. Качественные реакции на обнаружение глюкозы в моче:

а. проба Гайнеса

б. диагностические тест- полоски

в. проба Розина

г. проба Фуше

Д. пробы указанных в пункте 2 и 3

181. Моча имеет резкий аммиачный запах при:

а. диабетической коме

б. остром гломерулонефрите

в. употреблении растительной пищи

Г. бактериальном разложении из-за длительного хранения в тепле

д. при циррозе

182. Количественный метод определения глюкозы в моче:

а. гемоглобинцианидный метод

Б. ферментативный глюкозоксидазный метод (ФКД)

в. метод с пироголлововым красным

г. нефелометрический метод

д. турбидиметрический метод

183. Методы определения билирубина в моче:

а. проба Фуше

б. диагностическими тест-полосками

в. проба с 20% сульфосалициловой кислотой

г. азопирамовая проба

Д. пробы указанных в пункте 1 и 2

184. Гипостенурии соответствует относительная плотность:

а. 1,021 - 1,037

Б. 1,003 - 1,004

в. 1,015 - 1,026

г. 1,007 -1,023

д. 1,035 - 1,036

185. Значительно повышает относительную плотность мочи выше нормы:

1. билирубин

2. уробилин

3. лейкоциты

4. глюкоза

5. тромбоциты

186. Моча цвета "мясных помоев" отмечается при:

а. остром гломерулонефрите

б. пиелонефрите

в. цистите

г. хронической почечной недостаточности

Д. верно 1 и 3 пункт

187. При гемолитической желтухе цвет мочи:

А. темно - бурый (оранжево - коричневый)

б. зеленовато-желтый

в. соломенно-желтый

г. темный, почти черный

д. верно 2 и 3 пункт

188. Розовый или красный цвет мочи может свидетельствовать о наличии:

а. эритроцитов

б. гемоглобина

в. миоглобина

Г. все перечисленное верно

189. Большое содержание уратов придает осадку мочи цвет:

а. коричневый или черный

б. желтоватый

В. розоватый с кирпичным оттенком

г. сливка-образный с зеленоватым оттенком

190. Изостенурия свидетельствует о:

а. воспалении слизистой оболочки мочевого пузыря

б. появление белка в моче

в. появление глюкозы в моче

Г. нарушение канальцевой реабсорбции воды и электролитов

191. Протеинурия может быть показателем поражения:

а. клубочков почек

б. канальцев почек

в. мочевыводящих путей

Г. все перечисленное верно

192. Степень протеинурия отражает:

а. функциональную недостаточность почек

б. степень поражения нефрона

в. степень нарушения реабсорбции

Г. все перечисленное верно

д. верно 2 и 3 пункт

193. Ренальные протеинурии обусловлены:

А. нарушение фильтрации и реабсорбции белков

б. воспаление паренхимы печени

в. попадание экссудата при воспалении мочеточников и мочевого пузыря

г. почечными камнями

194. Клубочковая протеинурия может возникнуть при:

А. увеличении проницаемости почечного фильтра

б. воспалительных процессов мочевыводящих путях

в. нарушении реабсорбции в канальцах нефрона

г. уретрите

195. при заболеваниях почек с преимущенным поражением клубочков отмечается:

а. глюкозурия

Б. нарушение процессов фильтрации

в. нарушение процессов реабсорбции

г. нарушение процесса секреции

196. Для выявления патологической протеинурии рекомендуется брать мочу:

а. в любое время суток

б. первую утреннюю порцию

В. суточную

г. после приема диуретиков

197. Клинический синдром, сопровождающийся ренальной протеинурией:

а. сердечная недостаточность

б. цистит

В. гломерулонефрит

г. опухоль мочевого пузыря

198. Качественная проба на белок:

а. с 10% щелочью

б. с3 % сульфосалициловой кислотой

В. с 20% сульфосалициловой кислотой

г. с 20 % соляной кислотой

199. Методы обнаружения уробилина в моче:

а. проба Флоренса

б. проба Ланге

в. проба Гайнеса

Г. Диагностическими тест-полосками

№ 6 Вариант

200. методы обнаружения кетоновых тел в моче

а. проба Ланге

б. проба Геллера

в. диагностическими тест-полосками

г. проба с 20% сульфосалициловой кислотой

Д. пробы указанных в пункте 1 и 3

201. При несоблюдении правил сбора мочи для общего анализа в осадке появляется:

а. кристаллы солей в большом количестве

б. полиморфный эпителий в большом количестве

В. плоский эпителий в большом количестве

д. почечный эпителий

202. Плоский эпителий в осадке в большом количестве может свидетельствовать о воспалении:

а. лоханок

б. слизистой мочевого пузыря

В. наружных половых органов

г. почечной паренхимы

203. При микроскопии осадка мочи гиалиновые цилиндры выглядят в виде:

а. зернистых цилиндрических образований

б. грубых цилиндрических структур с обломленными концами

В. нежных, бледных, едва заметных цилиндрических образований

г. желтоватых цилиндрических образований

204. Эритроцитарные цилиндры образуются при:

а. почечной лейкоцитурии

Б. почечной гематурии

в. камни в мочеточнике

г. камни в мочевом пузыре

205. При микроскопии осадка мочи восковидные цилиндры выглядят как:

а. бесцветные, прозрачные цилиндрические образования

Б. желтоватые, грубые с обломленными концами цилиндрические образования

в. прозрачные цилиндрические тяжи, один конец расщеплен или вытянут в виде нити

г. зернистые цилиндрические образования

206. При выраженной пиурии:

а. лейкоцитов 10 - 30 в поле зр.

Б. лейкоцитов 80 - 100 в поле зр.

в. эритроцитов до 10 в поле зр.

г. цилиндров 4 - 6 в поле зр.

207. Ураты в осадке мочи растворяются:

А. нагреванием, добавлением щелочи

б. в реактиве Селена

в. добавлением уксусной кислоты

г. центрифугированием и фильтрованием

208. Соли встречающиеся в щелочной моче:

а. мочевая кислота, ураты

Б. трипельфосфаты, мочекислый аммоний, оксалаты

в. оксалаты, аморфные фосфаты, ураты

г. мочекислый аммоний, оксалаты, ураты

209. Пиурия - это:

А. появление гноя в моче

б. появление в моче большого количества эритроцитов

в. высокая концентрация белка в моче

г. почечный эпителий

210. Объем камеры Горяева равен:

Б. 0,9 мкл

211. Кристаллы щавельной извести (оксалаты) в осадке мочи присутствуют в виде:

А. круглых, овальных образований и октаэдров

б. коричневых бочоночков

в. прозрачных тонких игл

г. сероватого песочка

212. Окраску препаратов приготовленных из осадка мочи по методу Циль - Нельсона производят при подозрении на:

а. опухоль почек

б. воспаление мочевого пузыря

В. туберкулез

г. пиелонефрит

213. Проба по Нечипоренко определяет:

а. количество выделенных форменных элементов за 1 минуту

б. выделительную функцию почек

В. количество форменных элементов выделенных в 1 мл мочи

г. концентрационную функцию мочи

214. Нормальные показатели по методу Нечипоренко при подсчете в счетной камере Горяева (в 1 мл):

а. эритроциты до 1000, лейкоциты до 4000, цилиндры до 20

Б. эритроциты до 1000, лейкоциты до 2000, цилиндры отсутствуют

в. эритроциты до 2000, лейкоциты до 4000, цилиндры отсутствуют

г. эритроциты до 4000, лейкоциты до 1000, цилиндры отсутствуют

д. эритроциты до 4000, лейкоциты до 3000, цилиндры отсутствуют

215. У новорожденных гемоглобин в норме:

а) 130-160 г/л

б) 120-140 г/л

в) 125-145 г/л

г) 160- 240 г/л

Д) 136-196 г/л

216. Норма гемоглобина возрасте 1 года:

д) 5,5-6,3* /л

221. Диаметр эритроцитов в норме:

А) 6-8 мкм

г) 12-14 мкм

222. Диаметр эритроцитов при микроцитозе:

А)< 6 мкм

б) >6 мкм

в) <9 мкм

г) >12-14 мкм

Диаметр эритроцитов при макроцитозе:

а)< 6 мкм

б) >6 мкм

В) >9 мкм

г) >12-14 мкм

224. Диаметр эритроцитов при мегалоцитозе:

а)< 6 мкм

б) >12 мкм

в) <12 мкм

Г) около12мкм

225. Цветной показатель в норме:

226. Норма гематокрита у женщин:

227. Норма гематокрита у мужчин:

228. Норма гематокрита у 3-х месячного:

Д) 32-44%

236. Процентное содержание эозинофилов в норме:

237. Процентное содержание базофилов в норме:

238. Процентное содержание лимфоцитов в норме:

239. Процентное содержание моноцитов в норме:

240. Под каким углом держат шлифованное стекло при приготовлении мазка.