Каким образом обеспечивается цветное зрение у человека. Цвет глаз человека

Глаз человека содержит две категории цветовосприимчивых рецепторов: первые ответственны за ночное зрение (помогают человеку различать цвета в сумерках), вторые – за цветное. Сетчатка человеческого глаза содержит три вида колбочек, которые позволяют различать цвета и оттенки. Обладая высокой чувствительностью, они отвечают за то, какие цвета . При этом максимальная чувствительность приходится на синий, зеленый и красный участки спектра. Именно поэтому эти цвета человек распознает лучше всего. Необходимо отметить, что диапазон спектральной чувствительности всех трех колбочек пересекается, поэтому при воздействии очень сильного светового излучения, человеческий глаз воспринимает это как слепяще-белый цвет. Благодаря светочувствительным рецепторам и колбочкам, человек способен различать не только 7 цветов радуги, а гораздо большее количество цветов и их оттенков.

Сколько цветов распознает человеческий глаз

С давних времен ученые определяли количество распознаваемых человеком цветов и оттенков по-разному. Сейчас они сходятся во мнении, что существует около 150000 цветовых тонов и оттенков. При этом человеческий глаз в обычных может различать порядка 100 оттенков по цветовому фону. Способность распознавать большее количество цветов можно натренировать. Художники, декораторы, дизайнеры и люди схожих профессий могут различать около 150 цветов по цветовым тонам, порядка 25 по насыщенности и до 64 по уровню света.

Приведенные цифры могут меняться в зависимости от степени натренированности человека, его физиологического состояния, а также условий освещенности. Например, при определенных условиях человек может различить порядка 500 оттенков серого цвета.

А если сравнить с фотоаппаратом

В эпоху цифровых фотоаппаратов и камер интересным будет сопоставление светочувствительных рецепторов сетчатки с мегапикселями фотокамер. Переведя цветовосприимчивость глаза человека на язык цифровых камер, можно сказать, что в каждом глазу будет примерно по 120-140 мегапикселей. У современных фотокамер среднее количество пикселей на порядок меньше, следовательно и плотность пикселей на миллиметр будет ниже. Именно поэтому угловое разрешение у глаза будет в несколько раз выше, чем у камеры с фокусным расстоянием объектива 23 мм (именно таким фокусным расстоянием обладает хрусталик глаза).

Именно с помощью зрения человек воспринимает большую часть информации из окружающего мира, поэтому все факты, связанные с глазами, интересны человеку. На сегодняшний день их существует огромное количество.

Строение глаза

Интересные факты о глазах начинаются с того, что человек является единственным существом на планете, имеющим белки глаз. В остальном глаза заполнено колбочками и палочками, как и у некоторых животных. Эти клетки находятся в глазу в количестве сотни миллионов и являются светочувствительными. Колбочки реагируют на смену освещенности и цветов больше, чем палочки.

У всех взрослых людей размер глазного яблока практически идентичен и составляет 24 мм в диаметре, в то время как новорожденный ребенок имеет диаметр яблока в 18 мм, а вес почти в три раза меньше.

Интересно, что иногда человек может видеть перед глазами различные плавающие помутнения, которые в действительности являются нитями белка.

Роговица глаза покрывает всю его видимую поверхность и является единственной частью тела человека, которая не снабжается кислородом из крови.

Хрусталик глаза, обеспечивающий четкость зрения, постоянно фокусируется на окружающей обстановке со скоростью 50 предметов в секунду. Движется глаз с помощью всего лишь 6 глазных мышц, являющихся самыми активными во всем организме.

Интересные факты о глазах включают в себя информацию о том, что чихнуть с открытыми глазами невозможно. Ученые объясняют это двумя гипотезами - рефлекторным сокращением мышц лица и защитой глаза от попадания микробов из слизистой носа.

Мозговое зрение

Интересные факты о зрении и глазах часто имеют данные о том, что на самом деле человек видит мозгом, а не глазом. Данное утверждение было научно установлено еще в 1897 году, подтвердив, что глаз человека воспринимает окружающую информацию в перевернутом виде. Переходя через оптический нерв к центру нервной системы, картинка переворачивается в привычное положение именно в коре головного мозга.

Особенности радужной оболочки

Они включают в себя тот факт, что радужка каждого человека имеет 256 отличительных характеристик, в то время как отпечатки пальцев отличаются лишь по сорока. Вероятность найти человека с такой же радужной оболочкой практически равна нулю.

Нарушение цветовосприятия

Чаще всего данная патология проявляется как дальтонизм. Интересно, что при рождении дальтониками являются все дети, но с возрастом у большинства приходит в норму. Чаще всего от данного нарушения страдают мужчины, не способные видеть определенные цвета.

В норме человек должен разделять семь основных цветов и до 100 тысяч их оттенков. В отличие от мужчин 2 % женщин страдают от генетической мутации, которая наоборот расширяет спектр их восприятия цветов до сотен миллионов оттенков.

Нетрадиционная медицина

Учитывая интересные факты о нем породили иридодиагностику. Она представляет собой нетрадиционный метод диагностирования заболеваний всего организма при помощи исследования радужной

Затемнение глаза

Интересно, что пираты носили повязки на глаза не для того, чтобы скрыть свои повреждения. Они закрывали один глаз, чтобы тот быстро смог адаптироваться к плохому освещению в трюмах корабля. Поочередно используя один глаз для помещений с тусклым освещением и палубы с ярким светом, пираты могли более эффективно вести бой.

Первые затемненные очки для обоих глаз появились не для защиты от яркого света, а для скрытия взгляда от посторонних лиц. Использовались они сначала только китайскими судьями, чтобы не демонстрировать окружающим личные эмоции к рассматриваемым делам.

Голубой или карий?

Цвет глаз человека определяется количеством концентрации в организме пигмента меланина.

Находится между роговицей и хрусталиком глаза и состоит из двух слоев:

  • переднего;
  • заднего.

Медицинскими терминами они определяются как мезодермальный и эктодермальный соответственно. Именно в переднем слое и распределяется красящий пигмент, определяя цвет глаз человека. Интересные факты о глазах подтверждают, что окраску радужке обеспечивает только меланин, независимо от того, какого цвета глаза. Оттенок меняется только за счет смены концентрации красящего вещества.

При рождении практически у всех детей данный пигмент полностью отсутствует, поэтому глаза новорожденных голубые. С возрастом они меняют свой цвет, который полностью устанавливается только к 12 годам.

Интересные факты про глаза человека также утверждают, что цвет может меняться в зависимости от некоторых обстоятельств. Учеными на данный момент установлено такое явление, как хамелеон. Оно представляет собой смену цвета глаза при длительном нахождении на холоде или при длительном ярком освещении. Некоторые люди утверждают, что цвет их глаз зависит не только от погоды, а и от личного настроения.

Самые интересные факты о строении глаза человека содержат данные о том, что на самом деле все люди на свете голубоглазые. Высокая концентрация пигмента в радужной оболочке обеспечивает поглощение световых лучей высоких и низких частот, за счет чего их отражение приводит к появлению коричневого или черного цвета глаз.

Цвет глаз во многом зависит от географической местности. Так в северных регионах преобладает население с голубым цветом глаз. Ближе к югу насчитывается большое количество кареглазых, а на экваторе практически все население имеет черный цвет радужной оболочки.

Более полувека назад ученые установили интересный факт - при рождении мы все дальнозоркие. Только к достижению шестимесячного возраста зрение нормализуется. Интересные факты о глазах и зрении человека также подтверждают, что полностью формируется глаз по физиологическим параметрам к семилетнему возрасту.

Зрение может сказываться и на общем состоянии организма, так при превышенных нагрузках на глаза наблюдается общее переутомление, головные боли, усталость и стрессовое состояние.

Интересно, что научно не доказана связь между качеством зрения и витамином моркови каротином. На самом деле этот миф взял свое начало со времен войны, когда англичане решили скрыть изобретение авиационного радара. Они объясняли быстрое обнаружение вражеских самолетов острым зрением своих летчиков, которые ели морковь.

Чтобы самостоятельно проверить остроту зрения, следует взглянуть на ночное небо. Если возле средней звезды ручки большого ковша (Большой Медведицы) удается разглядеть маленькую звезду, то все в норме.

Разные глаза

Чаще всего такое нарушения является генетическим и никак не сказывается на общем здоровье. Разный цвет глаз носит название гетерохромия и может быть полным или частичным. В первом случае каждый глаз окрашен своим цветом, а во втором одна радужка поделена на две части с разной окраской.

Негативные факторы

Больше всего на качество зрения и здоровье глаз в целом влияет косметика. Также негативно сказывается и ношение узкой одежды, поскольку она затрудняет кровообращение всех органов, в том числе и глаз.

Интересные факты о строении и работе глаза подтверждают, что ребенок не способен плакать в первый месяц жизни. Точнее при этом совершенно не выделяются слезы.

Состав слезы имеет три компонента:

  • воду;
  • слизь;

Если пропорции данных веществ на поверхности глаза не соблюдаются, появляется сухость и человек начинает плакать. При обильном течении слезы могут напрямую поступать в носоглотку.

Статистические исследования утверждают, что в год каждый мужчина плачет в среднем 7 раз, а женщина 47.

О моргании

Интересно, что в среднем человек моргает 1 раз в 6 секунд в большей степени рефлекторно. Данный процесс обеспечивает глазу достаточное увлажнение и своевременное очищение от загрязнений. По статистическим данным, женщины моргают в два раза чаще мужчин.

Японские исследователи установили, что процесс моргания действует еще и как перезагрузка для концентрации внимания. Именно в момент закрытия век падает активность нейросети внимания, поэтому и наблюдается моргание чаще всего после завершения определенного действия.

Чтение

Интересные факты про глаза не упустили такой процесс, как чтение. По данным ученых, при быстром чтении глаза утомляются намного меньше. При этом чтение бумажных книг всегда осуществляется на четверть быстрее, чем электронных носителей.

Ошибочные мнения

Многие считают, что курение никак не сказывается на здоровье глаз, но на самом деле табачный дым приводит к закупорке сосудов сетчатки глаза и приводит к развитию множества заболеваний зрительного нерва. Курение, как активное, так и пассивное, может привести к помутнению хрусталика, хроническим конъюнктивитам, желтым пятнам сетчатки, слепоте. Также при курении становится вредным ликопин.

В обычных случаях данное вещество оказывает благотворное влияние на организм, улучшая зрение, замедляя развитие катаракты, возрастные изменения и защищая глаз от ультрафиолетового излучения.

Интересные факты о глазах опровергают мнение о том, что излучение монитора негативно сказывается на зрении. На самом деле вред глазам приносит избыточное напряжение при частой фокусировке на мелких деталях.

Также многие уверены в необходимости осуществлять роды только кесаревым путем при наличии у женщины плохого зрения. В некоторых случаях это действительно так, но при близорукости можно пройти курс лазерной коагуляции и предупредить риск разрыва или отслоения сетчатки во время родов. Данная процедура осуществляется даже на 30-й неделе вынашивания плода и занимает всего несколько минут, совершенно не оказывая негативного влияния на здоровье и матери, и ребенка. Но как бы там ни было, старайтесь регулярно посещать специалиста и проверять свое зрение.

Как видит человек?

Зрение человека - очень сложный многоуровневый процесс обработки изображений окружающих объектов, дающий возможность получить информацию об их форме, величине, цвете и расположении. Зрение следует рассматривать с точки зрения оптики, физиологии и психологии. Поэтому в двух словах объяснить, как видит человек, вряд ли возможно. Рассмотрим этот процесс подробно.

Оптическая природа зрения человека


Основными оптическими органами зрительной системы человека являются глаза, которые имеющимися в них фоторецепторами воспринимают лучи света, отраженные от различных предметов. Происходит это следующим образом: попадая в глаз через зрачок, лучи преломляются в хрусталике и падают на сетчатку, которая выстилает глазное дно. Именно в сетчатке и находятся особые клетки, которые способны воспринимать свет. Попадая на них, фотоны света вызывают в рецепторах ряд химических изменений, создавая тем самым нервные импульсы, которые по зрительным нервам передаются в головной мозг. В зрительном центре, который расположен в коре мозга, полученная закодированная информация расшифровывается, обрабатывается, в результате этого процесса и формируется изображение, которое мы видим.

Как видит человек: физиологическая точка зрения


  • Хрусталик располагается напротив зрачка внутри глазного яблока и является маленькой двояковыпуклой биологической линзой, в которой преломляются лучи света. У здорового человека хрусталик очень эластичен и может менять свою преломляющую способность на целых 14 диоптрий. Это позволяет человеку одинаково четко видеть те предметы, что находятся у него буквально под носом, и те, которые удалены на большое расстояние. Минимальное расстояние, на котором мы можем хорошо рассмотреть предмет, приблизительно равно пяти сантиметрам, а максимальное сильно зависит от количества света, испускаемого объектом. Ученые утверждают, что фигуру человека можно различить на расстоянии трех километров, а пламя горящей свечи видно аж за семь километров. Иногда бывает так, что хрусталик теряет свою способность к аккомодации и не может правильно фокусировать изображение на сетчатке глаза. Если фокус изображения оказывается позади сетчатки, у человека диагностируют дальнозоркость, а если перед сетчаткой - то близорукость. Сейчас эти дефекты легко корректируются с помощью очков или контактных линз.
  • Сетчатка глаза покрывает примерно 70% всей площади внутренней поверхности глазного яблока. Именно в ней расположены все светочувствительные клетки, подразделяющиеся на колбочки и палочки. Палочки ответственны за работу механизма ночного зрения. С помощью них человек может видеть в полутьме, но изображение, которое они обеспечивают, лишено цвета и напоминает картинку на экране черно-белого телевизора. Колбочки же активны при более интенсивном освещении и отвечают за дневное зрение, которое позволяет нам видеть цвет всех предметов.;

Как человек видит мир в цвете


В сетчатке находится три вида колбочек - рецепторов цвета, максимально чувствительных соответственно к красному, синему и зеленому участкам спектра. Соответствие колбочек этим трем основным цветам обеспечивает человеку возможность распознавать тысячи различных оттенков цвета. Если же в сетчатке из-за недостатка определенного вида палочек появляется проблема с восприятием одного из базовых цветов, у человека возникает недостаток зрения, называемый дальтонизмом. Он не видит определенную группу оттенков, и все они ему кажутся серыми. Теперь, когда мы рассказали о том, как видит человек, настало время поговорить об основных свойствах его зрения.

Основные свойства зрения человека

Стереоскопическое зрение

Помимо цвета, человек также способен видеть объем пространства. Достигается это за счет эффекта слияния изображения при взгляде на предмет двумя глазами. Такое зрение по-научному называется бинокулярным.

Световая чувствительность

Способность человеческого глаза распознавать различные степени яркости светового излучения называют светоощущением. Максимальная чувствительность глаза к свету достигается после длительной адаптации к темноте. Считается, что продолжительный взгляд на красный свет может повысить световую чувствительность глаз на некоторое время.

Острота зрения

Способность разных людей видеть различное количество деталей одного и того же предмета с одинакового расстояния называется остротой зрения. Острота зрения в основном предопределена генетически и зависит от возраста человека, ширины его зрачка, эластичности хрусталика и количества и величины колбочек, расположенных в сетчатке глаза.

Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук - оптики (в том числе биофизики), психологии , физиологии , химии (биохимии). На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы. Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений. Так устраняются сферическая и хроматическая аберрации, эффекты слепого пятна , проводится цветокоррекция , формируется стереоскопическое изображение и т. д. В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии .

Физиология зрения человека

Цветовое зрение

В глазу человека содержатся два типа светочувствительных клеток (фоторецепторов): высоко чувствительные палочки , отвечающие за ночное зрение , и менее чувствительные колбочки , отвечающие за цветное зрение.

Свет с разной длиной волны по-разному стимулирует разные типы колбочек. Например, желто-зелёный свет в равной степени стимулирует колбочки L и M-типов, но слабее стимулирует колбочки S-типа. Красный свет стимулирует колбочки L-типа намного сильнее, чем колбочки M-типа, а S-типа не стимулирует почти совсем; зелено-голубой свет стимулирует рецепторы M-типа сильнее, чем L-типа, а рецепторы S-типа - ещё немного сильнее; свет с этой длиной волны наиболее сильно стимулирует также палочки. Фиолетовый свет стимулирует почти исключительно колбочки S-типа. Мозг воспринимает комбинированную информацию от разных рецепторов, что обеспечивает различное восприятие света с разной длиной волны.

За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины . По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют двухцветное зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм . Н. Н. Миклухо-Маклай установил, что у папуасов Новой Гвинеи , живущих в гуще зелёных джунглей, отсутствует способность различать зелёный цвет.

Чувствительный к красному свету опсин кодируется у человека геном OPN1LW .

Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.

Необходимость трех типов опсинов для цветового зрения недавно была доказана в опытах на беличьей обезьяне (саймири), самцов которых удалось излечить от врожденного дальтонизма путем введения в их сетчатку гена человеческого опсина OPN1LW . Эта работа (вместе с аналогичными опытами на мышах) показала, что зрелый мозг способен приспособиться к новым сенсорным возможностям глаза.

Ген OPN1LW, который кодирует пигмент, отвечающий за воcприятие красного цвета, высоко полиморфен (в недавней работе Виррелли и Тишкова было найдено 85 аллелей в выборке из 256 человек ), и около 10% женщин , имеющих два разных аллеля этого гена, фактически имеют дополнительный тип цветовых рецепторов и некоторую степень четырёхкомпонентного цветового зрения. Вариации гена OPN1MW, который кодирует «желто-зеленый» пигмент, встречаются редко и не влияют на спектральную чувствительность рецепторов.

Ген OPN1LW и гены, отвечающие за восприятие света со средней длиной волны, расположены в Х-хромосоме тандемно, и между ними часто происходит негомологичная рекомбинация или генная конверсия. При этом может происходить слияние генов или увеличение числа их копий в хромосоме. Дефекты гена OPN1LW - причина частичной цветовой слепоты, протанопии .

Трёхсоставную теорию цветового зрения впервые высказал в 1756 году М. В. Ломоносов , когда он писал «о трёх материях дна ока». Сто лет спустя её развил немецкий учёный Г. Гельмгольц , который не упоминает известной работы Ломоносова «О происхождении света», хотя она была опубликована и кратко изложена на немецком языке.

Параллельно существовала оппонентная теория цвета Эвальда Геринга. Её развили Дэвид Хьюбел (David H. Hubel) и Торстен Визел (Torsten N. Wiesel). Они получили Нобелевскую премию 1981 года за своё открытие.

Они предположили, что в мозг поступает информация вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цвета Юнга -Гельмгольца). Мозг получает информацию о разнице яркости - о разнице яркости белого (Y мах) и чёрного (Y мин), о разнице зелёного и красного цветов (G - R), о разнице синего и жёлтого цветов (B - yellow), а жёлтый цвет (yellow = R + G) есть сумма красного и зелёного цветов, где R, G и B - яркости цветовых составляющих - красного, R, зелёного, G, и синего, B.

Имеем систему уравнений - К ч-б = Y мах - Y мин; K gr = G - R; K brg = B - R - G, где К ч-б, K gr , K brg - функции коэффициентов баланса белого для любого освещения. Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (цветовая адаптация). Оппонентная теория в целом лучше объясняет тот факт, что люди воспринимают цвет предметов одинаково при чрезвычайно разных источниках освещения (цветовая адаптация), в том числе при различном цвете источников света в одной сцене.

Эти две теории не вполне согласованы друг с другом. Но несмотря на это, до сих пор предполагают, что на уровне сетчатки действует трёхстимульная теория, однако информация обрабатывается и в мозг поступают данные, уже согласующиеся с оппонентной теорией.

Бинокулярное и Стереоскопическое зрение

Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10 −6 кд·м² для глаза, полностью адаптированного к темноте, до 10 6 кд·м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки - колбочках и палочках .

Чувствительность глаза зависит от полноты адаптации , от интенсивности источника света, длины волны и угловых размеров источника, а также от времени действия раздражителя. Чувствительность глаза понижается с возрастом из-за ухудшения оптических свойств склеры и зрачка, а также рецепторного звена восприятия.

Максимум чувствительности при дневном освещении лежит при 555-556 нм, а при слабом вечернем/ночном смещается в сторону фиолетового края видимого спектра и равен 510 нм (в течение суток колеблется в пределах 500-560 нм). Объясняется это (зависимость зрения человека от условий освещённости при восприятии им разноцветных объектов, соотношение их кажущейся яркости - эффект Пуркинье) двумя типами светочувствительных элементов глаза - при ярком свете зрение осуществляется преимущественно колбочками, а при слабом задействуются предпочтительно только палочки.

Острота зрения

Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между чувствительными элементами сетчатки и называется остротой зрения .

Острота зрения - способность глаза воспринимать раздельно две точки, расположенные друг от друга на некотором расстоянии (детализация, мелкозернистость, разрешётка ). Мерилом остроты зрения является угол зрения, то есть угол, образованный лучами, исходящими от краёв рассматриваемого предмета (или от двух точек A и B ) к узловой точке (K ) глаза. Острота зрения обратно-пропорциональна углу зрения, то есть, чем он меньше, тем острота зрения выше. В норме глаз человека способен раздельно воспринимать объекты, угловое расстояние между которыми не меньше 1′ (1 минута).

Острота зрения - одна из важнейших функций зрения. Острота зрения человека ограничена его строением. Глаз человека в отличие от глаз головоногих, например, это обращённый орган, то есть, светочувствительные клетки находятся под слоем нервов и кровеносных сосудов.

Острота зрения зависит от размеров колбочек, находящихся в области жёлтого пятна, сетчатки, а также от ряда факторов: рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика (и его эластичности), стекловидного тела (кои составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста.

Остроту зрения и/или Световую чувствительность часто также называют разрешающей способностью простого(невооруженного) глаза (resolving power ).

Поле зрения

Периферическое зрение (поле зрения) - определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра). Поле зрения - пространство, воспринимаемое глазом при неподвижном взгляде. Зрительное поле является функцией периферических отделов сетчатки; его состоянием в значительной мере определяется возможность человека свободно ориентироваться в пространстве.

Изменения поля зрения обуславливаются органическими и/или функциональными заболеваниями зрительного анализатора: сетчатки, зрительного нерва, зрительного пути, ЦНС . Нарушения поля зрения проявляются либо сужением его границ (выражают в градусах или линейных величинах), либо выпадением отдельных его участков (Гемианопсия), появлением скотомы.

Бинокулярность

Рассматривая предмет обоими глазами, мы видим его только тогда одиночным, когда оси зрения глаз образуют такой угол сходимости (конвергенцию), при котором симметричные отчётливые изображения на сетчатках получаются в определённых соответственных местах чувствительного жёлтого пятна (fovea centralis). Благодаря такому бинокулярному зрению, мы не только судим об относительном положении и расстоянии предметов, но и воспринимаем рельеф и объём.

Основными характеристиками бинокулярного зрения являются наличие элементарного бинокулярного, глубинного и стереоскопического зрения, острота стереозрения и фузионные резервы.

Наличие элементарного бинокулярного зрения проверяется посредством разбиения некоторого изображения на фрагменты, часть которых предъявляется левому, а часть - правому глазу . Наблюдатель обладает элементарным бинокулярным зрением, если он способен составить из фрагментов единое исходное изображение.

Наличие глубинного зрения проверяется путём предъявления силуэтных, а стереоскопического - случайно-точечных стереограмм , которые должны вызывать у наблюдателя специфическое переживание глубины, отличающееся от впечатления пространственности, основанного на монокулярных признаках.

Острота стереозрения - это величина, обратная порогу стереоскопического восприятия. Порог стереоскопического восприятия - это минимальная обнаруживаемая диспаратность (угловое смещение) между частями стереограммы. Для его измерения используется принцип, который заключается в следующем. Три пары фигур предъявляются раздельно левому и правому глазу наблюдателя. В одной из пар положение фигур совпадает, в двух других одна из фигур смещена по горизонтали на определённое расстояние. Испытуемого просят указать фигуры, расположенные в порядке возрастания относительного расстояния. Если фигуры указаны в правильной последовательности, то уровень теста увеличивается (диспаратность уменьшается), если нет - диспаратность увеличивается.

Фузионные резервы - условия, при которых существует возможность моторной фузии стереограммы. Фузионные резервы определяются максимальной диспаратностью между частями стереограммы, при которых она ещё воспринимается в качестве объемного изображения. Для измерения фузионных резервов используется принцип, обратный применяемому при исследовании остроты стереозрения. Например, испытуемого просят соединить в одно изображение две вертикальных полосы, одна из которых видна левому, а другая - правому глазу . Экспериментатор при этом начинает медленно разводить полосы сначала при конвергентной, а затем при дивергентной диспаратности . Изображение начинает раздваиваться при значении диспаратности , характеризующей фузионный резерв наблюдателя.

Бинокулярость может нарушаться при косоглазии и некоторых других заболеваниях глаз . При сильной усталости может наблюдаться временное косоглазие, вызванное отключением ведомого глаза.

Контрастная чувствительность

Контрастная чувствительность - способность человека видеть объекты, слабо отличающиеся по яркости от фона. Оценка контрастной чувствительности производится по синусоидальным решеткам. Повышение порога контрастной чувствительности может быть признаком ряда глазных заболеваний, в связи с чем его исследование может применяться в диагностике.

Адаптация зрения

Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация глаза - приспособление зрения к различным условиям освещения. Адаптация происходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).

Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте - процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза. Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50-60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов - адаптометров .

Понижение адаптации глаза к темноте наблюдают при некоторых глазных (пигментная дистрофия сетчатки, глаукома) и общих (A-авитаминоз) заболеваниях.

Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика , дефекты сетчатки , скотомы и пр.)

Психология зрительного восприятия

Дефекты зрения

Самый массовый недостаток - нечёткая, неясная видимость близких или удалённых предметов.

Дефекты хрусталика

Дальнозоркость

Дальнозоркостью называется такая аномалия рефракции, при которой лучи света, попадающие в глаз, фокусируются не на сетчатке, а позади неё. В легких формах глаз с хорошим запасом аккомодации компенсирует зрительный недостаток с помощью увеличения кривизны хрусталика цилиарной мышцой.

При более сильной дальнозоркости (3 дптр и выше) зрение плохое не только вблизи, но и вдаль, причем глаз не способен скомпенсировать дефект самостоятельно. Дальнозоркость обычно бывает врожденной и не прогрессирует (обычно уменьшается к школьному возрасту).

При дальнозоркости назначают очки для чтения или постоянного ношения. Для очков подбираются собирающие линзы (перемещают фокус вперед на сетчатку), при использовании которых зрение пациента становится наилучшим.

Несколько отличается от дальнозоркости пресбиопия , или старческая дальнозоркость. Пресбиопия развивается вследствие утраты хрусталиком эластичности (что является нормальным результатом его развития). Этот процесс начинается ещё в школьном возрасте, но человек обычно замечает ослабление зрения вблизи после 40 лет. (Хотя в 10 лет дети-эмметропы могут читать на расстоянии 7 см, в 20 лет - уже минимум 10 см, а в 30 - 14 см и так далее.) Старческая дальнозоркость развивается постепенно, и к 65-70 годам человек уже полностью теряет способность аккомодировать, развитие пресбиопии завершено.

Близорукость

Близорукость - аномалия рефракции глаза, при которой фокус перемещается вперед, а на сетчатку попадает уже расфокусированное изображение. При близорукости дальнейшая точка ясного зрения лежит в пределах 5 метров (в норме она лежит в бесконечности). Близорукость бывает ложной (когда из-за перенапряжения цилиарной мышцы происходит её спазм, в результате чего кривизна хрусталика остается слишком большой при зрении вдаль) и истинной (когда глазное яблоко увеличивается в передне-задней оси). В легких случаях далекие объекты размыты, в то время как близкие остаются четкими (дальнейшая точка ясного зрения лежит достаточно далеко от глаз). В случаях высокой близорукости происходит значительное снижение зрения. Начиная приблизительно с −4 дптр, человеку необходимы очки и для дали, и для близкого расстояния (в противном случае рассматриваемый предмет нужно подносить очень близко к глазам).

В подростковом возрасте близорукость часто прогрессирует (глаза постоянно напрягаются для работы вблизи, из-за чего глаз компенсаторно растет в длину). Прогрессия близорукости иногда принимает злокачественную форму, при которой зрение падает на 2-3 диоптрии в год, наблюдается растяжение склеры, происходят дистрофические изменения сетчатки. В тяжелых случаях возникает опасность отслойки перерастянутой сетчатки при физической нагрузке или внезапном ударе. Остановка прогрессии близорукости обычно наступает к 22-25 годам, когда перестает расти организм. При стремительной прогрессии зрение к тому времени падает до −25 диоптрий и ниже, очень сильно калеча глаза и резко нарушая качество зрения вдаль и вблизи (все, что человек видит, - это мутные очертания без какого-либо детализированного зрения), причем такие отклонения очень тяжело поддаются полноценному исправлению оптикой: толстые очковые стекла создают сильные искажения и уменьшают предметы визуально, отчего человек не видит достаточно хорошо даже в очках. В таких случаях лучшего эффекта можно добиться с помощью контактной коррекции.

Несмотря на то, что вопросу остановки прогрессирования близорукости посвящены сотни научно-медицинских работ, до сих пор нет доказательств эффективности ни одного метода лечения прогрессирующей близорукости, включая операции (склеропластика). Есть доказательства небольшого, но статистически значимого уменьшения темпов роста близорукости у детей при применении глазных капель атропина и (отсутствующего в России) глазного геля пирензипина.

При близорукости часто прибегают к лазерной коррекции зрения (воздействие на роговицу с помощью лазерного луча с целью уменьшения её кривизны). Этот метод коррекции не до конца безопасный, но в большинстве случаев удается добиться значительного улучшения зрения после операции.

Дефекты близорукости и дальнозоркости могут быть преодолены с помощью очков или восстановительных курсов гимнастики как и другие нарушения рефракции.

Астигматизм

Астигматизм - дефект оптики глаза, вызванный неправильной формой роговицы и (или) хрусталика. У всех людей формы роговицы и хрусталика отличаются от идеального тела вращения (то есть все люди имеют астигматизм той или иной степени). В тяжелых случаях вытягивание по одной из осей может быть очень сильным, кроме того, роговица может иметь дефекты кривизны, вызванные другими причинами (ранениями, перенесенными инфекционными заболеваниями и т. д.). При астигматизме лучи света преломляются с разной силой в разных меридианах, в результате чего изображение получается искривленным и местами нечетким. В тяжелых случаях искажения настолько сильны, что значительно снижают качество зрения.

Астигматизм легко диагностировать, рассматривая одним глазом лист бумаги с тёмными параллельными линиями - вращая такой лист, астигматик заметит, что тёмные линии то размываются, то становятся чётче. У большинства людей встречается врождённый астигматизм до 0,5 диоптрий, не приносящий дискомфорта.

Данный дефект компенсируется очками с цилиндрическими линзами , имеющими различную кривизну по горизонтали и вертикали и контактными линзами, (жёсткими или мягкими торическими), также, как и очковыми линзами, имеющими разную оптическую силу в разных меридианах.

Дефекты сетчатки

Дальтонизм

Если в сетчатке глаза выпадает или ослаблено восприятие одного из трёх основных цветов , то человек не воспринимает какой-то цвет. Есть «цветнослепые» на красный, зелёный и сине-фиолетовый цвет. Редко встречается парная, или даже полная цветовая слепота. Чаще встречаются люди, которые не могут отличить красный цвет от зелёного. Эти цвета они воспринимают как серые. Такой недостаток зрения был назван дальтонизмом - по имени английского учёного Д. Дальтона , который сам страдал таким расстройством цветного зрения и впервые описал его.

Дальтонизм неизлечим, передаётся по наследству (сцеплен с Х-хромосомой). Иногда он возникает после некоторых глазных и нервных болезней.

Дальтоников не допускают к работам связанным с вождением транспорта на дорогах общего пользования. Очень важно хорошее цветоощущение для моряков, лётчиков, химиков, художников, поэтому для некоторых профессий цветовое зрение проверяют с помощью специальных таблиц.

Скотома

Скотома (греч. skotos - темнота) - пятнообразный дефект в поле зрения глаза, вызванный заболеванием в сетчатке, болезнями зрительного нерва, глаукомой . Это участки (в пределах поля зрения), в которых зрение существенно ослаблено, или отсутствует. Иногда скотомой называют слепое пятно - область на сетчатке , соответствующая диску зрительного нерва (т. н. физиологическая скотома).

Абсолютная скотома (англ. absolute scotomata ) - участок, в котором зрение отсутствует. Относительная скотома (англ. relative scotoma ) - участок, в котором зрение значительно снижено.

Предположить наличие скотомы можно самостоятельно проведя исследование с помощью теста Амслера.

Прочие дефекты

Способы улучшения зрения

Стремление улучшить зрение связано с попыткой преодолеть как дефекты зрения, так и его естественные ограничения.

Зрение является каналом, посредством которого человек получает примерно 70% всех данных о мире, который его окружает. И возможно это только по той причине, что именно зрение человека представляет собой одну из самых сложных и поражающих воображение зрительных систем на нашей планете. Если бы не было зрения, все мы, скорее всего, просто жили бы в темноте.

Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем, как информация будет отправлена в мозг, данные проходят через этап компрессии.

Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в , а продолжим разговор об устройстве зрения.

Огромное количество деталей

Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.

Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся - мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным - это бы сделало зрение ограниченным, сумбурным и малоэффективным.

Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.

Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже.

Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.

Прохождение света

По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов - процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.

Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.

После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке - это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.

Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!). Первая мышца является круговой сжимающей - она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей - она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.

Многие до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…

Фокусировка

Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.

Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки - самом чувствительном месте, содержащем максимальное количество фоторецепторов.

Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!).

Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо, т.к. процесс фокусирования слишком сложен, чтобы говорить о нём, как о чём-то, что произошло лишь благодаря пошаговым мутациям - эволюционным стадиям.

Если же речь идёт о предметах расположенных близко к глазу (как правило, близким считается расстояние менее 6 метров), то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.

И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате» — осуществить такой процесс осознанно для человека невозможно.

Значение «фотоплёнки»

Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 137 000 000 фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000). Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно - примерно 400 000 на 1 мм².

Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте.

Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета - оптимальная работа колбочек отмечается в дневное время суток.

Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.

Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг.

Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.

Восприятие мозга

После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.

При помощи двух глаз формируются две «картинки» мира, который окружает человека - по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?

А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.

По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того - эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.

Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.

Помимо этого в сетчатке изображение делится мозгом надвое по вертикали - через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в , а правые части - в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова - «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.

Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.

Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.

Ещё одним из важных элементов зрительной системы является . Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря - двигать глазами.

Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя).

В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется - это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).

При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.

По словам знаменитого офтальмолога Питера Джени, контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной - при синхронном движении глаз необходима одинаковая мускульная иннервация.

Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.

Учитывая то, что глаз - это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз.

При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.

В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей - они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.

Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.

Глаза как показатель состояния

Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.

Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза - это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют «зеркалом» души.

Вместо заключения

В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы имели чёткое представление о том, КАК видит человек.

Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.

Но знать об устройстве зрения - это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) - всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.

Но ухудшение зрения в большинстве случаев не является необратимым процессом - зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца (хотя иногда возможно и это), то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека. Поэтому следующий урок нашего курса по развитию зрения будет посвящён методам восстановления зрения.

Зрите в корень!

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.