Переваривание фосфолипидов. Суточная потребность жиров

Переваривание липидов в желудочно-кишечном тракте

1. В ротовой полости переваривания липидов не происходит, т.к. липаза в слюне проявляет активность в следовых количествах, а пища в ротовой полости находится непродолжительное время.

2. Желудочная липаза переваривает только эмульгированные жиры (жиры молока). Наибольшее значение имеет у детей. У взрослых активность низкая вследствие кислотности желудочного сока.

3. Основное переваривание липидов происходит в тонком кишечнике, где жиры подвергаются действию панкреатического сока и желчи, которая вырабатывается печенью. Панкреатический сок содержит липазу, холестеролэстеразу, фосфолипазы А 1 , А 2 , С, D.

Строение и функция желчных кислот

В составе желчи содержатся конъюгированные желчные кислоты. Желчные кислоты являются производными холановой кислоты, при этом, 60 - 80 % - конъюгаты с глицином, 20 - 40 % - конъюгаты с таурином. Соотношение глициновых и тауриновых конъюгатов может меняться в зависимости от состава пищи: углеводы - глициновые конъюгаты, белки - тауриновые конъюгаты.


Рис. 8. Химическое строение холановой кислоты


Рис. 10. Химическое строение таурохолевой кислоты

Функции желчных кислот:

Поступая в 12-ти перстную кишку обеспечивают:

1. Эмульгирование жиров.

2. Активирование липазы.

3. Всасывание продуктов переваривания липидов путем образования комплекса - сложной мицеллы.

Перистальтика кишечника способствует дроблению жировых капель, а желчные кислоты поддерживают их во взвешенном состоянии. Эмульгирование жиров увеличивает поверхность раздела фаз, что очень важно для работы липазы, которая работает на границе раздела фаз. Это достигается за счет бифильности молекул желчных кислот - одна часть молекулы желчной кислоты является гидрофобной (располагается внутри жировой капли), другая гидрофильной (направлена наружу). Ограничивая жировую каплю, желчные кислоты обеспечивают ее дробление и увеличению площади поверхности. Продукты гидролиза - высшие жирные кислоты (ВЖК), диацилглицеролы (ДАГ) и моноацилглицеролы (МАГ) также обладают эмульгирующим действием.

Переваривание ТАГ

Панкреатическая липаза вырабатывается в неактивном виде, активируется колипазой и желчными кислотами. Оптимум рН липазы в присутствии желчи смещается с 8 до 6, т.е. до значения рН которое бывает после приема жирной пищи в верхних отделах тонкого кишечника. Есть данные о существовании 2-х типов липаз:

1-й тип - гидролизует связи 1 и 3;

2-й тип - (карбоксиэстераза) - гидролиз связи по 2-му положению.

Гидролиз жира идет в составе жировой капли на границе раздела фаз.


ТАГ

ДАГ 1,2-ДАГ



Глицерин

Рис. 11. Схема гидролиза триацилглицерола (ТАГ)

Под действием панкреатической липазы отщепляется жирная кислота по 1 или 3 положению, затем еще одна и образуется 2-моноацилглицерол. 2-МАГ может всасываться через стенку кишечника, но может отсекаться еще одна жирная кислота и образуется глицерол и жирные кислоты. Таким образом, конечными продуктами гидролиза жира будут ВЖК и глицерол.

Переваривание фосфолипидов

Осуществляется специальными липолитическими ферментами, которые называются фосфолипазами. Существуют следующие виды фосфолипаз: А 1 , А 2 , С и D.

Рис. 12. Схема гидролиза лецитина фосфолипазами

Фосфолипаза А 1 гидролизует эфирную связь в положении 1.

Фосфолипаза А 2 гидролизует эфирную связь в положении 2. Под действием фосфолипазы А 2 образуются очень токсичные продукты лизофосфатиды - вызывают разрушение клеточных мембран. Образуются в большом количестве под действием яда змей, скорпионов (за счет высокой активности фосфолипазы А 2 в яде этих животных), что приводит к гемолизу. Фосфолипаза А 2 , как и все ферменты является с химической точки зрения белком, причем фосфолипаза А 2 содержащаяся в яде с белком, чужеродным для организма человека, с соответствующей иммунной реакцией на него. В основе терапии укуса животных обладающих ядом гемолитического действия лежит переливание иммунизированной сыворотки крови, содержащей готовые антитела к фосфолипазе А 2 , как к белку. Следует учитывать, что для каждого вида ядовитого животного своя сыворотка. Существуют и комбинированные сыворотки. В желудочно-кишечном тракте человека очень важно согласованное действие фосфолипаз А 1 и А 2 на фосфолипид. Некоторые авторы считают, что в составе панкреатического и кишечного соков существуют специальные ферменты - лизофосфолипазы, осуществляющее гидролиз лизофосфолипидов при их случайном образовании. Защита от токсического действия фосфолипазы А 2 также достигается тем, что она вырабатывается в неактивном виде. Активируется трипсином путем отщепления гексапептида.

Фосфолипаза С - гидролизует связь между фосфорной кислотой и глицерином.

Фосфолипаза D - гидролизует связь между фосфорной кислотой и азотистым основанием.

Таким образом, под действием фосфолипаз в процессе переваривания фосфолипидов образуются следующие продукты:

1. Глицерол.

2. Высшие жирные кислоты.

3. Фосфорная кислота.

4. Азотистое основание.

Гидролиз эфиров холестерола осуществляется холестеролэстеразой на холестерол и жирные кислоты.

Первые два этапа переваривания липидов, эмульгирование и гидролиз , происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.

Переваривание в ротовой полости

У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.

Переваривание в желудке

Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока).

Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.

Переваривание в кишечнике

Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся при переваривании лизофосфолипиды также являются хорошим поверхностно-активным веществом, поэтому они способствуют дальнейшему эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм.

Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока.

Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы , для проявления ее активности требуется колипаза , которая помогает липазе расположиться на поверхности липидной капли.

Колипаза , в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С 1 и С 3 атомами углерода глицерола. В результате ее работы остаются 2-моноацилглицеролы (2-МАГ), которые всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью.

Полный ферментативный гидролиз триацилглицерола

В панкреатическом соке также имеется активируемая трипсином фосфолипаза А 2 , отщепляющая в фосфолипидах жирную кислоту от С 2 , также обнаружена активность фосфолипазы С и лизофосфолипазы .

Действие фосфолипазы А 2 и лизофосфолипазы на примере фосфатидилхолина

В кишечном соке также имеется активность фосфолипазы А 2 и фосфолипазы С.

Для работы всех указанных гидролитических ферментов в кишечнике необходимы ионы Са 2+ , способствующие удалению жирных кислот из зоны катализа.

Точки действия фосфолипаз

Образование мицелл

В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицерол ы, свободные жирные кислоты и свободный холестерол , формирующие структуры мицеллярного типа (размер уже около 5 нм). Свободный глицерол всасывается напрямую в кровь.

Лекция «ОБМЕН ЛИПИДОВ»

ПРЕВРАЩЕ НИЯ ЛИПИДОВ В ПРОЦЕССЕ ПИЩЕВАРЕНИЯ

Липиды, представляющие большую биологическую ценность для организма человека (триацилглицерины, фосфолипиды, холестерин и др.), поступают в него как компоненты пищи биологического происхождения.

Для переваривания липидов в желудочно-кишечном тракте необходимыми являются следующие условия:

    наличие гидролизующих липиды липолитических ферментов ;

    оптимальное для проявления высокой каталитической активности липолитических ферментов значение рН среды (нейтральное или слабощелочное);

    наличие эмульгаторов.

Все перечисленные условия создаются в кишечнике человека. Слюнные железы не способны продуцировать ферменты, гидролизующие жиры, вследствие чего в ротовой полости заметного переваривания жиров не происходит. В желудке взрослого человека переваривания жиров также не происходит, так как рН желудочного сока близок к 1,5, а оптимум рН среды для действия желудочного липолитического фермента - липазы находится в пределах 5,5-7,5. Следует отметить, что рН желудочного сока у новорожденных детей составляет около 5,0, что способствует перевариванию эмульгированных триацилглицеринов молока желудочной липазой. В кишечнике происходит нейтрализация соляной кислоты желудочного сока бикарбонатами кишечного сока и эмульгирование жиров. Эмульгирование липидов осуществляется выделяющимися в процессе нейтрализации пузырьками СО2 с участием натриевых или калиевых солей желчных кислот - холевой, 7-дезоксихолевой, глицинхолевой, таурохолевой и других в качестве поверхностно-активных веществ. Желчные кислоты поступают в кишечник из желчного пузыря в составе желчи. Эмульгированию способствуют также соли жирных кислот (мыла), образующиеся при гидролизе липидов. Но основная роль поверхностно-активных веществ в эмульгировании жиров принадлежит желчным кислотам.

Анионы желчных кислот резко уменьшают поверхностное натяжение на границе раздела фаз жир - вода, стабилизируют образовавшуюся эмульсию и образуют с жирными кислотами транспортный комплекс, в составе которого осуществляется их всасывание в стенки кишечника. Кроме того, желчные кислоты выполняют функцию активаторов липолитических ферментов.

Триацилглицерины, составляющие основную массу липидов пищи, гидролизуются под действием панкреатической липазы, которая поступает в кишечник в неактивном виде, а затем активируется желчными кислотами. Активная липаза имеет гидратированный гидрофильный участок и гидрофобную головку, контактирующую с триацилглицеринами на поверхности раздела фаз, где и происходит постадийный гидролиз:

В ходе гидролиза на первых стадиях быстро гидролизуются сложноэфирные связи 1 и 3, а затем медленно идет гидролиз 2-моноацилглицерина. Образующийся 2-моноацилглицерин затем может всасываться стенкой кишечника, и использоваться на ресинтез специфических для данного вида организмов триацилглицеринов (см. ниже).

В гидролизе фосфолипидов принимают также участие фосфолипазы. Поступающие с пищей эфиры холестерина, которыми богаты некоторые продукты (желток яиц, сливочное масло, икра и др.), гидролизуются холестеролэстеразой до свободного холестерина и жирных кислот. Холестеролэстераза проявляет свою активность только в присутствии желчных кислот.

Продукты гидролитического расщепления всех пищевых липидов всасываются в кишечнике. Глицерин и жирные кислоты с короткой углеродной цепью (до 10-12 атомов С) хорошо растворимы в воде и переходят в кровь в виде водного раствора. Длинноцепочечные жирные кислоты (более 14 атомов С) и моноацилглицерины не растворимы в воде, поэтому всасываются при участии желчных кислот, фосфолипидов и холестерина, образующих в кишечнике смесь состава 12,5: 2,5: 1,0, соответственно. В результате формируются мицеллы из продуктов гидролиза липидов, окруженных гидрофильной оболочкой из холестерина, фосфолипидов и желчных кислот. В последующем мицеллы распадаются, желчные кислоты снова возвращаются в кишечник, совершая 5-6 таких циклов ежесуточно.

Липиды, прежде чем поступить в лимфу, в кишечной стенке подвергаются ресинтезу, т.е. превращению в триацилглицерины. Важность этого процесса заключается в том, что вновь синтезированные специфические жиры отличаются по физико-химическим показателям от пищевых липидов и наиболее пригодны для данного организма. Поскольку все различия в составе триацилглицеринов определяются составом жирных кислот, то при ресинтезе липидов используются собственные жирные кислоты с длинной цепью, которые синтезируются в кишечнике из предшественников (лишь часть всосавшихся жирных кислот пригодна для ресинтеза). Жирные кислоты образуют ацил-КоА, а затем ацильные остатки переносятся на моноацилглицерин при участии трансацилаз, с последовательным образованием из моноацилглицерина ди- и триацилглицеринов.

Транспорт холестерина и ресинтезированных липидов осуществляется в составе липопротеинов, белковая часть которых (аполипопротеина) придает им растворимость в водных средах.

Основные метаболические пути жирных кислот, образующиеся при гидролизе триацилглицеринов пищи, представлены на рисунке.

Внутриклеточный гидролиз липидов

В тканях происходит непрерывное обновление липидов. Период полупревращения триацилглицеринов, играющих важную энергетическую роль в организме, колеблется от 2 до 18 суток. Другие липиды (фосфо-, сфинго-, гликолипиды и холестерин) преимущественно выполняют роль компонентов биологических мембран и обновляются менее интенсивно. Обновление липидов требует их предварительного внутриклеточного ферментативного гидролиза - липолиза.

Принято считать, что триацилглицерины выполняют в обмене липидов роль, аналогичную той, которую выполняет гликоген в обмене углеводов, а высшие жирные кислоты по своей энергетической ценности напоминают глюкозу. При физической нагрузке и других состояниях организма, требующих повышенных энергетических затрат, увеличивается потребление триацилглицеринов жировой ткани как энергетического резерва. Однако в качестве источника энергии могут использоваться только свободные жирные кислоты. Поэтому триацилглицерины сначала гидролизуются до глицерина и свободных жирных

кислот под действием специфических тканевых липаз. Этот процесс контролируется центральной нервной системой и запускается с помощью ряда гормонов (адреналин, норадреналин и др.), которые активируют гормоночувствительную триацилглицеринлипазу. Триацилглицеринлипаза расщепляет триацилглицерин на диацилглицерин и жирную кислоту. Затем при действии ди- и моноацилгли- церинлипаз происходит дальнейший липолиз до глицерина и жирных кислот.

Образующийся в результате липолиза глицерин может участвовать в глюконеогенезе или включаться в гликолиз с предварительным образованием глицерол-3-фосфата под действием глицеролкиназы и при участии АТФ:

Затем под действием дегидрогеназы глицерол-3-фосфат превращается в трио- зофосфаты, которые, собственно, и вовлекаются в глюконеогенез или гликолиз.

Жирные кислоты в составе белкового комплекса с альбумином крови поступают в клетки различных тканей и органов, где подвергаются окислению.

Биоокисление жирных кислот

Окисление жирных кислот в организмах - чрезвычайно важный процесс, он может протекать по α-, β- и ω-углеродным атомам жирных кислот. Основной путь окисления жирных кислот как в животных, так и в растительных тканях - это β-окисление.

β-Окисление жирных кислот. β-Окисление жирных кислот было впервые изучено в 1904 г. Ф. Кноопом. В дальнейшем было установлено, что β- окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 гг.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисление получил название цикла Кноопа-Линена.

По современным представлениям, процессу окисления жирных кислот предшествует их активация в цитоплазме с участием ацил-КоА-синтетазы и с использованием энергии АТФ:

В форме ацил-КоА жирные кислоты поступают в митохондрии, в матриксе которых они подвергаются β-окислению, включающему последовательность нижеприведенных ферментативных окислительно-восстановительных реакций.

Первой реакцией на пути расщепления жирных кислот является дегидрирование с образованием транс-2,3-ненасыщенных производных, катализируемое различными ФАД-содержащими ацил-КоА-дегидрогеназами:

Вторая реакция - гидратация двойной связи - катализируется еноил-КоА - гидратазой:

На следующей (третьей) стадии происходит дегидрирование спиртового фрагмента, которое осуществляется соответствующей дегидрогеназой и окисленной формой кофермента НАД:

В результате окисления образуется β-оксокислота, из-за чего весь процесс в целом и получил название β-окисления.

Четвертая, последняя реакция, катализируемая тиолазой, сопровождается окислительно-восстановительным расщеплением связи С α -С β с отщеплением ацетил-КоА и присоединением остатка КоА по месту разрыва межуглеродной связи:

Эта реакция носит название тиолиза и является высоко экзергонической, поэтому равновесие в ней всегда смещено в сторону образования продуктов.

Последовательное повторение этого цикла реакций приводит к полному распаду жирных кислот с четным числом атомов углерода до ацетил-КоА. В результате этого процесса образуются ацетил-КоА, ФАДН 2 и НАД-Н. Далее ацетил-КоА вступает в цикл Кребса, а восстановленные коферменты - в дыхательную цепь.

Особенности окисления жирных кислот с нечетным числом углеродных атомов заключается в том, что наряду с обычными продуктами окисления, образуется одна молекула СН 3 -СН 2 -СО~SКоА (пропионил-КоА), которая в процессе карбоксилирования переводится в сукцинил-КоА, поступающий в цикл Кребса.

Особенности окисления ненасыщенных жирных кислот определяются положением и числом двойных связей в их молекулах. До места двойной связи ненасыщенные жирные кислоты окисляются так же, как и насыщенные. Если двойная связь имеет ту же транс-конфигурацию и расположение, что и еноил-КоА, то далее окисление идет по обычному пути. В противном случае в реакциях участвует дополнительный фермент, который перемещает двойную связь в нужное положение и изменяет конфигурацию молекулы кислоты.

При β-окислении жирных кислот выделяется большое количество энергии. При полном окислении одного моля жирной кислоты, содержащей 2n атомов углерода, образуется n молей ацетил-КоА и (n-1) молей (ФАДН 2 + НАДН). Окисление ФАДН 2 дает 2АТФ, а при окислении НАДН образуется 3АТФ. Полное сгорание одного моля ацетил-КоА приводит к образованию 12 молей АТФ.

С учетом того, что 1 моль АТФ затрачивается на активацию жирной кислоты, баланс АТФ при полном окислении жирной кислоты с четным числом атомов углерода можно выразить следующей формулой:


Например, моль пальмитиновой кислоты, содержащая 16 атомов углерода, при окислении дает 130 молей АТФ. Таким образом, энергетическая ценность жирных кислот намного выше, чем глюкозы. Однако в процессе окисления глюкозы образуется оксалоацетат, который облегчает включение ацетильных остатков жирных кислот в цикл Кребса. В связи с этим, в биохимической литературе бытует выражение, что «жиры сгорают в пламени углеводов».

Для удобства восприятия цикл β-окисления жирных кислот схематично представлен на рисунке.

α-Окисление жирных кислот. Наряду с β-окислением жирные кислоты с достаточно большим числом атомов углерода (С13-С18) могут подвергаться α- окислению. Этот тип окисления особенно характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО2 с участием специфической пероксидазы:

В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

Суть второй реакции заключается в гидратации и окислении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы, содержащей окисленную форму кофермента НАД:

Затем цикл α-окисления повторяется снова. В сравнении с β-окислением α- окисление энергетически менее выгодно.

Затем ω-оксокислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы:

ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, т.е. окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действие монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2005 г

Лекция № 12 Тема: Переваривание и всасывание липидов. Транспорт липидов в организме. Обмен липопротеидов. Дислипопротеидемии.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Липиды - это разнообразная по строению группа органических веществ, которые объединены общим свойством - растворимостью в неполярных растворителях.

Классификация липидов

Липиды по способности к гидролизу в щелочной среде с образованием мыл делят на омыляемые (содержат в составе жирные кислоты) и неомыляемые (однокомпонентные).

Омыляемые липиды содержат в своем составе в основном спирты глицерин (глицеролипиды) или сфингозин (сфинголипиды), по количеству компонентов они делятся на простые (состоят из 2 классов соединений) и сложные (состоят из 3 и более классов).

К простым липидам относятся:

1) воска (сложный эфир высшего одноатомного спирта и жирной кислоты);

2) триацилглицериды, диацилглицериды, моноацилглицериды (сложный эфир глицерина и жирных кислот). У человека весом в 70 кг ТГ около 10 кг.

3) церамиды (сложный эфир сфингозина и жирной кислоты С18-26) – лежат в основе сфинголипидов;

К сложным липидам относятся:

1) фосфолипиды (содержат фосфорную кислоту):

а) фосфолипиды (сложный эфир глицерина и 2 жирных кислот, содержит фосфорную кислоту и аминоспирт)- фосфатидилсерин, фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол, фосфатидилглицерол;

б) кардиолипины (2 фосфатидные кислоты, соединенные через глицерин);

в) плазмалогены (сложный эфир глицерина и жирной кислоты, содержит ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) – фосфатидальэтаноламины, фосфатидальсерины, фосфатидальхолины;

г) сфингомиелины (сложный эфир сфингозина и жирной кислоты С18-26, содержит фосфорную кислоту и аминоспирт - холин);

2) гликолипиды (содержат углевод):

а) цереброзиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу: глюкозу или галактозу);

б) сульфатиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу (глюкозу или галактозу) к которой присоединена в 3 положение серная кислота). Много в белом веществе;

в) ганглиозиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит олигосахарид из гексоз и сиаловых кислот). Находятся в ганглиозных клетках;

К неомыляемым липидам относят стероиды, жирные кислоты (структурный компонент омыляемых липидов), витамины А, Д, Е, К и терпены (углеводороды, спирты, альдегиды и кетоны с несколькими звеньями изопрена).

Биологические функции липидов

В организме липиды выполняют разнообразные функции:

    Структурная . Сложные липиды и холестерин амфифильны, они образуют все клеточные мембраны; фосфолипиды выстилают поверхность альвеол, образуют оболочку липопротеинов. Сфингомиелины, плазмалогены, гликолипиды образуют миелиновые оболочки и другие мембраны нервных тканей.

    Энергетическая . В организме до 33% всей энергии АТФ образуется за счет окисления липидов;

    Антиоксидантная . Витамины А, Д, Е, К препятсвуют СРО;

    Запасающая . Триацилглицериды являются формой хранения жирных кислот;

    Защитная . Триацилглицериды, в составе жировой ткани, обеспечивают теплоизоляционную и механическую защиту тканей. Воска образуют защитную смазку на коже человека;

    Регуляторная . Фосфотидилинозитолы являются внутриклеточными посредниками в действии гормонов (инозитолтрифосфатная система). Из полиненасыщенных жирных кислот образуютсяэйкозаноиды (лейкотриены, тромбоксаны, простагландины), вещества, регулирующие иммуногенез, гемостаз, неспецифическую резистентность организма, воспалительные, аллергические, пролиферативные реакции. Из холестерина образуются стероидные гормоны: половые и кортикоиды;

    Из холестерина синтезируется витамин Д, желчные кислоты;

    Пищеварительная . Желчные кислоты, фосфолипиды, холестерин обеспечивают эмульгирование и всасывание липидов;

    Информационная . Ганглиозиды обеспечивают межклеточные контакты.

Источником липидов в организме являются синтетические процессы и пища. Часть липидов в организме не синтезируются (полиненасыщенные жирные кислоты - витамин F, витамины А, Д, Е, К), они являются незаменимыми и поступают только с пищей.

Принципы нормирования липидов в питании

В сутки человеку требуется съедать 80-100г липидов, из них 25-30г растительного масла, 30-50г сливочного масла и 20-30г жира, животного происхождения. Растительные масла содержат много полиеновых незаменимых (линолевая до 60%, линоленовая) жирных кислот, фосфолипидов (удаляются при рафинировании). Сливочное масло содержит много витаминов А, Д, Е. В пищевых липидах содержаться в основном триглицериды (90%). В сутки с пищей поступает около 1г фосфолипидов, 0,3-0,5 г холестерина, в основном в виде эфиров.

Потребность в пищевых липидах зависит от возраста. Для детей грудного возраста основным источником энергии являются липиды, а у взрослых людей - глюкоза. Новорожденным от 1 до 2 недель требуется липидов 1,5 г/кг, детям – 1г/кг , взрослым – 0,8 г/кг, пожилым – 0,5 г/кг. Потребность в липидах увеличивается на холоде, при физических нагрузках, в период выздоровления и при беременности.

Все природные липиды хорошо перевариваются, масла усваиваются лучше жиров. При смешанном питании сливочное масло усваивается на 93-98%, свиной жир - на 96-98%, говяжий жир – на 80-94%, подсолнечное масло – на 86-90%. Длительная тепловая обработка (> 30 мин) разрушает полезные липиды, при этом образуются токсические продукты окисления жирных кислот и канцерогенные вещества.

При недостаточном поступлении липидов с пищей снижается иммунитет, снижается продукция стероидных гормонов, нарушается половая функция. При дефиците линолевой кислоты развивается тромбоз сосудов и увеличивается риск раковых заболеваний. При избытке липидов в пище развивается атеросклероз и увеличивается риск рака молочной железы и толстой кишки.

Переваривание и всасывание липидов

Переваривание это гидролиз пищевых веществ до их ассимилируемых форм.

Лишь 40-50% пищевых липидов расщепляется полностью, а от 3% до 10% пищевых липидов могут всасываться в неизмененном виде.

Так как липиды не растворимы в воде, их переваривание и всасывание имеет свои особенности и протекает в несколько стадий:

1) Липиды твердой пищи при механическом воздействии и под влиянием ПАВ желчи смешиваются с пищеварительными соками с образованием эмульсии (масло в воде). Образование эмульсии необходимо для увеличения площади действия ферментов, т.к. они работают только в водной фазе. Липиды жидкой пищи (молоко, бульон и т.д.) поступают в организм сразу в виде эмульсии;

2) Под действием липаз пищеварительных соков происходит гидролиз липидов эмульсии с образованием водорастворимых веществ и более простых липидов;

3) Выделенные из эмульсии водорастворимые вещества всасываются и поступают в кровь. Выделенные из эмульсии более простые липиды, соединяясь с компонентами желчи, образуют мицеллы;

4) Мицеллы обеспечивают всасывание липидов в клетки эндотелия кишечника.

Ротовая полость

В ротовой полости происходит механическое измельчение твердой пищи и смачивание ее слюной (рН=6,8). Здесь начинается гидролиз триглицеридов с короткими и средними жирными кислотами, которые поступают с жидкой пищей в виде эмульсии. Гидролиз осуществляет лингвальная триглицеридлипаза («липаза языка», ТГЛ), которую секретируют железы Эбнера, находящиеся на дорсальной поверхности языка.

Желудок

Так как «липаза языка» действует в диапазоне 2-7,5 рН, она может функционировать в желудке в течение 1-2 часов, расщепляя до 30% триглицеридов с короткими жирными кислотами. У грудных детей и детей младшего возраста она активно гидролизует ТГ молока, которые содержат в основном жирные кислоты с короткой и средней длиной цепей (4-12 С). У взрослых людей вклад «липазы языка» в переваривание ТГ незначителен.

В главных клетках желудка вырабатывается желудочная липаза , которая активна при нейтральном значении рН, характерном для желудочного сока детей грудного и младшего возраста, и не активна у взрослых (рН желудочного сока ~1,5). Эта липаза гидролизует ТГ, отщепляя, в основном, жирные кислоты у третьего атома углерода глицерола. Образующиеся в желудке ЖК и МГ далее участвуют в эмульгировании липидов в двенадцатиперстной кишке.

Тонкая кишка

Основной процесс переваривания липидов происходит в тонкой кишке.

1. Эмульгирование липидов (смешивание липидов с водой) происходит в тонкой кишке под действием желчи. Желчь синтезируется в печени, концентрируется в желчном пузыре и после приёма жирной пищи выделяется в просвет двенадцатиперстной кишки (500-1500 мл/сут).

Жёлчь это вязкая жёлто-зелёная жидкость, имеет рН=7,3-8.0, содержит Н 2 О – 87-97%, органические вещества (желчные кислоты – 310 ммоль/л (10,3-91,4 г/л), жирные кислоты – 1,4-3,2 г/л, пигменты желчные – 3,2 ммоль/л (5,3-9,8 г/л), холестерин – 25 ммоль/л (0,6-2,6) г/л, фосфолипиды – 8 ммоль/л) и минеральные компоненты (натрий 130-145 ммоль/л, хлор 75-100 ммоль/л, НСО 3 - 10-28 ммоль/л, калий 5-9 ммоль/л). Нарушение соотношение компонентов желчи приводит к образованию камней.

Жёлчные кислоты (производные холановой кислоты) синтезируются в печени из холестерина (холиевая, и хенодезоксихолиевая кислоты) и образуются в кишечнике (дезоксихолиевая, литохолиевая, и д.р. около 20) из холиевой и хенодезоксихолиевой кислот под действием микроорганизмов.

В желчи желчные кислоты присутствуют в основном в виде конъюгатов с глицином (66-80%) и таурином (20-34%), образуя парные желчные кислоты: таурохолевую, гликохолевую и д.р.

Соли жёлчных кислот, мыла, фосфолипиды, белки и щелочная среда желчи действуют как детергенты (ПАВ), они снижают поверхностное натяжение липидных капель, в результате крупные капли распадаются на множество мелких, т.е. происходит эмульгирование. Эмульгированию также способствует перистальтика кишечника и выделяющийся, при взаимодействии химуса и бикарбонатов, СО 2: Н + + НСО 3 - → Н 2 СО 3 → Н 2 О + СО 2 .

2. Гидролиз триглицеридов осуществляет панкреатическая липаза. Ее оптимум рН=8, она гидролизует ТГ преимущественно в положениях 1 и 3, с образованием 2 свободных жирных кислот и 2-моноацилглицерола (2-МГ). 2-МГ является хорошим эмульгатором. 28% 2-МГ под действием изомеразы превращается в 1-МГ. Большая часть 1-МГ гидролизуется панкреатической липазой до глицерина и жирной кислоты.

В поджелудочной железе панкреатическая липаза синтезируется вместе с белком колипазой. Колипаза образуется в неактивном виде и в кишечнике активируется трипсином путем частичного протеолиза. Колипаза своим гидрофобным доменом связывается с поверхностью липидной капли, а гидрофильным способствует максимальному приближению активного центра панкреатической липазы к ТГ, что ускоряет их гидролиз.

3. Гидролиз лецитина происходит с участием фосфолипаз (ФЛ): А 1 , А 2 , С,Dи лизофосфолипазы (лизоФЛ).

В результате действия этих четырех ферментов фосфолипиды расщепляются до свободных жирных кислот, глицерола, фосфорной кислоты и аминоспирта или его аналога, например, аминокислоты серина, однако часть фосфолипидов расщепляется при участии фосфолипазы А2 только до лизофосфолипидов и в таком виде может поступать в стенку кишечника.

ФЛ А 2 активируется частичным протеолизом с участием трипсина и гидролизует лецитин до лизолецитина. Лизолецитин является хорошим эмульгатором. ЛизоФЛ гидролизует часть лизолецитина до глицерофосфохолина.Остальные фосфолипиды не гидролизуются.

4. Гидролиз эфиров холестерина до холестерина и жирных кислот осуществляет холестеролэстераза, фермент поджелудочной железы и кишечного сока.

10.3.1. Основным местом переваривания липидов является верхний отдел тонкого кишечника. Для переваривания липидов необходимы следующие условия:

  • наличие липолитических ферментов;
  • условия для эмульгирования липидов;
  • оптимальные значения рН среды (в пределах 5,5 - 7,5).

10.3.2. В расщеплении липидов участвуют различные ферменты. Пищевые жиры у взрослого человека расщепляются в основном панкреатической липазой; обнаруживается также липаза в кишечном соке, в слюне, у грудных детей активна липаза в желудке. Липазы относятся к классу гидролаз, они гидролизуют сложноэфирные связи -О-СО- с образованием свободных жирных кислот, диацилглицеролов, моноацилглицеролов, глицерола (рисунок 10.3).

Рисунок 10.3. Схема гидролиза жиров.

Поступающие с пищей глицерофосфолипиды подвергаются воздействию специфических гидролаз - фосфолипаз, расщепляющих сложноэфирные связи между компонентами фосфолипидов. Специфичность действия фосфолипаз показана на рисунке 10.4.

Рисунок 10.4. Специфичность действия ферментов, расщепляющих фосфолипиды.

Продуктами гидролиза фосфолипидов являются жирные кислоты, глицерол, неорганический фосфат, азотистые основания (холин, этаноламин, серин).

Пищевые эфиры холестерола гидролизуются панкреатической холестеролэстеразой с образованием холестерола и жирных кислот.

10.3.3. Уясните особенности структуры желчных кислот и их роль в переваривании жиров. Желчные кислоты - конечный продукт обмена холестерола, образуются в печени. К ним относятся: холевая (3,7,12-триоксихолановая), хенодезоксихолевая (3,7-диоксихолановая)и дезоксихолевая (3, 12-диоксихолановая) кислоты (рисунок 10.5, а). Две первые являются первичными желчными кислотами (образуются непосредственно в гепатоцитах), дезоксихолевая - вторичной (так как образуется из первичных желчных кислот под влиянием микрофлоры кишечника).

В желчи эти кислоты присутствуют в конъюгированной форме, т.е. в виде соединений с глицином Н2 N -СН2 -СООН или таурином Н2 N -СН2 -СН2 - SO3 H (рисунок 10.5, б).

Рисунок 10.5. Строение неконъюгированных (а) и конъюгированных (б) желчных кислот.

15.1.4. Желчные кислоты обладают амфифильными свойствами: гидроксильные группы и боковая цепь гидрофильны, циклическая структура гидрофобна. Эти свойства обусловливают участие желчных кислот в переваривании липидов:

1) желчные кислоты способны эмульгировать жиры, их молекулы своей неполярной частью адсорбируются на поверхности жировых капель, в то же время гидрофильные группы вступают во взаимодействие с окружающей водной средой. В результате снижается поверхностное натяжение на границе раздела липидной и водной фаз, вследствие чего крупные жировые капли разбиваются на более мелкие;

2) желчные кислоты наряду с колипазой желчи участвуют в активировании панкреатической липазы , сдвигая её оптимум рН в кислую сторону;

3) желчные кислоты образуют с гидрофобными продуктами переваривания жиров водорастворимые комплексы, что способствует их всасыванию в стенку тонкого кишечника.

Желчные кислоты, проникающие в процессе всасывания вместе с продуктами гидролиза в энтероциты, через портальную систему поступают в печень. Эти кислоты могут повторно секретироваться с желчью в кишечник и участвовать в процессах переваривания и всасывания. Такая энтеро-гепатическая циркуляция желчных кислот может осуществляться до 10 и более раз в сутки.

15.1.5. Особенности всасывания продуктов гидролиза жиров в кишечнике представлены на рисунке 10.6. В процессе переваривания пищевых триацилглицеролов около 1/3 их расщепляется полностью до глицерола и свободных жирных кислот, приблизительно 2/3 гидролизуется частично с образованием моно- и диацилглицеролов, небольшая часть совсем не расщепляется. Глицерол и свободные жирные кислоты с длиной цепи до 12 углеродных атомов растворимы в воде и проникают в энтероциты, а оттуда через воротную вену в печень. Более длинные жирные кислоты и моноацилглицеролы всасываются при участии конъюгированных желчных кислот, формирующих мицеллы. Нерасщеплённые жиры, по-видимому, могут поглощаться клетками слизистой кишечника путём пиноцитоза. Нерастворимый в воде холестерол, подобно жирным кислотам, всасывается в кишечнике в присутствии желчных кислот.

Рисунок 10.6. Переваривание и всасывание ацилглицеролов и жирных кислот.