Воздушная проводимость. Исследование воздушной и костной проводимости звука, слуховые пробы вебера, ринне

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).

Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.


4. Слуховые косточки. Строение и участие в формировании слуха.

СЛУХОВЫЕ КОСТОЧКИ - комплекс из мелких косточек в среднем ухе. Находятся в барабанной полости три маленькие слуховые косточки - молоточек, наковальня и стремя. Колебания барабанной перепонки (в барабанной полости) улавливаются молоточком, усиливаютсядвижениями наковальни и передаются на стремечко,

которое соединено с овальным окном в УЛИТКЕ внутреннего уха.

1.Молоточек снабжен округлой головкой, которая при посредстве шейки, соединяется с рукояткой.

2. Наковальня, имеет тело, и два расходящихся отростка, из которых один более короткий, направлен назад и упирается в ямку, а другой - длинный отросток, идет параллельно рукоятке молоточка медиально и кзади от нее и на своем конце имеет небольшое овальное утолщение, сочленяющееся со стременем.

3. Стремя, по своей форме оправдывает свое название и состоит из маленькой головки, несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой, и задней, более изогнутой, которые соединяются с овальной пластинкой, вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью. Пластинка стремени соединяется с краями при посредстве соединительной ткани.

Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков.

Цепь косточек выполняет две функции:

1) костную проводимость звука

2) механическую передачу звуковых колебаний к овальному окну преддверия.


5. Строение внутреннего уха. Звуковой и вестибулярный анализатор. Анатомия, физиология. Ототопика.

Внутреннее ухо, или лабиринт, располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом, через который выходит из лабиринта.

Костный лабиринт состоит из: вестибулярный лабиринта, костного лабиринта, перепончатого лабиринта, улитки; преддверия; полукружных каналов.

У современного человека улитка находится впереди, а полукружные каналы сзади, между ними расположена полость неправильной формы - преддверие. Внутри костного лабиринта находится перепончатый лабиринт, который имеет точно такие же три части, но меньших размеров, а между стенками обоих лабиринтов находится небольшая щель, заполненная прозрачной жидкостью - перилимфой.

Улитка. Каждая часть внутреннего уха выполняет определенную функцию. Улитка является органом слуха: звуковые колебания, которые из наружного слухового прохода через среднее ухо попадают во внутренний слуховой проход, в виде вибрации передаются жидкости, заполняющей улитку. Внутри улитки находится основная мембрана (нижняя перепончатая стенка), на которой расположен Кортиев орган - скопление разнообразных опорных клеток и особых сенсорно-эпителиальных волосковых клеток, которые через колебания перилимфы воспринимают слуховые раздражения в диапазоне 16-20000 колебаний в секунду, преобразуют их и передают на нервные окончания VIII пары черепных нервов - преддверно-улиткового нерва; дальше нервный импульс поступает в корковый слуховой центр головного мозга.

Преддверие и полукружные каналы - органы чувства равновесия и положения тела в пространстве. Расположены в трёх взаимно перпендикулярных плоскостях и заполнены полупрозрачной студенистой жидкостью; внутри каналов находятся чувствительные волоски, погруженные в жидкость, и при малейшем перемещении тела или головы в пространстве жидкость в этих каналах смещается, надавливая на волоски и порождая импульсы в окончаниях вестибулярного нерва - в мозг мгновенно поступает информация об изменении положения тела. Работа вестибулярного аппарата позволяет человеку точно ориентироваться в пространстве при самых сложных движениях - например, прыгнув в воду с трамплина и при этом несколько раз перевернувшись в воздухе, в воде ныряльщик мгновенно узнаёт, где находится верх, а где - низ.

Различают костный и перепончатый лабиринты, причем последний лежит внутри первого. Костный лабиринт, представляет ряд мелких сообщающихся между собой полостей, стенки которых состоят из компактной кости. В нем различают три отдела: преддверие, полукружные каналы и улитку; улитка лежит спереди, медиально и несколько книзу от преддверия, а полукружные каналы - кзади, латерально и кверху от него.

Преддверие , образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется отверстие, занятое пластинкой стремени. Другое отверстие, затянутое находится у начала улитки. Посредством гребешка, проходящего на внутренней поверхности медиальной стенкипреддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, соответствующая началу перепончатого хода улитки.

Костные полукружные каналы , - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой.

Перепончатый лабиринт, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенкиего образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой.Т.К.перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, наполненное перилимфой. В преддверии костного лабиринта заложены две части перепончатого лабиринта: эллиптический мешочек и сферический мешочек. Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях. Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом.

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук .

Краткое изложение

Статья получилось большой и подробной — чтобы понять, как расшифровать аудиограмму, надо сначала познакомиться с основными терминами аудиометрии и разобрать примеры. Если у вас нет времени долго читать и разбираться в деталях, в карточке ниже — краткое изложение статьи.

Аудиограмма — график слуховых ощущений пациента. Она помогает диагностировать нарушения слуха. На аудиограмме две оси: горизонтальная — частота (количество звуковых колебаний в секунду, выражается в герцах) и вертикальная — интенсивность звука (относительная величина, выражается в децибелах). На аудиограмме отмечается костная проводимость (звук, который в виде вибраций доходит до внутреннего уха через кости черепа) и воздушная проводимость (звук, который достигает внутреннего уха обычным путём — через наружное и среднее ухо).

При аудиометрии пациенту подают сигнал разной частоты и интенсивности и отмечают точками величину минимального звука, который слышат пациент. Каждая точка показывает минимальную интенсивность звука, при которой пациент слышит на конкретной частоте. Соединив точки, получаем график, а точнее, два — один для костного звукопроведения, другой — для воздушного.

Норма слуха — когда графики лежат в диапазоне от 0 до 25 дБ. Разница между графиком костного и воздушного звукопроведения называется костно-воздушным интервалом. Если график костного звукопроведения в норме, а график воздушного лежит ниже нормы (присутстувет костно-воздушный интервал), это показатель кондуктивной тугоухости. Если график костного звукопроведения повторяет график воздушного, и оба лежат ниже нормального диапазона, это говорит о сенсоневральной тугоухости. Если чётко определяется костно-воздушный интервал, и при этом оба графика показывают нарушения, значит, тугоухость смешанная.

Основные понятия аудиометрии

Чтобы понять, как расшифровать аудиограмму, сначала остановимся на некоторых терминах и самой методике аудиометрии.

У звука две основные физические характеристики: интенсивность и частота.

Интенсивность звука определяется силой звукового давления, которое у человека весьма вариабельно. Поэтому для удобства принято пользоваться относительными величинами, такими как децибелы (дБ) — это десятичная шкала логарифмов.

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (Гц). Условно диапазон звуковых частот делят на низкие — ниже 500Гц, средние (речевые) 500−4000Гц и высокие — 4000Гц и выше.

Аудиометрия — это измерение остроты слуха. Эта методика субъективна и требует обратной связи с пациентом. Исследующий (тот, кто проводит исследование) при помощи аудиометра подаёт сигнал, а исследуемый (слух которого исследуют) даёт знать, слышит он этот звук или нет. Чаще всего для этого он нажимает на кнопку, реже — поднимает руку или кивает, а дети складывают игрушки в корзину.

Существуют различные виды аудиометрии: тональная пороговая, надпороговая и речевая. На практике наиболее часто применяется тональная пороговая аудиометрия, которая определяет минимальный порог слуха (самый тихий звук, который слышит человек, измеряемый в децибелах (дБ)) на различных частотах (как правило, в диапазоне 125Гц — 8000 Гц, реже до 12 500 и даже до 20 000 Гц). Эти данные отмечаются на специальном бланке.

Аудиограмма — график слуховых ощущений пациента. Эти ощущения могут зависеть как от самого человека, его общего состояния, артериального и внутричерепного давления, настроения и т. д. , так и от внешних факторов — атмосферных явлений, шума в помещении, отвлекающих моментов и т. д.

Как строится график аудиограммы

Для каждого уха раздельно измеряют воздушную проводимость (через наушники) и костную проводимость (через костный вибратор, который располагают позади уха).

Воздушная проводимость — это непосредственно слух пациента, а костная проводимость — слух человека, исключая звукопроводящую систему (наружное и среднее ухо), её ещё называют запасом улитки (внутреннего уха).

Костная проводимость обусловлена тем, что кости черепа улавливают звуковые вибрации, которые поступают ко внутреннему уху. Таким образом, если имеется препятствие в наружном и среднем ухе (любые патологические состояния), то звуковая волна достигает улитки благодаря костной проводимости.

Бланк аудиограммы

На бланке аудиограммы чаще всего правое и левое ухо изображены раздельно и подписаны (чаще всего правое ухо слева, а левое ухо справа), как на рисунках 2 и 3. Иногда оба уха отмечаются на одном бланке, их различают либо цветом (правое ухо всегда красным, а левое — синим), либо символами (правое кругом или квадратом (0---0---0), а левое — крестом (х---х---х)). Воздушную проводимость всегда отмечают сплошной линией, а костную — прерывистой.

По вертикали отмечают уровень слуха (интенсивность стимула) в децибелах (дБ) с шагом в 5 или 10 дБ, сверху вниз, начиная от −5 или −10, а заканчивая 100 дБ, реже 110 дБ, 120 дБ. По горизонтали отмечаются частоты, слева направо, начиная от 125 Гц, далее 250 Гц, 500Гц, 1000Гц (1кГц), 2000Гц (2кГц), 4000Гц (4кГц), 6000Гц (6кГц), 8000Гц (8кГц) и т. д. , могут быть некоторые вариации. На каждой частоте отмечается уровень слуха в децибелах, потом точки соединяют, получается график. Чем выше график, тем лучше слух.


Как расшифровать аудиограмму

При обследовании больного в первую очередь необходимо определить топику (уровень) поражения и степень слуховых нарушений. Правильно выполненная аудиометрия даёт ответ на оба этих вопроса.

Патология слуха может быть на уровне проведения звуковой волны (за этот механизм отвечает наружное и среднее ухо), такую тугоухость называют проводниковой или кондуктивной; на уровне внутреннего уха (рецепторный аппарат улитки), данная тугоухость является сенсоневральной (нейросенсорной), иногда бывает сочетанное поражение, такую тугоухость называют смешанной. Крайне редко встречаются нарушения на уровне слуховых проводящих путей и коры головного мозга, тогда говорят о ретрокохлеарной тугоухости.

Аудиограммы (графики) могут быть восходящими (чаще всего при кондуктивной тугоухости), нисходящими (чаще при сенсоневральной тугоухости), горизонтальными (плоскими), а также иной конфигурации. Пространство между графиком костной проводимости и графиком воздушной — это костно-воздушный интервал. По нему определяют, с каким видом тугоухости мы имеем дело: нейросенсорной, кондуктивной или смешанной.

Если график аудиограммы лежит в диапазоне от 0 до 25 дБ по всем исследуемым частотам, то считается, что у человека нормальный слух. Если график аудиограммы спускается ниже, то это патология. Тяжесть патологии определяется степенью тугоухости. Существуют различные расчёты степени тугоухости. Однако наиболее широкое распространение получила международная классификация тугоухости, по которой рассчитывается среднеарифметическая потеря слуха на 4 основных частотах (наиболее важных для восприятия речи): 500 Гц, 1000 Гц, 2000 Гц и 4000 Гц.

1 степень тугоухости — нарушение в пределах 26−40 дБ,
2 степень — нарушение в диапазоне 41−55 дБ,
3 степень — нарушение 56−70 дБ,
4 степень — 71−90 дБ и свыше 91 дБ — зона глухоты.

1 степень определяется как лёгкая, 2 — среднетяжёлая, 3 и 4 — тяжёлая, а глухота — крайне тяжёлая.

Если костное звукопроведение в норме (0−25дБ), а воздушное проведение нарушено, это показатель кондуктивной тугоухости . В случаях, когда нарушено и костное, и воздушное звукопроведение, но есть костно-воздушный интервал, у пациента смешанный тип тугоухости (нарушения и в среднем и во внутреннем ухе). Если костное звукопроведение повторяет воздушное, то это сенсоневральная тугоухость . Однако при определении костной звукопроводимости необходимо помнить, что низкие частоты (125Гц, 250Гц) дают эффект вибрации и исследуемый может принимать это ощущение за слуховое. Поэтому нужно критически относиться к костно-воздушному интервалу на данных частотах, особенно при тяжёлых степенях тугоухости (3−4 степени и глухоте).

Кондуктивная тугоухость редко бывает тяжелой степени, чаще 1−2 степень тугоухости. Исключения составляют хронические воспалительные заболевания среднего уха, после хирургических вмешательствах на среднем ухе и т. д. , врожденные аномалии развития наружного и среднего уха (микроотии, атрезии наружных слуховых проходов и т. д.), а также при отосклерозе.

Рисунок 1 — пример нормальной аудиограммы: воздушная и костная проводимость в пределах 25 дБ во всём диапазоне исследуемых частот с обеих сторон .

На рисунках 2 и 3 представлены типичные примеры кондуктивной тугоухости: костное звукопроведение в пределах нормы (0−25дБ), а воздушное нарушено, имеется костно-воздушный интервал.

Рис. 2. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Чтобы рассчитать степень тугоухости, складываем 4 величины — интенсивность звука на 500, 1000, 2000 и 4000 Гц и делим на 4, чтобы получить среднее арифметическое. Получаем справа: на 500Гц — 40дБ, 1000Гц — 40 дБ, 2000Гц — 40 дБ, 4000Гц — 45дБ, в сумме — 165 дБ. Делим на 4, равно 41,25 дБ. Согласно международной классификации, это 2 степень тугоухости. Определяем тугоухость слева: 500Гц — 40дБ, 1000Гц —— 40 дБ, 2000Гц — 40 дБ, 4000Гц — 30дБ = 150, разделив на 4, получаем 37,5 дБ, что соответствует 1 степени тугоухости. По данной аудиограмме можно сделать следующее заключение: двусторонняя кондуктивная тугоухость справа 2 степени, слева 1 степени.

Рис. 3. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Аналогичную операцию выполняем для рисунка 3. Степень тугоухости справа: 40+40+30+20=130; 130:4=32,5, т. е. 1 степень тугоухости. Слева соответственно: 45+45+40+20=150; 150:4=37,5, что также является 1 степенью. Таким образом, можно сделать следующее заключение: двусторонняя кондуктивная тугоухость 1 степени.

Примерами сенсоневральной тугоухости являются рисунки 4 и 5. На них видно, что костная проводимость повторяет воздушную. При этом на рисунке 4 слух на правом ухе в норме (в пределах 25 дБ), а слева имеется сенсоневральная тугоухость, с преимущественным поражением высоких частот.

Рис. 4. Аудиограмма пациента с сенсоневральной тугоухостью слева, правое ухо в норме .

Степень тугоухости рассчитываем для левого уха: 20+30+40+55=145; 145:4=36,25, что соответствует 1 степени тугоухости. Заключение: левосторонняя сенсоневральная тугоухость 1 степени.

Рис. 5. Аудиограмма пациента с двусторонней сенсоневральной тугоухостью .

Для данной аудиограммы показательным является отсутствие костного проведения слева. Это объясняется ограниченностью приборов (максимальная интенсивность костного вибратора 45−70 дБ). Рассчитываем степень тугоухости: справа: 20+25+40+50=135; 135:4=33,75, что соответствует 1 степени тугоухости; слева — 90+90+95+100=375; 375:4=93,75, что соответствует глухоте. Заключение: двусторонняя сенсоневральная тугоухость справа 1 степени, слева глухота.

Аудиограмма при смешанной тугоухости отображена на рисунке 6.

Рисунок 6. Имеются нарушения как воздушного, так и костного звукопроведения. Чётко определяется костно-воздушный интервал .

Степень тугоухости рассчитываем согласно международной классификации, которая составляет для правого уха среднеарифметическое значение 31,25дБ, а для левого — 36,25дБ, что соответствует 1 степени тугоухости. Заключение: двусторонняя тугоухость 1 степени по смешанному типу.

Сделали аудиограмму. Что потом?

В заключении следует отметить, что аудиометрия не является единственным методом исследования слуха. Как правило, для установления окончательного диагноза необходимо комплексное аудиологическое исследование, которое помимо аудиометрии включает акустическую импедансометрию, отоакустическую эмиссию, слуховые вызванные потенциалы, исследование слуха при помощи шёпотной и разговорной речи. Также в ряде случаев аудиологическое обследование необходимо дополнять другими методами исследования, а также привлечением специалистов смежных специальностей.

После диагностики слуховых нарушений необходимо решать вопросы лечения, профилактики и реабилитации больных с тугоухостью.

Наиболее перспективно лечение при кондуктивной тугоухости. Выбор направления лечения: медикаментозного, физиотерапевтического или хирургического определяется лечащим врачом. В случае сенсоневральной тугоухости улучшение или восстановление слуха возможно только при острой её форме (при продолжительности тугоухости не более 1 месяца).

В случаях стойкой необратимой потери слуха врач определяет методы реабилитации: слухопротезирование или кохлеарную имплантацию. Такие пациенты должны не реже 2 раз в год наблюдаться у сурдолога, а с целью профилактики дальнейшего прогрессирования тугоухости получать курсы медикаментозного лечения.

Для исследования костной проводимости костный телефон приставляется либо к срединной линии черепа, либо к области сосцевидного отростка. Следует по возможности прижимать вибратор с одинаковой силой с таким расчетом, чтобы получить оптимальное звучание.

Для исследования костной проводимости с сосцевидного отростка выбирают участок в области проекции антрума, откуда звук проводится лучше всего, но при этом следует избегать соприкосновения телефона с ушной раковиной. Ввиду множества возможных ошибок получение правильной костной аудиограммы представляет собой сложную задачу. Первое затруднение возникает при необходимости изолированного исследования одного уха; звук костного телефона практически всегда достигает противоположного лабиринта, и в результате получается суммация эффекта. Установлено, что звук костного телефона, приставленного к одному сосцевидному отростку, проводится к противоположному лабиринту очень мало изменившимся в силе (интенсивность звука падает обычно на 5 -8 дб).

Обычно при определении костной проводимости маскирующей звук (проведенный при помощи воздушной проводимости в неисследуемое ухо) должен иметь интенсивность на 20 дб больше, чем звук, которым исследуют. Некоторые авторы предпочитают индивидуально подбирать силу маскирующего звука, усиливая его до такой степени, чтобы звук костного телефона слышался в исследуемом ухе.

В этих условиях маскирующий звук, как правило, не искажает данные, получаемые от исследуемого уха. При некоторых формах тугоухости, однако, очень трудно получить вполне надежные результаты.

Наиболее неблагоприятны условия в тех случаях, когда неисследуемое ухо обладает хорошей костной и плохой воздушной проводимостью (поражение звукопроводящего аппарата). Тогда маскировочный тон должен иметь очень большую интенсивность, а это, как указывалось выше, может искажать костные пороги исследуемого уха.

При исследовании костной проводимости, кроме того, всегда нужно помнить, что звук от костного телефона (особенно при высоких частотах) может проводиться через воздух как к исследуемому, так и к неисследуемому уху (переслушивание через воздух). Переслушивание неисследуемым ухом устраняют путем заглушения его маскирующим звуком; труднее бороться с проведением звука костного телефона через воздух в одноименное (исследуемое) ухо можно на момент закрывать слуховой проход исследуемого уха. Целесообразно также во время опыта приподнимать костный телефон над поверхностью сосцевидного отростка, и если нет переслушивания через воздух, то звук должен замирать.

Необходимо иметь в виду, что при исследовании костной проводимости уровень окружающего шума имеет большее значение, чем при исследовании воздушной проводимости. В последнем случае закрывание уха подушкой воздушного телефона защищает его от окружающего шума. Так как слух на исследуемое ухо понижен, то им плохо воспринимается и окружающий шум; поэтому не требуется, чтобы воздушная аудиометрия обязательно проводилась в звукоизолированной камере - она может быть выполнена в тихом помещении, где уровень шумового фона не превышает 25 дб.

Исследование же костной проводимости нормального уха в такой обстановке приведет к искусственному повышению порогов вследствие маскирующего действия окружающего шума. Это доказывается тем, что в заглушенной камере пороги костной проводимости для здорового уха оказываются ниже. Целесообразно поэтому исследовать костную проводимость либо в заглушенной камере, либо в обычной обстановке, но при открытых ушах и с закрытыми ушами.

Сравнение кривых костной проводимости при открытых и закрытых ушах имеет диагностическое значение, так как в норме и при поражении звуковоспринимающего аппарата между ними имеется известное расхождение, особенно в области низких частот, при поражении же звукопроводящего аппарата они совпадают друг с другом (Бинг - Bing, А. А. Князева и др.). При исследовании костной проводимости суммарно со средины черепа Г. И. Гринберг предлагает закрывать уши коробками-боксами объемом в 3000 см 3 . По его мнению, они создают достаточную изоляцию от окружающего шума и исключают переслушивание через воздух. Относительно большой объем боксов в очень малой степени меняет акустическое сопротивление и поэтому не сказывается на величине костных порогов. Для костной аудиометрии пользуются тем же аудиометром, что и для воздушной. После включения телефона костной проводимости определяют пороги для частот от 100 до 4000 гц и более в зависимости от качества и характеристики костного телефона.

Нулевая линия аудиограмм для костной проводимости соответствует средней норме слышимости нормальных ушей при исследовании костным телефоном с «оптимального» участка сосцевидного отростка (при открытых ушах). Нормальные пороги костной проводимости примерно на 40 дб выше воздушных. Разница на аудиограмме между высотой кривой костной проводимости и нулевой линией соответствует данным опыта Швабаха, а сравнение воздушной и костной кривых - результатам опыта Ринне.

Наконец, производится опыт с костной латерализацией (опыт Вебера). При помещении костного телефона на средней линии черепа в норме звук слышен посредине головы, не латерализован; если имеется заболевание одного уха, звук латерализуется, т. е. он будет слышен в одном из ушей. Латерализация в здоровое или, лучше, слышащее ухо говорит, как правило, о поражении звуковоспринимающего аппарата; при нарушении звукопроведения звук обычно латерализуется в больное ухо.

Очень большое значение имеет уровень кривой костной проводимости по отношению к нулевой линии и к кривой воздушной проводимости. Пороги костной проводимости при поражении звуковоспринимающего аппарата повышены особенно в области высоких частот. Поэтому при этой форме тугоухости обе кривые как воздушной, так и костной проводимости идут параллельно друг другу и сильно отходят от нулевой линии на уровне высоких частот. Наоборот, при поражении звукопроводящего аппарата костная проводимость обычно страдает мало, и кривая ее находится близ нулевой линии; в тех случаях, когда отмечается понижение костной проводимости, ее кривая оказывается все же выше кривой воздушной проводимости (отрицательный опыт Ринне). Таким образом, перцептивная глухота всегда сопровождается падением костной проводимости; при поражении же звукопроводящего аппарата мы обычно наблюдаем малоизмененную костную проводимость.

Однако следует помнить, что некоторые формы поражения звукопроводящего аппарата также могут повести к понижению костной проводимости. Решающим здесь является состояние лабиринтных окон. Так, при сильной тугоподвижности обоих окон, а также при малой разнице в их подвижности костная проводимость нарушается.

Поэтому по костной проводимости не всегда можно судить о состоянии нервного аппарата уха. Бывают случаи, когда костная проводимость резко понижена, а возбудимость нервного аппарата еще сохранена (резерв сохранен).

РЕЧЕВАЯ АУДИОМЕТРИЯ

Обычная методика исследования речью имеет ряд недостатков. Главный из них состоит в невозможности стандартизировать речь в отношении силы и качества. Речь представляет собой очень сложное сочетание быстро сменяющихся звуков различной частоты и силы. Пользование шепотной речью несколько уравнивает интенсивность звуков, но зато мы здесь сталкиваемся с новым обстоятельством: в обычной жизни (особенно тугоухому) приходится разбирать разговорную речь, которая в фонетическом отношении сильно отличается от шепотной. Измерение остроты речевого слуха по расстоянию также является нередко источником ошибок, так как в комнате, благодаря отражению звуков от стен, сила звука падает не пропорционально квадрату расстояния. Наконец, при этом способе не определяется степень разборчивости, что особенно важно для речевого слуха. Принимая во внимание указанные недостатки исследования слуха разговорной и шепотной речью, новой методике речевой аудиометрии в настоящее время придается большое значение.

С усовершенствованием техники записи и воспроизведения звуков человеческой речи разработана речевая аудиометрия, которая позволяет устранить недостатки, свойственные шепотной и разговорной речи.

Речевая аудиометрия обеспечивает постоянство речевого материала и дикции; возможность регулировки и регистрации интенсивности передаваемых слов; определение потери слуха в сравнимых единицах (децибелах). Этот метод дает возможность количественного определения слуховой функции по степени разборчивости речи, которая связана с поражением тех или иных звеньев звукового анализатора.

Речевая аудиометрия заключается в том, что разговорная речь или отдельные слова записывают с помощью высококачественной звукозаписывающей аппаратуры (например, магнитофона), а затем без искажения передают на динамический телефон, надетый на ухо испытуемого. Группы слов должны быть фонетически однородными и соответствовать словесной и ритмико-динамической структуре русского языка. Все слова при записи на магнитофон произносятся диктором одинаково громко, что контролируется при помощи вольтметра. Каждая запись - таблица - содержит 50 слов. Сила, с которой слова передаются к уху испытуемого, регулируется при помощи аттенюатора.

В настоящее время для речевой аудиометрии предложены различные виды артикуляционных таблиц: слоговые (составленные из звуков, лишенных смысла), словесные и фразовые. Попытки исследовать слуховую функцию больных слоговыми таблицами не увенчались успехом, так как использование лишенных смысла звукосочетаний затрудняет и усложняет методику исследования. Фразовые артикуляционные таблицы тоже не получили применения в речевой аудиометрии, так как их составление затруднено из-за бесчисленного множества всевозможных фраз в языке и отсутствия возможности конкретно представить с их помощью фонетические особенности данного языка. При исследовании слуха у больных наиболее пригодными оказались артикуляционные таблицы, составленные из отдельных 30-50 слов.

В настоящее время метод речевой аудиометрии разработан на английском, русском, немецком, финском, шведском, французском, итальянском, грузинском, туркменском и некоторых других языках.

Для исследования слуха речью составлены словесные артикуляционные таблицы, отражающие реальную речь. Группы слов фонетически однородны и соответствуют словесной и ритмико-динамической структуре русского языка.

Целью речевой аудиометрии является получение кривой разборчивости. Для этого необходимо определить по крайней мере три точки (уровня). Первая точка получается, когда интенсивность переданных магнитофоном слов достигает такой величины, что испытуемый слышит появление какого-то звука вообще. Этот уровень почти совпадает с уровнем слуха на чистые тона в диапазоне частот 300-3000 гц или превышает его на 3-8 дб.

Вторая точка получается при усилении речи до такой интенсивности, что испытуемый начинает правильно повторять (записывать) 50% переданных слов, т. е. 25 слов из таблицы. Обычно этот уровень находится примерно на 25-30 дб выше первого. Таким образом, чтобы понять половину слов, интенсивность их должна быть приблизительно на 30 дб выше порога слышимости слуховых частот (т. е. 300-3000 гц).

Третья точка определяется при такой интенсивности, когда будет достигнута уже максимальная разборчивость. В норме этот уровень соответствует интенсивности 40-45 дб выше тонального порога.

Максимальной разборчивостью считается такая, когда испытуемый повторяет 90% слов и больше, так как при этом он полностью воспринимает обычную разборчивую речь.

Таким образом, при речевой аудиометрии определяются в основном три величины:

1) порог речевого слуха - та интенсивность, при которой испытуемый слышит 50% поданных слов (порог отсчитывается по оси абсцисс);

2) максимальная разборчивость (отсчитывается по оси ординат);

3) потеря различения (дискриминация), что может быть при некоторых формах нарушения звуковосприятия, когда при усилении интенсивности звукового раздражителя разборчивость не достигает 100%.

Наконец, устанавливается разборчивость при максимальных интенсивностях (например, при 100 дб). При этом у больных невритом слухового нерва процент разборчивости не только не увеличивается, а даже уменьшается. При различных формах тугоухости кривые разборчивости имеют характерные особенности, и поэтому они имеют большое диагностическое значение.

Среднее ухо состоит из барабанной полости, объем которой не превышает 1 см кубического. Внутри барабанной полости расположены три слуховые косточки: молоточек, стремечко и наковальня. Благодаря им осуществляется передача звуковых колебаний от барабанной перепонки. Колебания, при этом, усиливаются.
Интересным является тот факт, что вышеуказанные косточки – самые мелкие во всем скелете человека. Молоточек имеет рукоятку, благодаря которой соединен с барабанной перепонкой, и головку, которая связывает его с наковальней. Наковальня связана со стремечком, которое закрывает овальное окошко уже внутреннего уха. Не стоит забывать о том, что среднее ухо имеет соединение с носоглоткой благодаря евстахиевой трубе.
Основной функцией трубы является выравнивание давления с наружной и внутренней части барабанной перепонки.

Строение среднего и внутреннего уха

В случае воздушной проводимости звуковые волны попадают в наружный слуховой проход и вызывают колебания барабанной перепонки, передающиеся на слуховые косточки - молоточек, наковальню и стремечко; смещение основания стремечка, в свою очередь, вызывает колебания жидкостей внутреннего уха и затем - колебания основной мембраны улитки.

6.3.5 . Воздушная проводимость звука

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).


Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.

Различают костную и воздушную звуковую проводимость. Воздушная проводимость звука обеспечивается распространением звуковой волны обычным путем через звукопередающий аппарат. Костная проводимость звука – это передача звуковых волн непосредственно через кости черепа. При патологических изменениях в звукопередающем аппарате слуховая чувствительность частично сохраняется за счет костной проводимости звука.

Рис. П. 1.3. Аудиометрический бланк

Для работы необходимы: камертоны с числом колебаний от 128 до 2048 Гц, молоточек, секундомер, ватные тампоны, двое испытуемых.

Ход работы. Для наблюдения костной проводимости звука (опыт Вебера) ножку звучащего камертона (на 128 Гц) прикладывают на середину темени испытуемого. Отмечают, что через оба уха испытуемый слышит звук одинаковой силы. Затем опыт повторяют, заложив предварительно в одно ухо ватный тампон. Со стороны уха, заложенного тампоном, звук будет казаться более сильным, это объясняется тем, что звук в данном случае достигает слуховых рецепторов кратчайшим путем – через кости черепа. Кроме того, через закрытое ухо уменьшается потеря звуковой энергии. В том, что звук распространяется через открытое ухо, можно убедиться с помощью двух испытуемых. Если соединить резиновой трубкой ухо одного испытуемого с ухом второго испытуемого и приложить к темени камертон, то второй испытуемый также услышит звук, так как происходит распространение звуковых волн по воздушному столбу резиновой трубки.

Для сравнения воздушной и костной проводимости звука проводят опыт Ринне. Ножку звучащего камертона прикладывают к сосцевидному отростку височной кости. Испытуемый слышит постепенно ослабевающий звук. При исчезновении звука (судят по словесному сигналу испытуемого) камертон переносят непосредственно к уху. Испытуемый вновь слышит звук. Пользуясь секундомером, определяют время, в течение которого слышен звук. Воздушную проводимость исследуют раздельно для правого и левого уха.