Сердечно сосудистая система физиология функции сердца. Физиология сердечно-сосудистой системы

Зависимость электрической и нагнетательной функции сердца от физических и химических факторов.

Различные механизмы и физические факторы ПП ПД Скорость проведения Сила сокращения
Повышение частоты сокращения сердца + Лестница
Снижение частоты сокращений сердца
Повышение температуры +
Понижение температуры +
Ацидоз
Гипоксемия
Повышение К + (+)→(−)
Понижение К +
Повышение Са + - +
Понижение Са + -
НА (А) + + (А/Вуз) +
АХ + -(А/Вуз) -

Обозначения: 0 – отсутствие влияния, «+» - усиление,«−» - торможение

(по Р.Шмидту, Г. Тевсу, 1983 г., Физиология человека, т.3)

ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ»

1. Функциональная классификация кровеносных и лимфатических сосудов (структурно-функциональная характеристика сосудистой системы.

2. Основные законы гемодинамики.

3. Кровяное давление, его виды (систолическое, диастолическое, пульсовое, среднее, центральное и периферическое, артериальное и венозное). Факторы, определяющие кровяное давление.

4. Методы измерения кровяного давления в эксперименте и в клинике (прямой, Н.С. Короткова, Рива-Роччи, артериальная осциллография, измерение венозного давления по Вельдману).


Сердечно-сосудистая система состоит из сердца и сосудов – артерий, капилляров, вен. Сосудистая система представляет собой систему трубок, по которым через посредство циркулирующих в них жидкостей (кровь и лимфа), совершается доставка к клеткам и тканям организма необходимых для них питательных веществ, а также происходит удаление продуктов жизнедеятельности клеточных элементов и перенесение этих продуктов к экскреторным органам (почкам).

По характеру циркулирующей жидкости сосудистую систему человека можно разделить на два отдела: 1) кровеносную систему – систему трубок, по которым циркулирует кровь (артерии, вены, отделы микроциркуляторного русла и сердце); 2) лимфатическую систему – систему трубок, по которым движется бесцветная жидкость – лимфа. В артериях кровь течет от сердца на периферию, к органам и тканям, в венах – к сердцу. Движение жидкости в лимфатических сосудах происходит так же, как и в венах – в направлении от тканей – к центру. Однако: 1) растворенные вещества всасываются главным образом кровеносными сосудами, твердые – лимфатическими; 2) всасывание через кровь происходит значительно быстрее. В клинике всю систему сосудов называют сердечно-сосудистой, в которой выделяют сердце и сосуды.



Сосудистая система.

Артерии – кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь (aer – воздух, tereo – содержу; на трупах артерии пусты, отчего в старину их считали воздухоносными путями). Стенка артерий состоит из трёх оболочек. Внутренняя оболочка выстлана со стороны просвета сосуда эндотелием , под которым лежат субэндотелиальный слой и внутренняя эластическая мембрана . Средняя оболочка построена из гладкомышечных волокон, чередующихся с эластическими волокнами. Наружная оболочка содержит соединительнотканные волокна. Эластические элементы артериальной стенки образуют единый эластический каскад, работающий как пружина и обуславливающий эластичность артерий.

По мере удаления от сердца артерии делятся на ветви и становятся всё мельче и мельче, происходит и их функциональная дифференцировка.

Артерии, ближайшие к сердцу – аорта и ее крупные ветви – выполняют функцию проведения крови. В их стенке относительно больше развиты структуры механического характера, т.е. эластические волокна, так как их стенка постоянно противодействует растяжению массой крови, которая выбрасывается сердечным толчком – это артерии эластического типа . В них движение крови обусловлено кинетической энергией сердечного выброса.

Средние и мелкие артерии – артерии мышечного типа , что связано с необходимостью собственного сокращения сосудистой стенки, так как в этих сосудах инерция сосудистого толчка ослабевает и мышечное сокращение их стенки необходимо для дальнейшего продвижения крови.

Последние разветвления артерий становятся тонкими и мелкими – это артериолы. Они отличаются от артерий тем, что стенка артериолы имеет лишь один слой мышечных клеток, поэтому они относятся к резистивным артериям, активно участвующим в регуляции периферического сопротивления и, следовательно, в регуляции артериального давления.

Артериолы продолжаются в капилляры через стадию прекапилляров . От прекапилляров отходят капилляры.

Капилляры – это тончайшие сосуды, в которых происходит обменная функция. В связи с этим их стенка состоит из одного слоя плоских эндотелиальных клеток, проницаемых для растворенных в жидкости веществ и газов. Капилляры широко анастамозируют между собой (капиллярные сети), переходят в посткапилляры (построенные также, как и прекапилляры). Посткапилляр продолжается в венулу.

Венулы сопровождают артериолы, образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены – (лат. vena, греч phlebos) несут кровь в противоположном по отношению к артериям направлении, от органов – к сердцу. Стенки имеют общий план строения с артериями, но значительно тоньше и в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерий – нет. Вены, сливаясь друг с другом, образуют крупные венозные стволы – вены, впадающие в сердце. Вены образуют между собой венозные сплетения.

Движение крови по венам осуществляется в результате действия следующих факторов.

1) Присасывающее действие сердца и грудной полости (в ней во время вдоха создается отрицательное давление).

2) Благодаря сокращению скелетной и висцераьной мускулатуры.

3) Сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока сложнее, развита сильнее, чем в венах верхней части тела.

4) Обратному оттоку венозной крови препятствуют особые клапаны вен – это складка эндотелия, содержащая слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно. Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные – одной.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА человека состоит из двух последовательно соединенных отделов:

1. Большой (системный) круг кровообращения начинается с левого желудочка, выбрасывающего кровь в аорту. От аорты отходят многочисленные артерии, и в результате кровоток распределяется по нескольким параллельным регионарным сосудистым сетям (регионарное, или органное кровообращение): коронарное, мозговое, легочное, почечное, печеночное и т.д. Артерии ветвятся дихотомически , и поэтому по мере уменьшения диаметра отдельных сосудов общее их число возрастает . В результате образуется капиллярная сеть, общая площадь поверхности которой – около 1000 м 2 . При слиянии капилляров образуются венулы (см. выше) и т.д. Такому общему правилу строения венозного русла большого круга кровообращения не подчиняется кровообращение в некоторых органах брюшной полости: кровь, оттекающая от капиллярных сетей брыжеечных и селезеночных сосудов (т.е. от кишечника и селезенки), в печени происходит еще через одну систему капилляров, и лишь затем поступает к сердцу. Это русло называется портальным кровообращением.

2. Малый круг кровообращения начинается с правого желудочка, выбрасывающего кровь в легочной ствол. Затем кровь поступает в сосудистую систему легких, имеющих общую схему строения, что и большой круг кровообращения. Кровь по четырем крупным легочным венам оттекает к левому предсердию, а затем поступает в левый желудочек. В результате оба круга кровообращения замыкаются.

Историческая справка. Открытие замкнутой кровеносной системы принадлежит английскому врачу Уильяму Гарвею (1578-1657). В своем знаменитом труде «О движении сердца и крови у животных», опубликованном в 1628 г., он с безупречной логикой опроверг господствовавшую доктрину своего времени, принадлежащую Галену, который считал, что кровь образуется из пищевых веществ в печени, притекает к сердцу по полой вене и затем по венам поступает к органам и используется ими.

Существует принципиальное функциональное различие между обоими кругами кровообращения. Оно заключается в том, что объем крови, выбрасываемый в большой круг кровообращения, длжен быть распределен по всем органам и тканям; потребности же разных органов в кровоснабжении различны даже для состояния покоя и постоянно изменяются в зависимости от деятельности органов. Все эти изменения контролируются, и кровоснабжение органов большого круга кровообращения имеет сложные механизмы регуляции. Малый круг кровообращения: сосуды легких (через них проходит то же количество крови) предъявляют к работе сердца постоянные требования и выполняют в основном функцию газообмена и теплоотдачи. Поэтому для регуляции легочного кровотока требуется менее сложная система регуляции.


ФУНКЦИОНАЛЬНАЯ ДИФФЕРЕНЦИРОВКА СОСУДИСТОГО РУСЛА И ОСОБЕННОСТИ ГЕМОДИНАМИКИ.

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть функциональных групп:

1) амортизирующие сосуды,

2) резистивные сосуды,

3) сосуды-сфинктеры,

4) обменные сосуды,

5) емкостные сосуды,

6) шунтирующие сосуды.

Амортизирующие сосуды: артерии эластического типа с относительно большим содержанием эластических волокон. Это – аорта, легочная артерия, прилегающие к ним участки артерий. Выраженные эластические свойства таких сосудов обуславливают амортизирующий эффект «компрессионной камеры». Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Резистивные сосуды. К сосудам этого типа относятся концевые артерии, артериолы, в меньшей степени – капилляры и венулы. Артерии концевые и артериолы – это прекапиллярные сосуды, обладающие относительно малым просветом и толстыми стенками, с развитой гладкомышечной мускулатурой, оказывают наибольшее сопротивление кровотоку: изменение степени сокращения мышечных стенок этих сосудов сопровождается отчетливыми изменениями их диаметра и, следовательно, общей площади поперечного сечения. Это обстоятельство является основным в механизме регуляции объемной скорости кровотока в различных областях сосудистого русла, а также перераспределения сердечного выброса по разным органам. Описанные сосуды являются прекапиллярными сосудами сопротивления. Посткапиллярные сосуды сопротивления – это венулы и, в меньшей степени – вены. Соотношение между прекапиллярным и посткапиллярным сопротивлением влияет на величину гидростатического давления в капиллярах – и, следовательно, на скорость фильтрации.

Сосуды-сфинктеры – это последние отделы прекапиллярных артериол. От сужения и расширения сфинктеров зависит число функционирующих капилляров, т.е. площадь обменных поверхностей.

Обменные сосуды – капилляры. В них происходит диффузия и фильтрация. Капилляры не способны к сокращениям: их просвет изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярах (резистивных сосудов).

Емкостные сосуды – это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенных изменение каких-либо параметров кровотока. В связи с этим они могут играть роль как депо крови . В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождается перераспределением объема крови. Поэтому изменение емкости вен, наступающие при сокращении гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым – прямо или косвенно – на общие параметры кровообращения . Кроме того, некоторые вены (поверхностные) при низком внутрисосудистом давлении уплощены (т.е. имеют овальный просвет), и поэтому они могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая цилиндрическую форму. Это главный фактор, обуславливающий высокую эффективную растяжимость вен. Основные депо крови : 1) вены печени, 2) крупные вены чревной области, 3) вены подсосочкового сплетения кожи (общий объем этих вен может увеличиваться на 1 л по сравнению с минимальным), 4) легочные вены, соединенные с системным кровообращением параллельно, обеспечивающие кратковременное депонирование или выброс достаточно больших количеств крови.

У человека , в отличие от других видов животных, нет истинного депо , в котором кровь могла бы задержаться в специальных образованиях и по мере необходимости выбрасываться (как, например, у собаки, селезенка).

ФИЗИЧЕСКИЕ ОСНОВЫ ГЕМОДИНАМИКИ.

Основными показателями гидродинамики являются:

1. Объемная скорость движения жидкости – Q.

2. Давление в сосудистой системе – Р.

3. Гидродинамическое сопротивление – R.

Соотношение между этими величинами описывается уравнением:

Т.е. количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р 1) и в конце (Р 2) трубы и обратно пропорционально сопротивлению (R) току жидкости.

ОСНОВНЫЕ ЗАКОНЫ ГЕМОДИНАМИКИ

Наука, изучающая движение крови в сосудах, получила название гемодинамики. Она является частью гидродинамики, изучающей движение жидкостей.

Периферическое сопротивление R сосудистой системы передвижению крови в ней слагается из множества факторов каждого сосуда. Отсюда уместна формула Пуазеля:

где l – длина сосуда, η – вязкость протекающей в ней жидкости, r – радиус сосуда.

Однако сосудистая система состоит из множества сосудов, соединенных и последовательно, и параллельно, отсюда суммарное сопротивление можно вычислить с учетом этих факторов:

При параллельном ветвлении сосудов (капиллярное русло)

При последовательном соединении сосудов (артериальном и венозном)

Поэтому R суммарное всегда меньше в капиллярном русле, чем в артериальном или венозном. С другой стороны, вязкость крови тоже величина непостоянная. Например, если кровь протекает через сосуды, диаметром менее 1 мм, вязкость крови уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей крови. Это связано с тем, что в крови наряду с эритроцитами и другими форменными элементами есть плазма. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Кроме этого, в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.


Распределение периферического сопротивления.

Сопротивление в аорте, больших артериях и относительно длинных артериальных ответвлениях составляет лишь около 19% от общего сосудистого сопротивления. На долю же конечных артерий и артериол приходится почти 50 % этого сопротивления. Таким образом, почти половина периферического сопротивления приходится на сосуды, длиной порядка всего насколько миллиметров. Это колоссальное сопротивление связано с тем, что диаметр концевых артерий и артериол относительно мал, и это уменьшение просвета полностью не компенсируется ростом числа параллельных сосудов. Сопротивление в капиллярном русле – 25 %, в венозном русле и в венулах – 4 % и во всех остальных венозных сосудах – 2 %.

Итак, артериолы играют двоякую роль: во-первых, участвуют в поддержании периферического сопротивления и через него в формировании необходимого системного артериального давления; во-вторых, за счет изменения сопротивления обеспечивают перераспределение крови в организме – в работающем органе сопротивление артериол снижается, приток крови к органу увеличивается, но величина общего периферического давления остается постоянной за счет сужения артериол других сосудистых областей. Это обеспечивает стабильный уровень системного артериального давления.

Линейная скорость кровотока выражается в см/с. Её можно рассчитать, зная количество крови, изгнанное сердцем в минуту (объемная скорость кровотока) и прощадь сечения кровеносного сосуда.

Линейная скорость V отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на суммарную площадь сечения сосудистого русла:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности же линейная скорость величина непостоянная, так как отражает движение частиц крови в центре потока вдоль сосудистой оси и у сосудистой стенки (ламинарное движение – слоистое: в центре движутся частицы – форменные элементы крови, а у стенки – слой плазмы). В центре сосуда скорость максимальная, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Изменение линейной скорости тока крови в разных частях сосудистой системы.

Самое узкое место в сосудистой системе – аорта. Её диаметр составляет 4 см 2 (имеется в виду суммарный просвет сосудов), здесь самое минимальное периферическое сопротивление и самая большая линейная скорость – 50 см/с .

По мере расширения русла скорость снижается. В артериолах самое «неблагополучное» отношение длины и диаметра, поэтому здесь самое большое сопротивление и наибольшее падение скорости. Но за счет этого при входе в капиллярное русло кровь имеет наименьшую скорость, необходимую для обменных процессов (0,3-0,5 мм/с) . Этому способствует и фактор расширения (максимального) сосудистого русла на уровне капилляров (общая площадь их сечения – 3200 см 2). Суммарный просвет сосудистого русла является определяющим фактором в формировании скорости системного кровообращения .

Кровь оттекающая от органов, поступает через венулы в вены. Происходит укрупнение сосудов, параллельно суммарный просвет сосудов уменьшается. Поэтому линейная скорость кровотока в венах опять увеличивается (по сравнению с капиллярами). Линейная скорость – 10-15 см/с, а площадь поперечного сечения этой части сосудистого русла – 6-8 см 2 . В полых венах скорость кровотока – 20 см/с.

Таким образом , в аорте создается наибольшая линейная скорость движения артериальной крови к тканям, где при минимальной линейной скорости в микроциркуляторном русле происходят все обменные процессы, после чего по венам с увеличивающейся линейной скоростью уже венозная кровь поступает через «правое сердце» в малый круг кровообращения, где происходят процессы газообмена и оксигенации крови.

Механизм изменения линейной скорости кровотока.

Объем крови, протекающий в 1 мин через аорту и полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекающий в 1 мин через всю артериальную систему или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: ЧЕМ БОЛЬШЕ ОБЩАЯ ПЛОЩАДЬ СЕЧЕНИЯ СОСУДОВ, ТЕМ МЕНЬШЕ ЛИНЕЙНАЯ СКОРОСТЬ КРОВОТОКА . В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда ´уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярах большого круга кровообращения: сумма просветов всех капилляров примерно в 500-600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте.

Влияние работы сердца на характер кровотока и его скорость.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями

1. Кровоток в артериях имеет пульсирующий характер . Поэтому, линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы.

2. В капиллярах и венах кровоток постоянен , т.е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки: в сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. В результате в этих сосудах образуется эластическая, или компрессионная камера, в которую поступает значительный объем крови, растягивающий ее. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

Методика исследования линейной и объемной скорости кротока.

1. Ультразвуковой метод исследования – к артерии на небольшом расстоянии друг от друга прикладывают две пьезоэлектрические пластинки, которые способны преобразовывать механические колебания в электрические и обратно. Оно преобразуется в ультразвуковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные колебания. Определив, как быстро распространяются ультразвуковые колебания по току крови от первой пластинки ко второй и против тока крови в обратном направлении, рассчитывают скорость кровотока: чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее – в противоположном.

Окклюзионная плетизмография (окклюзия – закупорка, зажатие) – метод, позволяющий определить объемную скорость регионарного кровотока. Метока состоит в регистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т.е. от разности между притоком крови по артериям и оттоком ее по венам. Во время плетизмографии конечность или ее часть помещают в герметически закрывающийся сосуд, соединенный с манометром для измерения малых колебаний давления. При изменении кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления воздуха или воды в сосуде, в который помещают конечность: давление регистрируется манометром и записывается в виде кривой – плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови.

Величина кровотока в органах на 100 г массы

Физиология сердечно - сосудистой системы

Выполняя одну из главных функций - транспортную - сердечно-сосудистая система обеспечивает ритмичное течение физиологических и биохимических процессов в организме человека. К тканям и органам по кровеносным сосудам доставляются все необходимые вещества (белки, углеводы, кислород, витамины, минеральные соли) и отводятся продукты обмена веществ и углекислый газ. Кроме того, с током крови по сосудам разносятся в органы и ткани, выработанные эндокринными железами гормональные вещества, которые являются специфическими регуляторами обменных процессов, антитела, необходимые для защитных реакций организма против инфекционных заболеваний. Таким образом, сосудистая система выполняет еще и регуляторную, и защитную функции. В содружестве с нервной и гуморальной системами сосудистая система играет важную роль в обеспечении целостности организма.

Сосудистая система делится на кровеносную и лимфатическую. Эти системы анатомически и функционально тесно связаны, дополняют одна другую, но между ними есть определенные различия. Кровь в организме движется по кровеносной системе. Кровеносная система состоит из центрального органа кровообращения - сердца, ритмические сокращения которого дают движение крови по сосудам.

Сосуды малого круга кровообращения

Малый круг кровообращения начинается в правом желудочке, из которого выходит легочный ствол, и заканчивается в левом предсердии, куда впадают легочные вены. Малый круг кровообращения еще называют легочным, он обеспечивает газообмен между кровью легочных капилляров и воздухом легочных альвеол. В его состав входят легочный ствол, правая и левая легочные артерии с их ветвями, сосуды легких, которые собираются в две правые и две левые легочные вены, впадая в левое предсердие.

Легочный ствол (truncus pulmonalis) берет начало от правого желудочка сердца, диаметр 30 мм, идет косо вверх, влево и на уровне IV грудного позвонка делится на правую и левую легочные артерии, которые направляются к соответствующему легкому.

Правая легочная артерия диаметром 21 мм идет вправо к воротам легкого, где делится на три долевые ветви, каждая из которых в свою очередь делится на сегментарные ветви.

Левая легочная артерия короче и тоньше правой, проходит от бифуркации легочного ствола к воротам левого легкого в поперечном направлении. На своем пути артерия перекрещивается с левым главным бронхом. В воротах соответственно двум долям легкого она делится на две ветви. Каждая из них распадается на сегментарные ветви: одна - в границах верхней доли, другая - базальная часть - своими ветвями обеспечивает кровью сегменты нижней доли левого легкого.

Легочные вены. Из капилляров легких начинаются вену-лы, которые сливаются в более крупные вены и образуют в каждом легком по две легочные вены: правую верхнюю и правую нижнюю легочные вены; левую верхнюю и левую нижнюю легочные вены.

Правая верхняя легочная вена собирает кровь от верхней и средней доли правого легкого, а правая нижняя - от нижней доли правого легкого. Общая базальная вена и верхняя вена нижней доли формируют правую нижнюю легочную вену.

Левая верхняя легочная вена собирает кровь из верхней доли левого легкого. Она имеет три ветви: верхушечнозаднюю, переднюю и язычковую.

Левая нижняя легочная вена выносит кровь из нижней доли левого легкого; она крупнее верхней, состоит из верхней вены и общей базальной вены.

Сосуды большого круга кровообращения

Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, и заканчивается в правом предсердии.

Основное назначение сосудов большого круга кровообращения - доставка к органам и тканям кислорода и пищевых веществ, гормонов. Обмен веществ между кровью и тканями органов происходит на уровне капилляров, выведение из органов продуктов обмена веществ - по венозной системе.

К кровеносным сосудам большого круга кровообращения относятся аорта с отходящими от нее артериями головы, шеи, туловища и конечностей, ветви этих артерий, мелкие сосуды органов, включая капилляры, мелкие и крупные вены, которые затем образуют верхнюю и нижнюю полые вены.

Аорта (aorta) - самый большой непарный артериальный сосуд тела человека. Она делится на восходящую часть, дугу аорты и нисходящую часть. Последняя в свою очередь делится на грудную и брюшную части.

Восходящая часть аорты начинается расширением - луковицей, выходит из левого желудочка сердца на уровне III межреберья слева, позади грудины идет вверх и на уровне II реберного хряща переходит в дугу аорты. Длина восходящей аорты составляет около 6 см. От нее отходят правая и левая венечные артерии, которые снабжают кровью сердце.

Дуга аорты начинается от II реберного хряща, поворачивает влево и назад к телу IV грудного позвонка, где проходит в нисходящую часть аорты. В этом месте находится небольшое сужение - перешеек аорты. От дуги аорты отходят крупные сосуды (плечеголовной ствол, левая общая сонная и левая подключичная артерии), которые обеспечивают кровью шею, голову, верхнюю часть туловища и верхние конечности.

Нисходящая часть аорты - наиболее длинная часть аорты, начинается от уровня IV грудного позвонка и идет к IV поясничному, где делится на правую и левую подвздошные артерии; это место называется бифуркацией аорты. В нисходящей части аорты различают грудную и брюшную аорту.

Физиологические особенности сердечной мышцы . К основным особенностям сердечной мышцы относятся автоматия, возбудимость, проводимость, сократимость, рефрактер-ность.

Автоматия сердца - способность к ритмическому сокращению миокарда под влиянием импульсов, которые появляются в самом органе.

В состав сердечной поперечнополосатой мышечной ткани входят типичные сократительные мышечные клетки - кардиомиоциты и атипические сердечные миоциты (пейсмекеры), формирующие проводящую систему сердца, которая обеспечивает автоматизм сердечных сокращений и координацию сократительной функции миокарда предсердий и желудочков сердца. Первый синусно-предсердный узел проводящей системы является главным центром автоматизма сердца - пейсмекером первого порядка. От этого узла возбуждение распространяется на рабочие клетки миокарда предсердий и по специальным внутрисердечным проводящим пучкам достигает второго узла - предсердно-желудочкового (атриовентрикулярного) , который также способен генерировать импульсы. Этот узел является пейсмекером второго порядка. Возбуждение через предсердно-желудо-ковый узел в нормальных условиях возможно только в одном направлении. Ретроградное проведение импульсов невозможно.

Третий уровень, который обеспечивает ритмичную деятельность сердца, расположен в пучке Гиса и волокнах Пуркине.

Центры автоматики, расположенные в проводящей системе желудочков, называются пейсмекерами третьего порядка. В обычных условиях частоту активности миокарда всего сердца в целом определяет синусно-предсердный узел. Он подчиняет себе все нижележащие образования проводящей системы, навязывает свой ритм.

Необходимым условием для обеспечения работы сердца является анатомическая целостность его проводящей системы. Если в пейсмекере первого порядка возбудимость не возникает или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка. Если же передача возбудимости к желудочкам невозможна, они начинают сокращаться в ритме пейсмекеров третьего порядка. При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме, а повреждение водителей ритма приводит к полной остановке сердца.

Возбудимость сердечной мышцы возникает под влиянием электрических, химических, термических и других раздражителей мышцы сердца, которая способна переходить в состояние возбуждения. В основе этого явления лежит отрицательный электрический потенциал в первоначальном возбужденном участке. Как и в любой возбудимой ткани, мембрана рабочих клеток сердца поляризована. Снаружи она заряжена положительно, а внутри отрицательно. Это состояние возникает в результате разной концентрации Na + и К + по обе стороны мембраны, а также в результате разной проницаемости мембраны для этих ионов. В состоянии покоя через мембрану кардиомиоцитов не проникают ионы Na + , а только частично проникают ионы К + . Вследствие диффузии ионы К + , выходя из клетки, увеличивают положительный заряд на ее поверхности. Внутренняя сторона мембраны при этом становится отрицательной. Под влиянием раздражителя любой природы в клетку поступает Na + . В этот момент на поверхности мембраны возникает отрицательный электрический заряд и развивается реверсия потенциала. Амплитуда потенциала действия для сердечных мышечных волокон составляет около 100 мВ и более. Возникший потенциал деполяризует мембраны соседних клеток, в них появляются собственные потенциалы действия - происходит распространение возбуждения по клеткам миокарда.

Потенциал действия клетки рабочего миокарда во много раз продолжительнее, чем в скелетной мышце. Во время развития потенциала действия клетка не возбуждается на очередные стимулы. Эта особенность важна для функции сердца как органа, так как миокард может отвечать только одним потенциалом действия и одним сокращением на повторные его раздражения. Все это создает условия для ритмичного сокращения органа.

Таким образом происходит распространение возбуждения в целом органе. Этот процесс одинаков в рабочем миокарде и в водителях ритма. Возможность вызвать возбуждение сердца электрическим током нашла практическое применение в медицине. Под влиянием электрических импульсов, источником которых являются электростимуляторы, сердце начинает возбуждаться и сокращаться в заданном ритме. При нанесении электрических раздражении независимо от величины и силы раздражения работающее сердце не ответит, если это раздражение будет нанесено в период систолы, что соответствует времени абсолютного рефракторного периода. А в период диастолы сердце отвечает новым внеочередным сокращением - экстрасистолой, после которой возникает продолжительная пауза, называемая компенсаторной.

Проводимость сердечной мышцы заключается в том, что волны возбуждения проходят по ее волокнам с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, а по специальной ткани сердца - 2,0-4,2 м/с. По волокнам скелетной мышцы возбуждение распространяется со скоростью 4,7-5,0 м/с.

Сократимость сердечной мышцы имеет свои особенности в результате строения органа. Первыми сокращаются мышцы предсердий, затем сосочковые мышцы и субэндокардиальный слой мышц желудочков. Далее сокращение охватывает и внутренний слой желудочков, которое обеспечивает тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Изменения сократительной силы мышцы сердца, возникающие периодически, осуществляются при помощи двух механизмов саморегуляции: гетерометрического и гомеометрического.

В основе гетерометрического механизма лежит изменение исходных размеров длины волокон миокарда, которое возникает при изменении притока венозной крови: чем сильнее сердце расширено во время диастолы, тем оно сильнее сокращается во время систолы (закон Франка- Старлинга). Объясняется этот закон следующим образом. Сердечное волокно состоит из двух частей: сократительной и эластической. Во время возбуждения первая сокращается, а вторая растягивается в зависимости от нагрузки.

Гомеометрический механизм основан на непосредственном действии биологически активных веществ (таких, как адреналин) на метаболизм мышечных волокон, выработку в них энергии. Адреналин и норадреналин увеличивают вход Са^ в клетку в момент развития потенциала действия, вызывая тем самым усиление сердечных сокращений.

Рефрактерность сердечной мышцы характеризуется резким снижением возбудимости ткани на протяжении ее активности. Различают абсолютный и относительный рефракторный период. В абсолютном рефракторном периоде, при нанесении электрических раздражении, сердце не ответит на них раздражением и сокращением. Период рефрактерности продолжается столько, сколько продолжается систола. Во время относительного рефракторного периода возбудимость сердечной мышцы постепенно возвращается к первоначальному уровню. В этот период сердечная мышца может ответить на раздражитель сокращением сильнее порогового. Относительный рефракторный период обнаруживается во время диастолы предсердий и желудочков сердца. После фазы относительной рефрактерности наступает период повышенной возбудимости, который по времени совпадает с диастолическим расслаблением и характеризуется тем, что мышца сердца отвечает вспышкой возбуждения и на импульсы небольшой силы.

Сердечный цикл . Сердце здорового человека сокращается ритмично в состоянии покоя с частотой 60-70 ударов в минуту.

Период, который включает одно сокращение и последующее расслабление, составляет сердечный цикл. Частота сокращений выше 90 ударов называется тахикардией, а ниже 60 - брадикардией. При частоте сокращения сердца 70 ударов в минуту полный цикл сердечной деятельности продолжается 0,8-0,86 с.

Сокращение сердечной мышцы называется систолой, расслабление - диастолой. Сердечный цикл имеет три фазы: систолы предсердий, систолы желудочков и общую паузу Началом каждого цикла считается систола предсердий, продолжительность которой 0,1-0,16 с. Во время систолы в предсердиях повышается давление, что ведет к выбрасыванию крови в желудочки. Последние в этот момент расслаблены, створки атриовентрикулярных клапанов свисают и кровь свободно переходит из предсердий в желудочки.

После окончания систолы предсердий начинается систола желудочков продолжительностью 0,3 с. Во время систолы желудочков предсердия уже расслаблены. Как и предсердия, оба желудочка - правый и левый - сокращаются одновременно.

Систола желудочков начинается с сокращений их волокон, возникшего в результате распространения возбуждения по миокарду. Этот период короткий. В данный момент давление в полостях желудочков еще не повышается. Оно начинает резко возрастать, когда возбудимостью охватываются все волокна, и достигает в левом предсердии 70-90 мм рт. ст., а в правом - 15-20 мм рт. ст. В результате повышения внутрижелудочкового давления атриовентрикулярные клапаны быстро закрываются. В этот момент полулунные клапаны тоже еще закрыты и полость желудочка остается замкнутой; объем крови в нем постоянный. Возбуждение мышечных волокон миокарда приводит к возрастанию давления крови в желудочках и увеличению в них напряжения. Появление сердечного толчка в V левом межреберье обусловлено тем, что при повышении напряжения миокарда левый желудочек (сердца) принимает округлую форму и производит удар о внутреннюю поверхность грудной клетки.

Если давление крови в желудочках превышает давление в аорте и легочной артерии, полулунные клапаны открываются, их створки прижимаются к внутренним стенкам и наступает период изгнания (0,25 с). В начале периода изгнания давление крови в полости желудочков продолжает увеличиваться и достигает примерно 130 мм рт. ст. в левом и 25 мм рт. ст. в правом. В результате этого кровь быстро вытекает в аорту и легочный ствол, объем желудочков быстро уменьшается. Это фаза быстрого изгнания. После открытия полулунных клапанов выброс крови из полости сердца замедляется, сокращение миокарда желудочков ослабевает и наступает фаза медленного изгнания. С падением давления полулунные клапаны закрываются, затрудняя обратный ток крови из аорты и легочной артерии, миокард желудочков начинает расслабляться. Снова наступает короткий период, во время которого еще закрыты клапаны аорты и не открыты атриовентрикулярные. Если же давление в желудочках будет немного меньше, чем в предсердиях, тогда раскрываются атриовентрикулярные клапаны и происходит наполнение кровью желудочков, которая снова будет выброшена в очередном цикле, и наступает диастола всего сердца. Диастола продолжается до очередной систолы предсердий. Эта фаза называется общей паузой (0,4 с). Затем цикл сердечной деятельности повторяется.

ФИЗИОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Часть I. ОБЩИЙ План СТРОЕНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ. ФИЗИОЛОГИЯ СЕРДЦА

1. Общий план строения и функциональное значение кардиоваскулярной системы

Сердечно-сосудистая система , наряду с дыхательной, является ключевой системой жизнеобеспечения организма , поскольку она обеспечивает непрерывную циркуляцию крови по замкнутому сосудистому руслу . Кровь же, только находясь в постоянном движении, способна выполнять свои многочисленные функции, главной из которых является транспортная, предопределяющая ряд других. Постоянная циркуляция крови по сосудистому руслу делает возможным ее непрерывный контакт со всеми органами организма, что обеспечивает, с одной стороны, поддержание постоянства состава и физико-химических свойств межклеточной (тканевой) жидкости (собственно внутренней среды для клеток тканей), а с другой – сохранение гомеостаза самой крови.

В сердечно-сосудистой системе с функциональной точки зрения выделяют:

Ø сердце – насос периодического ритмичного типа действия

Ø сосуды – пути циркуляции крови.

Сердце обеспечивает ритмичное периодическое перекачивание порций крови в сосудистое русло, сообщая им энергию, необходимую для дальнейшего продвижения крови по сосудам. Ритмичная работа сердца является залогом непрерывной циркуляции крови в сосудистом русле . Причем кровь в сосудистом русле движется пассивно по градиенту давления: из области, где оно выше, в область, где оно ниже (от артерий к венам); минимальным является давления в венах, возвращающих кровь в сердце. Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счет диффузии необходимых веществ из крови (например, клетки внутренней стенки крупных кровеносных сосудов).

У млекопитающих животных и человека сердце четырехкамерно (состоит из двух предсердий и двух желудочков), кардиоваскулярная система замкнута, имеются два самостоятельных круга кровообращения – большой (системный) и малый (легочный). Круги кровообращения начинаются в желудочках сосудами артериального типа (аортой и легочным стволом ), а заканчиваются в предсердиях венами (верхней и нижней полыми венами и легочными венами ). Артерии – сосуды, выносящие кровь из сердца, а вены – возвращающие кровь к сердцу.

Большой (системный) круг кровообращения начинается в левом желудочке аортой, а заканчивается в правом предсердии верхней и нижней полыми венами. Кровь, поступающая из левого желудочка в аорту, является артериальной. Продвигаясь по сосудам большого круга кровообращения, она в конечном итоге достигает микроциркуляторного русла всех органов и структур организма (в том числе самого сердца и легких), на уровне которого осуществляется ее обмен веществами и газами с тканевой жидкостью. В результате транскапиллярного обмена кровь становится венозной: она насыщается углекислым газом, конечными и промежуточными продуктами метаболизма, возможно в нее поступают какие-то гормоны или другие гуморальные факторы, отчасти отдает тканям кислород, питательные вещества (глюкозу, аминокислоты, жирные кислоты), витамины и т. д. Венозная кровь, оттекающая от различных тканей организма по системе вен, возвращается к сердцу (а именно, по верхней и нижней полым венам – в правое предсердие).

Малый (легочный) круг кровообращения начинается в правом желудочке легочным стволом, разветвляющимся на две легочные артерии, которые доставляют венозную кровь в микроциркуляторное русло, оплетающее респираторный отдел легких (дыхательные бронхиолы, альвеолярные ходы и альвеолы). На уровне этого микроциркуляторного русла осуществляется транскапиллярный обмен между венозной кровью, притекающей к легким, и альвеолярным воздухом. В результате ткаого обмена кровь насыщается кислородом, частично отдает углекислый газ и превращается в артериальную. По системе легочных вен (в количестве двух выходят из каждого легкого) артериальная кровь, оттекающая от легких, возвращается в сердце (в левое предсердие).

Таким образом, в левой половине сердца кровь артериальная, она поступает в сосуды большого круга кровообращения и доставляется ко всем органам и тканям организма, обеспечивая их снабжение

Конечный продукт" href="/text/category/konechnij_produkt/" rel="bookmark">конечных продуктов метаболизма. В правой половине сердца находится венозная кровь, которая выбрасывается в малый круг кровообращения и на уровне легких превращается в артериальную.

2. Морфо-функциональная характеристика сосудистого русла

Общая протяженность сосудистого русла человека составляет около 100тыс. километров; обычно большая их часть пуста, а интенсивно снабжаются лишь только усиленно работающие и постоянно работающие органы (сердце, головной мозг, почки, дыхательная мускулатура и некоторые другие). Сосудистое русло начинается крупными артериями , выносящими кровь из сердца. Артерии по своему ходу ветвятся, давая начала артериям более мелкого калибра (средним и мелким артериям). Войдя в кровоснабжаемый орган, артерии многократно ветвятся до артериол , представляющих собой самые мелкие сосуды артериального типа (диаметр – 15-70мкм). От артериол, в свою очередь, под прямым углом отходят метартероилы (терминальные артериолы), от которых берут начало истинные капилляры , образующие сеть . В местах отделения капилляров от метартеролы имеются прекапиллярные сфинктеры, контролирующие локальный объем крови, проходящий через истинные капилляры. Капилляры представляют собой самые мелкие сосуды в сосудистом русле (d=5-7мкм, длина – 0,5-1,1мм), их стенка не содержит в своем составе мышечную ткань, а образована всего лишь одним слоем эндотелиальных клеток и окружающей их базальной мембраной . У человека насчитывается 100-160млрд. капилляров, их общая длина составляет 60-80тыс. километров, а суммарная площадь поверхности – 1500м2. Кровь из капилляров последовательно поступает в посткапиллярные (диаметр до 30мкм), собирательные и мышечные (диаметр до 100мкм) венулы, а затем в мелкие вены. Мелкие вены, объединяясь друг с другом, образуют средние и крупные вены.

Артериолы, метартериолы, прекапиллярные сфинктеры, капилляры и венулы составляют микроциркуляторное русло , являющееся путем местного кровотока органа, на уровне которого осуществляется обмен между кровью и тканевой жидкостью. Причем наиболее эффективно такой обмен происходит в капиллярах. Венулы же как никакие другие сосуды имеют прямое отношение к течению воспалительных реакций в тканях, поскольку именно через их стенку при воспалении проходят массы лейкоцитов и плазма.

Колл" href="/text/category/koll/" rel="bookmark">коллатеральные сосуды какой-то одной артерии, соединяющиеся с ветвями других артерий, или внутрисистемные артериальные анастомозы между различными ветвями одной и той же артерии)

Ø венозные (соединяющие сосуды между различными венами или ветвями одной и той же вены)

Ø артериовенозные (анастомозы между мелкими артериями и венами, позволяющие крови течь, минуя капиллярное русло).

Функциональное назначение артериальных и венозных анастомозов состоит в повышении надежности кровоснабжения органа, тогда как артериовенозных в обеспечении возможности движения крови в обход капиллярному руслу (в большом количестве встречаются в коже, движение крови по которым уменьшает потери тепла с поверхности тела).

Стенка всех сосудов , за исключением капилляров , состоит из трех оболочек :

Ø внутренней оболочки , образованной эндотелием, базальной мембраной и подэндотелиальным слоем (прослойка рыхлой волокнистой соединительной ткани); эта оболочка отделена от средней оболочки внутренней эластической мембраной ;

Ø средней оболочки , в состав которой входят гладкомышечные клетки и плотная волокнистая соединительная ткань , в межклеточном веществе которой содержатся эластические и коллагеновые волокна ; отделена от наружной оболочки наружной эластической мембраной ;

Ø наружной оболочки (адвентиции), образованной рыхлой волокнистой соединительной тканью , питающей стенку сосуда; в частности, в этой оболочке проходят мелкие сосуды, обеспечивающие питание клеток самой сосудистой стенки (т. н. сосуды сосудов).

В сосудах различного типа толщина и морфология этих оболочек имеет свои особенности. Так, стенки артерий гораздо толще таковых вен, причем в наибольшей мере у артерий и вен отличается по толщине их средняя оболочка, благодаря чему стенки артерий являются более упругими, чем таковые вен. Вместе с тем наружная оболочка стенки вен толще таковой артерий, и они, как правило, имеют больший диаметр по сравнению с одноименными артериями. Мелкие, средние и некоторые крупные вены имеют венозные клапаны , представляющие собой полулунные складки их внутренней оболочки и препятствующие обратному току крови в венах. Наибольшее количество клапанов имеют вены нижних конечностей, тогда как обе полые вены, вены головы и шеи, почечные вены, воротная и легочные вены клапанов не имеют. Стенки крупных, средних и мелких артерий, а также артериол характеризуются некоторыми особенностями строения, касающимися их средней оболочки. В частности, в стенках крупных и некоторых средних артерий (сосуды эластического типа) эластические и коллагеновые волокна преобладают над гладкомышечными клетками, в результате чего такие сосуды отличаются очень большой эластичностью, необходимой для преобразования пульсирующего кровотока в постоянный. Стенки мелких артерий и артериол, напротив, характеризуются преобладанием гладкомышечных волокон над соединительнотканными, что позволяет им изменять диаметр своего просвета в довольно широких пределах и регулировать таким образом уровень кровенаполнения капилляров. Капилляры же, не имеющие в составе своей стенки средней и наружной оболочек, не способны активно изменять свой просвет: он изменяется пассивно в зависимости от степени их кровенаполнения, зависящей от величины просвета артериол.


Рис.4. Схема строения стенки артерии и вены


Аорта" href="/text/category/aorta/" rel="bookmark">аорта , легочные артерии, общая сонная и подвздошная артерии;

Ø сосуды резистивного типа (сосуды сопротивления) – преимущественно артериолы, самые мелкие сосуды артериального типа, в стенке которых имеется большое количество гладкомышечных волокон, позволяющее в широких пределах изменять свой просвет; обеспечивают создание максимального сопротивления движению крови и принимают участие в ее перераспределении между органами, работающими с разной интенсивностью

Ø сосуды обменного типа (преимущественно капилляры, отчасти артериолы и венулы, на уровне которых осуществляется транскапиллярный обмен)

Ø сосуды емкостного (депонирующего) типа (вены), которые в связи с небольшой толщиной своей средней оболочки отличаются хорошей податливостью и могут довольно сильно растягиваться без сопутствующего резкого повышения давления в них, благодаря чему зачастую служат депо крови (как правило, около 70% объема циркулирующей крови находится в венах)

Ø сосуды анастомозирующего типа (или шунтирующие сосуды: артреиоартеральные, веновенозные, артериовенозные).

3. Макро-микроскопическое строение сердца и его функциональное значение

Сердце (cor) – полый мышечный орган, нагнетающий кровь в артерии и принимающий ее из вен. Располагается в грудной полости, в составе органов среднего средостения, интраперикардиально (внутри сердечной сумки – перикарда). Имеет коническую форму; его продольная ось направлена косо – справа налево, сверху вниз и сзади наперед, поэтому оно на две трети залегает в левой половине грудной полости. Верхушка сердца обращена вниз, влево и вперед, а более широкое основание – кверху и кзади. В сердце выделяют четыре поверхности:

Ø переднюю (грудинно-реберную), выпуклая, обращена к задней поверхности грудины и ребер;

Ø нижнюю (диафрагмальная или задняя);

Ø боковые или легочные поверхности.

Средняя масса сердца у мужчин 300г, у женщин – 250г. Наибольший поперечный размер сердца – 9-11см, переднезадний – 6-8см, длина сердца – 10-15см.

Сердце начинает закладываться на 3-ей неделе внутриутробного развития, его разделение на правую и левую половину происходит к 5-6-ой неделе; а начинает оно работать вскоре после своей закладки (на 18-20 день), делая по одному сокращению каждую секунду.


Рис. 7. Сердце (вид спереди и сбоку)

Сердце человека состоит из 4-ех камер: двух предсердий и двух желудочков. Предсердия принимают кровь из вен и проталкивают ее в желудочки. В целом их нагнетательная способность гораздо меньше таковой желудочков (желудочки в основном наполняются кровью во время общей паузы сердца, тогда как сокращение предсердий способствует лишь дополнительной подкачке крови), основная же роль предсердий состоит в том, что они являются временными резервуарами крови . Желудочки принимают кровь, притекающую из предсердий, и перекачивают ее в артерии (аорту и легочный ствол). Стенка предсердий (2-3мм) тоньше таковой желудочков (5-8мм у правого желудочка и 12-15мм у левого). На границе между предсердиями и желудочками (в предсердно-желудочковой перегородке) имеются атриовентрикулярные отверстия, в области которых находятся створчатые атриовентрикулярные клапаны (двухстворчатый или митральный в левой половине сердца и трехстворчатый в правой), препятствующие обратному току крови из желудочков в предсердия в момент систолы желудочков . В месте выхода аорты и легочного ствола из соответствующих желудочков локализованы полулунные клапаны , препятствующие обратному току крови из сосудов в желудочки в момент диастолы желудочков . В правой половине сердца кровь является венозной, а в левой его половине – артериальной.

Стенка сердца состоит из трех слоев :

Ø эндокард – тонкая внутренняя оболочка, выстилает изнутри полости сердца, повторяя их сложный рельеф; в его состав входят преимущественно соединительная (рыхлая и плотная волокнистые) и гладкомышечная ткани. Дупликатуры эндокарда образуют атриовентрикулярные и полулунные клапаны, а также заслонки нижней полой вены и венечного синуса

Ø миокард – средний слой стенки сердца, самый толстый, представляет собой сложную многотканевую оболочку, основным компонентом которой является сердечная мышечная ткань. Миокард имеет наибольшую толщину в левом желудочке, а наименьшую – в предсердиях. Миокард предсердий состоит из двух слоев : поверхностного (общего для обоих предсердий, в котором мышечные волокна расположены поперечно ) и глубокого (раздельного для каждого из предсердий , в котором мышечные волокна следуют продольно , здесь встречаются и круговые волокна, петлеобразно в виде сфинктеров охватывающие устья вен, впадающих в предсердия). Миокард желудочков трехслойный : наружный (образован косо ориентированными мышечными волокнами) и внутренний (образован продольно ориентированными мышечными волокнами) слои являются общими для миокарда обоих желудочков, а расположенный между ними средний слой (образован круговыми волокнами ) – отдельным для каждого из желудочков.

Ø эпикард – наружная оболочка сердца, является висцеральным листком серозной оболочки сердца (перикарда), построен по типу серозных оболочек и состоит из тонкой пластинки соединительной ткани, покрытой мезотелием.

Миокард сердца , обеспечивающий периодическое ритмичное сокращение его камер, образован сердечной мышечной тканью (разновидность поперечнополосатой мышечной ткани). Структурно-функциональной единицей сердечной мышечной ткани служит сердечное мышечное волокно . Оно является исчерченным (сократительный аппарат представлен миофибриллами , ориентированными параллельно продольной его оси, занимающими периферическое положение в волокне, тогда как ядра находятся в центральной части волокна), характеризуется наличием хорошо развитого саркоплазматического ретикулюма и системы Т-трубочек . Но его отличительной особенностью служит тот факт, что оно – многоклеточное образование , представляющее собой совокупность последовательно уложенных и соединенных с помощью вставочных дисков сердечных мышечных клеток – кардиомиоцитов. В области вставочных дисков имеется большое количество щелевых контактов (нексусов) , устроенных по типу электрических синапсов и обеспечивающих возможность непосредственного проведения возбуждения с одного кардиомиоцита на другой. В связи с тем, что сердечное мышечное волокно – многоклеточное образование, его называют функциональным волокном.

https://pandia.ru/text/78/567/images/image009_18.jpg" width="319" height="422 src=">

Рис. 9. Схема строения щелевого контакта (нексуса). Щелевой контакт обеспечивает ионное и метаболическое сопряжение клеток . Плазматические мембраны кардиомиоцитов в области образования щелевого контакта сближены и разделены узкой межклеточной щелью шириной 2-4 нм. Связь между мембранами соседних клеток обеспечивает трансмембранный белок цилиндрической конфигурации – коннексон. Молекула коннексона состоит из 6 субъединиц коннексина, располагающихся радиально и ограничивающих собой полость (канал коннексона, диаметр 1,5 нм). Две молекулы коннексона соседних клеток соединяются в межмембранном пространстве между собой, в результате чего образуется единый канал нексуса, который может пропускать ионы и низкомолекулярные вещества с Mr до 1,5 кД. Следовательно, нексусы делают возможным движение не только неорганических ионов из одного кардиомиоцита в другой (что обеспечивает непосредственную передачу возбуждения), но и низкомолекулярных органических веществ (глюкозы, аминокислот и т. д.)

Кровоснабжение сердца осуществляется коронарными артериями (правой и левой), отходящими от луковицы аорты и составляющими вместе с микроциркуляторынм руслом и коронарными венами (собираются в венечный синус, впадающий в правое предсердие) коронарный (венечный) круг кровообращения , который является частью большого круга.

Сердце относится к числу органов, работающих на протяжении жизни постоянно. За 100 лет человеческой жизни сердце совершает около 5 миллиардов сокращений. Причем интенсивность работы сердца зависит от уровня обменных процессов в организме. Так, у взрослого человека нормальная частота сердечных сокращений в покое составляет 60-80 уд/мин, тогда как у более мелких животных с большей относительной площадью поверхности тела (площадью поверхности на единицу массы) и соответственно более высоким уровнем обменных процессов интенсивность сердечной деятельности гораздо выше. Так у кошки (средний вес 1,3кг) частота сердечных сокращений 240 уд/мин, у собаки – 80 уд/мин, у крысы (200-400г) – 400-500 уд/мин, а у синицы московки (масса около 8г) – 1200 уд/мин. Частота сердечных сокращений у крупных млекопитающих с относительно низким уровнем обменных процессов гораздо ниже таковой человека. У кита (вес 150тонн) сердце делает 7 сокращений в минуту, а у слона (3 тонны) – 46 уд/мин.

Русский физиолог подсчитал, что в течение человеческой жизни сердце совершает работу, равную усилию, которого было бы достаточно, чтобы поднять железнодорожный состав на высочайшую вершину Европы – гору Монблан (высота 4810м). За сутки у человека, находящегося в относительном покое, сердце перекачивает 6-10тонн крови, а в течение жизни – 150-250 тыс. тонн.

Движение крови в сердце, так же как и в сосудистом русле, осуществляется пассивно по градиенту давления. Так, нормальный сердечный цикл начинается с систолы предсердий , в результате которой давление в предсердиях несколько повышается, и порции крови перекачиваются в расслабленные желудочки, давление в которых близко к нулю. В момент следующей за систолой предсердий систолы желудочков давление в них нарастает, и, когда оно становится выше такового в проксимальном отделе сосудистого русла, кровь из желудочков изгоняется в соответствующие сосуды. В момент общей паузы сердца происходит основное наполнение желудочков кровью, пассивно возвращающейся к сердцу по венам; сокращение же предсердий обеспечивает дополнительную подкачку незначительного количества крови в желудочки.

https://pandia.ru/text/78/567/images/image011_14.jpg" width="552" height="321 src=">Рис. 10. Схема работы сердца

Рис. 11. Схема, показывающая направление тока крови в сердце

4. Структурная организация и функциональная роль проводящей системы сердца

Проводящая система сердца представлена совокупностью проводящих кардиомиоцитов, формирующих

Ø синусно-предсердный узел (синоатриальный узел, узел Кейт-Флака, заложен в правом предсердии, у места впадения полых вен),

Ø предсердно-желудочковый узел (атриовентрикулярный узел, узел Ашоффа-Тавара, заложен в толще нижнего отдела межпредсердной перегородки, ближе к правой половине сердца),

Ø пучок Гиса (предсердно-желудочковый пучок, находится в верхней части межжелудочковой перегородки) и его ножки (спускаются от пучка Гиса вдоль внутренних стенок правого и левого желудочков),

Ø сеть диффузных проводящих кардиомиоцитов , образующих волокна Прукинье (проходят в толще рабочего миокарда желудочков, как правило, примыкая к эндокарду).

Кардиомиоциты проводящей системы сердца являются атипическими миокардиальными клетками (в них слабо развит сократительный аппарат и система Т-трубочек, они не играют существенной роли в развитии напряжения в полостях сердца в момент их систолы), которые обладают способностью к самостоятельной генерации нервных импульсов с определенной частотой (автоматии ).

Вовлечение" href="/text/category/vovlechenie/" rel="bookmark">вовлекая в возбуждение миокрадиоциты межжелудочковой перегородки и верхушки сердца, а затем по разветвлениям ножек и волокнам Пуркинье возвращается к основанию желудочков. Благодаря этому вначале сокращаются верхушки желудочков, а потом уже их основания.

Таким образом, проводящая система сердца обеспечивает :

Ø периодическую ритмическую генерацию нервных импульсов , инициирующих сокращение камер сердца с определенной частотой;

Ø определенную последовательность в сокращении камер сердца (вначале возбуждаются и сокращаются предсердия, подкачивая кровь в желудочки, а уже потом желудочки, перекачивающие кровь в сосудистое русло)

Ø почти синхронный охват возбуждением рабочего миокарда желудочков , а значит, и высокую эффективность систолы желудочков, что необходимо для создания в их полостях определенного давления, несколько превышающего таковое в аорте и легочном стволе, а, следовательно, для обеспечения определенного систолического выброса крови.

5. Электрофизиологические характеристики миокардиальных клеток

Проводящие и рабочие кардиомиоциты являются возбудимыми структурами , т. е. обладают способностью к генерации и проведению потенциалов действия (нервных импульсов). Причем для проводящих кардиомиоцитов свойственна автоматия (способность к самостоятельной периодической ритмической генерации нервных импульсов ), тогда как рабочие кардиомиоциты возбуждаются в ответ на приходящее к ним возбуждение от проводящих или других уже возбужденных рабочих миокардиальных клеток.

https://pandia.ru/text/78/567/images/image013_12.jpg" width="505" height="254 src=">

Рис. 13. Схема потенциала действия рабочего кардиомиоцита

В потенциале действия рабочих кардиомиоцитов выделяют следующие фазы:

Ø фаза быстрой начальной деполяризации , обусловлена быстрым входящим потенциалзависимым натриевым током , возникает вследствие активации (открытия быстрых активационных ворот) быстрых потенциалзависимых натриевых каналов; характеризуется большой крутизной нарастания, поскольку обуславливающий ее ток обладает способностью к самообновлению.

Ø фаза плато ПД , обусловлена потенциалзависимым медленным входящим кальциевым током . Начальная деполяризация мембраны, вызванная входящим натриевым током, приводит к открытию медленных кальциевых каналов , через посредство которых ионы кальция по концентрационному градиенту входят внутрь кардиомиоцита; эти каналы в гораздо меньшей степени, но все же проницаемы и для ионов натрия. Вход кальция и отчасти натрия в кардиомиоцит через медленные кальциевые каналы несколько деполяризует его мембрану (но гораздо слабее, чем предшествующий этой фазе быстрый входящий натриевый ток). В эту фазу быстрые натриевые каналы, обеспечивающие фазу быстрой начальной деполяризации мембраны, инактивируются, и клетка переходит в состояние абсолютной рефрактерности . В этот период происходит и постепенная активация потенциалзависимых калиевых каналов. Эта фаза является самой длительной фазой ПД (составляет 0,27с при общей длительности ПД 0,3с), в результате чего кардиомиоцит большую часть времени в период генерации ПД находится в состоянии абсолютной рефрактерности. Причем длительность одиночного сокращения миокардиальной клетки (около 0,3с) примерно равна таковой ПД, что вместе с продолжительным периодом абсолютной рефрактерности делает невозможным развитие тетанического сокращения сердечной мышцы, которое было бы равнозначно остановке сердца. Следовательно, сердечная мышца способно к развитию только одиночных сокращений .

К системе кровообращения относятся сердце и сосуды - кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей.

Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней - в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека - полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры - предсердия, нижние - желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки - перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении .

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по проводящей системе сердца - 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Проводящая система сердца.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

синусно-предсердного узла , располагающегося на задней стенке правого предсердия у места впадения верхней полой вены;

предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правого предсердия вблизи перегородки между предсердиями и желудочками;

предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако способность к автоматии присуща предсердно-желудочковому узлу и пучку Гиса, только выражается она в меньшей степени и проявляется лишь при патологии. Автоматизм предсердно-желудочкового соединения проявляется лишь в тех случаях, когда к нему не поступают импульсы от синусно-предсердного узла .

Атипическая ткань состоит из малодифференцированных мышечных волокон. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Сердечный цикл и его фазы.

В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков. В сердце человека она длится 0,1-0,16 с. Систола желудочков - 0,5-0,56 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86 с.

Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца - количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем - количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца - это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Законы сердечной деятельности.

Закон Старлинга - закон сердечного волокна. Формулируется так: чем больше растянуто мышечное волокно, тем сильнее оно сокращается. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений.

Рефлекс Бейнбриджа (закон сердечного ритма). Это висцеро-висцеральный рефлекс: увеличение частоты и силы сердечных сокращений при повышении давления в устьях полых вен. Проявление этого рефлекса связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, реагируют на повышение давления крови, возвращающейся к сердцу, например, при мышечной работе. Импульсы от механорецепторов по блуждающим нервам идут в продолговатый мозг к центру блуждающих нервов, в результате этого снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение сердечных сокращений.

Основные методы исследования сердечной деятельности. Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся: верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок. Во время систолы желудочков верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным. Поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу. Сердечные тоны. Это звуковые явления, возникающие в работающем сердце. Различают два тона: I - систолический и II - диастолический.

В происхождении систолического тона принимают участие главным образом предсердно-желудочковые клапаны. Во время систолы желудочков эти клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают появление I тона. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым качествам первый тон протяжный и низкий. Диастолический тон возникает в начале диастолы желудочков, когда происходит закрытие полулунных заслонок клапанов аорты и легочного ствола. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий. Тоны сердца можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины; II - во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушиваются при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Электрокардиограмма.

В работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов. Биопотенциалы сердца, записанные с помощью электрокардиографа, носят название электрокардиограммы.

Для регистрации биотоков сердца пользуются стандартными отведениями , для которых выбираются участки на поверхности тела, дающие наибольшую разность потенциалов. Применяют три классических стандартных отведения, при которых электроды укрепляют:I - на внутренней поверхности предплечий обеих рук;II - на правой руке и в области икроножной мышцы левой ноги; III - на левых конечностях. Используют также и грудные отведения.

Нормальная ЭКГ состоит из ряда зубцов и интервалов между ними. При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность зубцов и интервалов между ними, отражает скорость проведения импульсов в сердце. ЭКГ имеет три направленных вверх (положительных) зубца - Р, R,T и два отрицательных зубца, вершины которых обращены вниз, - Q и S.

Зубец Р - характеризует возникновение и распространение возбуждения в предсердиях.

Зубец Q - отражает возбуждение межжелудочковой перегородки

Зубец R - соответствует периоду охвата возбуждением обоих желудочков

Зубец S - характеризует завершение распространения возбуждения в желудочках.

Зубец Т - отражает процесс реполяризации в желудочках. Высота его характеризует состояние обменных процессов, происходящих в сердечной мышце .

Физиология сердечно-сосудистой системы.

Лекция 1

К системе кровообращения относятся сердце и сосуды – кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей .

Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры – предсердия, нижние – желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки – перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении .

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы.Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по проводящей системе сердца – 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться , сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Проводящая система сердца.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

синусно-предсердного узла , располагающегося на задней стенке правого предсердия у места впадения верхней полой вены;

предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правого предсердия вблизи перегородки между предсердиями и желудочками;

предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце . Однако способность к автоматии присуща предсердно-желудочковому узлу и пучку Гиса, только выражается она в меньшей степени и проявляется лишь при патологии. Автоматизм предсердно-желудочкового соединения проявляется лишь в тех случаях, когда к нему не поступают импульсы от синусно-предсердного узла .

Атипическая ткань состоит из малодифференцированных мышечных волокон. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Сердечный цикл и его фазы.

В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков. В сердце человека она длится 0,1-0,16 с. Систола желудочков – 0,5-0,56 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86 с.

Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца – количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем – количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца – это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Законы сердечной деятельности.

Закон Старлинга – закон сердечного волокна. Формулируется так: чем больше растянуто мышечное волокно, тем сильнее оно сокращается. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений.

Рефлекс Бейнбриджа (закон сердечного ритма). Это висцеро-висцеральный рефлекс: увеличение частоты и силы сердечных сокращений при повышении давления в устьях полых вен. Проявление этого рефлекса связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, реагируют на повышение давления крови, возвращающейся к сердцу, например, при мышечной работе. Импульсы от механорецепторов по блуждающим нервам идут в продолговатый мозг к центру блуждающих нервов, в результате этого снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение сердечных сокращений.

Регуляция деятельности сердца.

Лекция 2

Сердце обладает автоматизмом, то есть оно сокращается под влиянием импульсов, возникающих в его специальной ткани. Однако в целостном организме животного и человека работа сердца регулируется за счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования.

Нервная регуляция.

Сердце, как и все внутренние органы, иннервируется вегетативной нервной системой.

Парасимпатические нервы являются волокнами блуждающего нерва, которые иннервируют образования проводящей системы, а также миокард предсердий и желудочков. Центральные нейроны симпатических нервов залегают в боковых рогах спинного мозга на уровне I-IV грудных позвонков, отростки этих нейронов направляются в сердце, где иннервируют миокард желудочков и предсердий, образования проводящей системы.

Центры нервов, иннервирующих сердце, всегда находятся в состоянии умеренного возбуждения. За счет этого к сердцу постоянно поступают нервные импульсы. Тонус нейронов поддерживается за счет импульсов, поступающих из ЦНС от рецепторов , заложенных в сосудистой системе. Эти рецепторы располагаются в виде скопления клеток и носят название рефлексогенной зоны сердечно-сосудистой системы. Наиболее важные рефлексогенные зоны располагаются в области каротидного синуса, в области дуги аорты.

Блуждающие и симпатические нервы оказывают на деятельность сердца противоположное влияние по 5 направлениям:


  1. хронотропное (изменяет частоту сердечных сокращений);

  2. инотропное (изменяет силу сердечных сокращений);

  3. батмотропное (оказывает влияние на возбудимость);

  4. дромотропное (изменяет способность к проводимости);

  5. тонотропное (регулирует тонус и интенсивность обменных процессов).
Парасимпатическая нервная система оказывает отрицательное влияние по всем пяти направлениям, а симпатическая нервная система – положительное.

Таким образом, при возбуждении блуждающих нервов происходит уменьшение частоты, силы сердечных сокращений, уменьшение возбудимости и проводимости миокарда, снижает интенсивность обменных процессов в сердечной мышце.

При возбуждении симпатических нервов происходит увеличение частоты, силы сердечных сокращений, увеличение возбудимости и проводимости миокарда, стимуляция обменных процессов.

Рефлекторные механизмы регуляции деятельности сердца.

В стенках сосудов располагаются многочисленные рецепторы, реагирующие на изменения величины артериального давления и химического состава крови. Особенно много рецепторов имеется в области дуги аорты и сонных (каротидных) синусов.

При уменьшении АД происходит возбуждение этих рецепторов и импульсы от них поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов снижается возбудимость нейронов ядер блуждающих нервов, усиливается влияние симпатических нервов на сердце, в результате чего частота и сила сердечных сокращений увеличиваются, что является одной из причин нормализации величины АД.

При увеличении АД нервные импульсы рецепторов дуги аорты и сонных синусов усиливают активность нейронов ядер блуждающих нервов. В результате замедляется ритм сердца, ослабляются сердечные сокращения, что также является причиной восстановления исходного уровня АД.

Деятельность сердца рефлекторно может измениться при достаточно сильном возбуждении рецепторов внутренних органов, при возбуждении рецепторов слуха, зрения, рецепторов слизистых оболочек и кожи. Сильные звуковые и световые раздражения, резкие запахи, температурные и болевые воздействия могут обусловить изменения в деятельности сердца.

Влияние коры головного мозга на деятельность сердца.

КГМ регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния КГМ на деятельность сердца является возможность образования условных рефлексов, а также изменения в деятельности сердца , сопровождающие различные эмоциональные состояния (волнение, страх, гнев, злость, радость).

Условнорефлекторные реакции лежат в основе так называемых предстартовых состояний спортсменов. Установлено, что у спортсменов перед бегом, то есть в предстартовом состоянии, увеличиваются систолический объем сердца и частота сердечных сокращений.

Гуморальная регуляция деятельности сердца.

Факторы, осуществляющие гуморальную регуляцию деятельности сердца, делятся на 2 группы: вещества системного действия и вещества местного действия.

К веществам системного действия относятся электролиты и гормоны.

Избыток ионов калия в крови приводит к замедлению ритма сердца, уменьшению силы сердечных сокращений, торможению распространения возбуждения по проводящей системе сердца, снижению возбудимости сердечной мышцы.

Избыток ионов кальция в крови оказывает на деятельность сердца противоположное влияние: увеличивается ритм сердца и сила его сокращений, повышается скорость распространения возбуждения по проводящей системе сердца и нарастает возбудимость сердечной мышцы. Характер действия ионов калия на сердце сходен с эффектом возбуждения блуждающих нервов, а действие ионов кальция – с эффектом раздражения симпатических нервов

Адреналин увеличивает частоту и силу сердечных сокращений, улучшает коронарный кровоток, тем самым повышая интенсивность обменных процессов в сердечной мышце.

Тироксин вырабатывается в щитовидной железе и оказывает стимулирующее влияние на работу сердца, обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) улучшают реабсорбцию (обратное всасывание) ионов натрия и выведение ионов калия из организма.

Глюкагон повышает содержание глюкозы в крови за счет расщепления гликогена, что оказывает положительный инотропный эффект.

Вещества местного действия действуют в том месте, где образовались. К ним относят:


  1. Медиаторы – ацетилхолин и норадреналин, которые оказывают противоположные влияния на сердце.
Действие АХ неотделимо от функций парасимпатических нервов , так как он синтезируется в их окончаниях. АХ уменьшает возбудимость сердечной мышцы и силу ее сокращений. Норадреналин оказывает на сердце влияние, аналогичное воздействию симпатических нервов. Стимулирует обменные процессы в сердце, повышает расход энергии и тем самым увеличивает потребность миокарда в кислороде.

  1. Тканевые гормоны – кинины – вещества, обладающие высокой биологической активностью, но быстро подвергающиеся разрушению, они действуют на гладкомышечные клетки сосудов.

  2. Простагландины – оказывают разнообразное действие на сердце в зависимости от вида и концентрации

  3. Метаболиты – улучшают коронарный кровоток в сердечной мышце.
Гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

Коронарный кровоток.

Для нормальной полноценной работы миокарда требуется адекватное потребностям поступление кислорода. Кислород к сердечной мышце доставляется по коронарным артериям, которые берут свое начало от дуги аорты. Кровоток происходит преимущественно во время диастолы (до 85%), во время систолы в миокард поступает до 15% крови. Это связано с тем, что в момент сокращения мышечные волокна пережимают коронарные сосуды и кровоток по ним замедляется.

Пульс характеризуют следующие признаки: частота – число ударов в 1 мин., ритмичность – правильное чередование пульсовых ударов,наполнение – степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение – характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Кривая, полученная при записи пульсовых колебаний стенки артерии, называется сфигмограммой .

Особенности кровотока в венах.

В венах давление крови низкое. Если в начале артериального русла давление крови равно 140 мм рт.ст., то в венулах оно составляет 10-15 мм рт.ст.

Движению крови по венам способствует ряд факторов :


  • Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу.

  • Наличие в венах клапанов способствует движению крови в одном направлении – к сердцу.

  • Чередование сокращений и расслаблений скелетных мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса , который является помощником основного насоса – сердца.

  • Отрицательное внутригрудное давление , особенно в фазу вдоха, способствует венозному возврату крови к сердцу.
Время кругооборота крови.
Это время, необходимое для прохождения крови по двум кругам кровообращения. У взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени 1/5 приходится на малый круг кровообращения и 4/5 – на большой.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями:

- Объемная скорость кровотока (количество крови, протекающей в единицу времени) одинакова в поперечном сечении любого участка ССС. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, то есть минутному объему крови.

На объемную скорость кровотока оказывают влияние в первую очередь разность давления в артериальной и венозной системах и сопротивление сосудов. На величину сопротивления сосудов влияет ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока – это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока неодинакова в разных сосудистых областях. Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах. Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

Величина кровотока в отдельных органах зависит от кровоснабжения органа и уровня его активности.

Физиология микроциркуляции.

Нормальному течению обмена веществ способствуют процессы микроциркуляции – направленного движения жидких сред организма: крови, лимфы, тканевой и цереброспинальной жидкостей и секретов эндокринных желез. Совокупность структур, обеспечивающих это движение , называется микроциркуляторным руслом . Основными структурно-функциональными единицами микроциркуляторного русла являются кровеносные и лимфатические капилляры, которые вместе с окружающими их тканями формируют три звена микроциркуляторного русла : капиллярное кровообращение, лимфообращение и тканевый транспорт.

Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их – 8000 км, площадь внутренней поверхности 25 кв.м.

Стенка капилляра состоит из двух слоев : внутреннего эндотелиального и наружного, называемого базальной мембраной.

Кровеносные капилляры и прилежащие к ним клетки являются структурными элементами гистогематических барьеров между кровью и окружающими тканями всех без исключения внутренних органов. Эти барьеры регулируют поступление из крови в ткани питательных, пластических и биологически активных веществ, осуществляют отток продуктов клеточного метаболизма, способствуя, таким образом, сохранению органного и клеточного гомеостаза, и, наконец, препятствуют поступлению из крови в ткани чужеродных и ядовитых веществ, токсинов, микроорганизмов, некоторых лекарственных веществ.

Транскапиллярный обмен. Важнейшей функцией гистогематических барьеров является транскапиллярный обмен. Движение жидкости через стенку капилляра происходит за счет разности гидростатического давления крови и гидростатического давления окружающих тканей, а также под действием разности величины осмо-онкотического давления крови и межклеточной жидкости.

Тканевый транспорт. Стенка капилляра морфологически и функционально тесно связана с окружающей ее рыхлой соединительной тканью. Последняя переносит поступающую из просвета капилляра жидкость с растворенными в ней веществами и кислород к остальным тканевым структурам.

Лимфа и лимфообращение.

Лимфатическая система состоит из капилляров, сосудов, лимфатических узлов, грудного и правого лимфатического протоков, из которых лимфа поступает в венозную систему.

У взрослого человека в условиях относительного покоя из грудного протока в подключичную вену ежеминутно поступает около 1 мл лимфы, в сутки – от 1,2 до 1,6 л .

Лимфа – это жидкость, содержащаяся в лимфатических узлах и сосудах. Скорость движения лимфы по лимфатическим сосудам составляет 0,4-0,5 м/с.

По химическому составу лимфа и плазма крови очень близки. Основное отличие - в лимфе содержится значительно меньше белка, чем в плазме крови.

Образование лимфы.

Источник лимфы - тканевая жидкость. Тканевая жидкость образуется из крови в капиллярах. Она заполняет межклеточные пространства всех тканей. Тканевая жидкость является промежуточной средой между кровью и клетками организма. Через тканевую жидкость клетки получают все необходимые для их жизнедеятельности питательные вещества и кислород и в нее же выделяют продукты обмена веществ, в том числе и углекислый газ.

Движение лимфы.

Постоянный ток лимфы обеспечивается непрерывным образованием тканевой жидкости и переходом ее из межтканевых пространств в лимфатические сосуды.

Существенное значение для движения лимфы имеет активность органов и сократительная способность лимфатических сосудов. В лимфатических сосудах имеются мышечные элементы, благодаря чему они обладают способностью активно сокращаться. Наличие клапанов в лимфатических капиллярах обеспечивает движение лимфы в одном направлении (к грудному и правому лимфатическому протокам).

К вспомогательным факторам, способствующим движению лимфы, относятся: сократительная деятельность поперечнополосатых и гладких мышц, отрицательное давление в крупных венах и грудной полости, увеличение объема грудной клетки при вдохе, что обусловливает присасывание лимфы из лимфатических сосудов.

Основными функциями лимфатических капилляров являются дренажная, всасывания, транспортно-элиминативная, защитная и фагоцитоз.

Дренажная функция осуществляется по отношению к фильтрату плазмы с растворенными в нем коллоидами, кристаллоидами и метаболитами. Всасывание эмульсий жиров, белков и других коллоидов осуществляется в основном лимфатическими капиллярами ворсинок тонкого кишечника.

Транспортно-элиминативная – это перенос в лимфатические протоки лимфоцитов, микроорганизмов, а также выведение из тканей метаболитов, токсинов, обломков клеток, мелких инородных частиц.

Защитная функция лимфатической системы выполняется своеобразными биологическими и механическими фильтрами – лимфатическими узлами.

Фагоцитоз заключается в захвате бактерий и инородных частиц.

Лимфатические узлы.

Лимфа в своем движении от капилляров к центральным сосудам и протокам проходит через лимфатические узлы. У взрослого человека имеется 500-1000 лимфатических узлов различных размеров – от булавочной головки до мелкого зерна фасоли.

Лимфатические узлы выполняют ряд важных функций: гемопоэтическую, иммунопоэтическую, защитно-фильтрационную, обменную и резервуарную. Лимфатическая система в целом обеспечивает отток лимфы от тканей и поступление ее в сосудистое русло.

Регуляция тонуса сосудов.

Лекция 4

Гладкомышечные элементы стенки кровеносного сосуда постоянно находятся в состоянии умеренного напряжения – сосудистого тонуса. Существует три механизма регуляции сосудистого тонуса:


  1. ауторегуляция

  2. нервная регуляция

  3. гуморальная регуляция.
Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Миогенная регуляция связана с изменением состояния гладкомышечных клеток сосудов в зависимости от степени их растяжения – эффект Остроумова-Бейлиса. Гладкомышечные клетки стенки сосудов отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Значение: поддержание на постоянном уровне объема крови, поступающей к органу (наиболее выражен механизм в почках, печени, легких, головном мозге).

Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающее и сосудорасширяющее действие.

Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие.

Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

Действие гормонов на тонус сосудов:


  1. вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

  2. адреналин оказывает одновременно и суживающее и расширяющее действие, воздействуя на альфа1-адренорецепторы и бета1-адренорецепторы, поэтому при незначительных концентрациях адреналина происходит расширение кровеносных сосудов, а при высоких – сужение;

  3. тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

  4. ренин – вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, оказывая воздействие на белок ангиотензиноген, который переходит в ангиотезин II, вызывающий сужение сосудов.
Метаболиты (углекислый газ, пировиноградная кислота, молочная кислота, ионы водорода) воздействуют на хеморецепторы сердечно-сосудистой системы, приводя к рефлекторному сужению просвета сосудов.

К веществам местного воздействия относятся:


  1. медиаторы симпатической нервной системы – сосудосуживающее действие, парасимпатической (ацетилхолин) – расширяющее;

  2. биологически активные вещества – гистамин расширяет сосуды, а серотонин суживает;

  3. кинины – брадикинин, калидин – оказывают расширяющее действие;

  4. простогландины А1, А2, Е1 расширяют сосуды, а F2α суживает.
Роль сосудодвигательного центра в регуляции сосудистого тонуса.

В нервной регуляции тонуса сосудов принимают участие спинной, продолговатый, средний ипромежуточный мозг, кора головного мозга. КГМ и гипоталамическая область оказывают опосредованное влияние на тонус сосудов, изменяя возбудимость нейронов продолговатого и спинного мозга.

В продолговатом мозге локализуется сосудодвигательный центр, который состоит из двух областей – прессорной и депрессорной . Возбуждение нейронов прессорной области приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.

Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов рефлексогенных зон. Особенно важная роль принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. В области сонных синусов располагаются механорецепторы, связанные с языкоглоточным (IX пара ЧМН) и симпатическими нервами. Естественным раздражителем их является механическое растяжение, которое наблюдается при изменении величины артериального давления.

При повышении артериального давления в сосудистой системе возбуждаются механорецепторы . Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудодвигательному центру. Под влиянием этих импульсов снижается активность нейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению АД. При уменьшении АД наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, приводящие к нормализации АД.

В восходящей части аорты, в ее наружном слое , располагается аортальное тельце , а в области разветвления сонной артерии – каротидное тельце , в которых локализованы хеморецепторы , чувствительные к изменениям химического состава крови, особенно к сдвигам содержания углекислого газа и кислорода.

При повышении концентрации углекислого газа и понижении содержания кислорода в крови происходит возбуждение этих хеморецепторов, что обусловливает увеличение активности нейронов прессорной зоны сосудодвигательного центра. Это приводит к уменьшению просвета кровеносных сосудов и повышению АД.

Рефлекторные изменения давления, возникающие в результате возбуждения рецепторов различных сосудистых областей, получили названиесобственных рефлексов сердечно-сосудистой системы. Рефлекторные изменения АД, обусловленные возбуждением рецепторов, локализованных вне ССС, получили название сопряженных рефлексов .

Сужение и расширение сосудов в организме имеют различное функциональное назначение. Сужение сосудов обеспечивает перераспределение крови в интересах целого организма, в интересах жизненно важных органов, когда, например, в экстремальных условиях отмечается несоответствие между объемом циркулирующей крови и емкостью сосудистого русла. Расширение сосудов обеспечивает приспособление кровоснабжения к деятельности того или иного органа или ткани.

Перераспределение крови.

Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи. Во время физической работы возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Деятельность сердечно-сосудистой системы при физической нагрузке.

Увеличение выброса адреналина из мозгового вещества надпочечников в сосудистое русло стимулирует работу сердца и суживает сосуды внутренних органов. Все это способствует нарастанию величины АД, увеличению кровотока через сердце, легкие, мозг.

Адреналин возбуждает симпатическую нервную систему, которая усиливает деятельность сердца, что также способствует повышению АД. Во время физической активности кровоснабжение мышц возрастает в несколько раз.

Скелетные мышцы при своем сокращении механически сдавливают тонкостенные вены, что способствует увеличенному венозному возврату крови к сердцу. Кроме того, повышение активности нейронов дыхательного центра в результате нарастания количества углекислого газа в организме приводит к увеличению глубины и частоты дыхательных движений. Это же в свою очередь увеличивает отрицательное внутригрудное давление – важнейший механизм, способствующий венозному возврату крови к сердцу.

При интенсивной физической работе минутный объем крови может составлять 30л и более, это в 5-7 раз превышает минутный объем крови в состоянии относительного физиологического покоя. При этом ударный объем сердца может быть равен 150-200 мл и более. Значительно увеличивается число сердечных сокращений. По некоторым данным, пульс может возрасти до 200 в 1 мин и более. АД в плечевой артерии повышается до200 мм рт.ст. Скорость кругооборота крови может увеличиваться в 4 раза.

Физиологические особенности регионарного кровообращения.

Коронарное кровообращение.

Кровь к сердцу поступает по двум венечным артериям. Кровоток в венечных артериях происходит преимущественно во время диастолы.

Кровоток в венечных артериях зависит от кардиальных и внекардиальных факторов:

Кардиальные факторы: интенсивность обменных процессов в миокарде, тонус коронарных сосудов, величина давления в аорте, частота сердечных сокращений. Наилучшие условия для коронарного кровообращения создаются при АД у взрослого человека, равном 110-140 мм рт.ст.

Внекардиальные факторы: влияния симпатических и парасимпатических нервов, иннервирующих венечные сосуды, а также гуморальные факторы. Адреналин, норадреналин в дозах, не влияющих на работу сердца и величину АД, способствуют расширению венечных артерий и увеличению коронарного кровотока. Блуждающие нервы расширяют венечные сосуды. Резко ухудшают коронарное кровообращение никотин, перенапряжение нервной системы, отрицательные эмоции, неправильное питание, отсутствие постоянной физической тренировки.

Легочное кровообращение.

Легкие имеют двойное кровоснабжение: 1)сосуды малого круга кровообращения обеспечивают выполнение легкими дыхательной функции; 2) питание легочной ткани осуществляется от бронхиальных артерий, отходящих от грудной аорты.

Печеночное кровообращение.

Печень имеет две сети капилляров. Одна сеть капилляров обеспечивает деятельность пищеварительных органов, всасывание продуктов переваривания пищи и их транспорт от кишечника к печени. Другая сеть капилляров расположена непосредственно в ткани печени. Она способствует выполнению печенью функций, связанных с обменными и экскреторными процессами.

Кровь, поступающая в венозную систему и сердце, предварительно обязательно проходит через печень. В этом состоит особенность портального кровообращения, обеспечивающего осуществление печенью обезвреживающей функции.

Мозговое кровообращение.

Головной мозг обладает уникальной особенностью кровообращения: оно совершается в замкнутом пространстве черепа и находится во взаимосвязи с кровообращением спинного мозга и перемещениями цереброспинальной жидкости.