Простой мощный импульсный блок питания на tl494. TL494, что это за "зверь" такой? Область применения, указанная производителем

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.


В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ.
Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы - IRFP460 , старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494 , настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.


TL494 в полноценном блоке питания

http://www.radiokot.ru/circuit/power/supply/38/

Прошло больше года как я всерьез занялся темой блоков питания. Прочитал замечательные книги Марти Браун "Источники питания" и Семенов "Силовая электроника". В итоге заметил множество ошибок в схемах из интернета, а в последнее время и только и вижу жестокое издевательство над моей любимой микросхемой TL494.

Люблю я TL494 за универсальность, наверное нету такого блока питания, который невозможно было бы на ней реализовать. В данном случае я хочу рассмотреть реализацию наиболее интересной топологии "полумост". Управление транзисторами полумоста делается гальванически развязанным, это требует немало элементов, впринципе преобразователь внутри преобразователя. Несмотря на то, что существует множество полумостовых драйверов, использование в качестве драйвера трансформатора (GDT) списывать еще рано, этот способ наиболее надежный. Бутстрепные драйвера взрывались, а вот взрыва GDT я еще не наблюдал. Драйверный трансформатор представляет собой обычный импульсный трансформатор, рассчитывается по тем же формулами как и силовой учитывая схему раскачки. Часто я видел использование мощных транзисторов в раскачке GDT. Выходы микросхемы могут выдать 200 миллиампер тока и в случае грамотно построенного драйвера это очень даже много, лично я раскачивал на частоте в 100 килогерц IRF740 и даже IRFP460. Посмотрим на схему этого драйвера:



Данная схема включается на каждую выходную обмотку GDT. Дело в том, что в момент мертвого времени первичкая обмотка трансформатора оказывается разомкнутой, а вторичные не нагруженными, поэтому через саму обмотку разряд затворов будет идти крайне долго, введение подпирающего, разрядного резистора будет мешать быстро заряжаться затвору и кушать много энергии впустую. Схема на рисунке избавлена от этих недостатков. Фронты замеренные на реальном макете составили 160нс нарастающий и 120нс спадающий на затворе транзистора IRF740.
Аналогично построены дополняющие до моста транзисторы в раскачке GDT. Применение раскачки мостом обусловлено тем, что до срабатывания триггера питания tl494 по достижении 7 вольт, выходные транзисторы микросхемы будут открыты, в случае включения трансформатора как пуш-пул произойдет короткое замыкание. Мост работает стабильно.

Диодный мост VD6 выпрямляет напряжение с первичной обмотки и если оно превысит напряжение питания то вернет его обратно в конденсатор С2. Происходит это по причине появления напряжения обратного хода, всетаки индуктивность трансформатора не бесконечна.



Схему можно питать через гасящий конденсатор, сейчас работает 400 вольтовый к73-17 на 1.6мкф. диоды кд522 или значительно лучше 1n4148, возможна замена на более мощные 1n4007. Входной мост может быть построен на 1n4007 или использовать готовый кц407. На плате ошибочно применен кц407 в качестве VD6, его туда ни в коем слуdчае недопустимо ставить, этот мост должен быть выполнен на вч диодах. Транзистор VT4 может рассеивать до 2х ватт тепла, но играет он чисто защитную роль, можно применить кт814. Остальные транзисторы кт361, причем крайне нежелательна замена на низкочастотные кт814. Задающий генератор tl494 настроен здесь на частоту в 200 килогерц, это означает что в двухтактном режиме получим 100 килогерц. Мотаем GDT на ферритовом кольце 1-2 сантиметра диаметром. Провод 0.2-0.3мм. Витков должно быть в десяток раз больше чем рассчетное значение, это сильно улучшает форму выходного сигнала. Чем больше намотато - тем меньше нужно подгружать GDT резистором R2. Я намотал на кольце внешним диаметром 18мм 3 обмотки по 70 витков. Связано завышение числа витков и обязательная подгрузка с треугольной составляющей тока, она уменьшается с увеличеним витков, а подгрузка просто уменьшает его процентное влияние. Печатная плата прилагается, однако не совсем соответсвует схеме, но основные блоки на ней есть плюс добавлен обвес одного усилителя ошибки и последовательный стабилизатор для запитки от трансформатора. Плата выполнена под монтаж в разрез платы силовой части.

Стабилизированный полумостовой импульсный блок питания


1



Блок питания содержит малое количество компонентов. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.
На входе стоит NTC термистор (Negative Temperature Coefficient) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.
Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.
Полевые транзисторы используются предпочтительно фирмы IR (International Rectifier) . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.
Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В). Вторичные обмотки можно расчитать на другое напряжение.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.
Емкость на выходе – буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф.
Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании. Не следует включать блок питания без нагрузки.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА TL494 И IR2110

В основу большинства автомобильных и сетевых преобразователей напряжения положен специализированный контроллер TL494 и поскольку он главный, было бы не справедливо вкратце не рассказать о принципе его работы.
Контрллер TL494 представляет из себя пластиковый корпус DIP16 (есть варианты и в планарном корпусе, но в данных конструкциях он не используется). Функциональная схема контроллера приведена на рис.1.


Рисунок 1 - Структурная схема микросхемы TL494.

Как видно из рисунка у микросхемы TL494 очень развиты цепи управления, что позволяет на ее базе строить преобразователи практически под любые требования, но вначале несколько слов о функциональных узлах контроллера.
Цепи ИОНа и защиты от недонапряжения питания. Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого "стабилизатора" напряжение будет сильно зависеть от тока нагрузки.
Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0...+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).
Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1...500кОм, Ct=470пФ...10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания - в пределах 0.1% во всем допустимом диапазоне.
Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или - замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.
Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера - время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.
Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).
Усилители ошибки - фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений - от -0.3В до Vпитания-2В
При использовании RC частотнозависимой ОС следует помнить, что выход усилителей - фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз - разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).
Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.
Триггер и логика управления выходами - При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) - разрешается выход схемы. При сбросе генератора из максимума в ноль - выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 - подаются парафазно на каждый выход порознь.
Выходные транзисторы - npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) - 1.5В (типовое при 200 мА), а в схеме с общим эмиттером - чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл - 1Вт.
Импульсные блоки питания постепенно вытесняют своих традиционных сородичей и в звукотехнике, поскольку и экономически и габаритно выглядят заметно привлекательней. Тот же фактор, что импульсные блоки питания вносят свою не малую лепку искажения усилителя, а именно появления дополнительных призвуковуже теряет свою актуальность в основном по двух причинам - современная элементная база позволяет конструировать преобразователи с частотой преобразования значительно выше 40 кГц, следовательно вносимые источником питания модуляции питания будут находиться уже в ультразвуке. Кроме этого более высокую частоту по питанию гораздо легче отфильтровать и использование двух Г-образных LC фильтров по цепям питания уже достаточно сглаживают пульсации на этих частотах.
Конечно же есть и ложка дегтя в этой бочке меда - разница в цене между типовым источником питания для усилителя мощности и импульсным становиться более заметной при увеличении мощности этого блока, т.е. чем мощней блок питания, тем больше он выгодней по отношению к своему типовому аналогу.
И это еще не все. Используя импульсные источники питания необходимо придерживаться правил монтажа высокочастотных устройств, а именно использование дополнительных экранов, подачи на теплоотводы силовой части общего провода, а так же правильной разводке земли и подключения экранирующих оплеток и проводников.
После небольшого лирического отступления об особеностях импульсных блоков питания для усилителей мощности собсвенно принципиальная схема источника питания на 400Вт:

Рисунок 1. Принципиальная схема импульсного блока питания для усилителей мощности до 400 Вт
УВЕЛИЧИТЬ В ХОРОШЕМ КАЧЕСТВЕ

Управляющим контроллером в данном блоке питания служит TL494. Разумеется, что есть и более современные микросхемы для выполнения этой задачи, однако мы используем именно этот контроллер по двум причинам - его ОЧЕНЬ легко приобрести. Довольно продолжительное время в изготавливаемых блоках питания использовались TL494 фирмы Texas Instruments проблем по качеству обнаружено не было. Усилитель ошибки охвачен ООС, позволяющей добиться довольно большого коф. стабилизации (отношение резисторов R4 и R6).
После контроллера TL494 стоит полумостовой драйвер IR2110, который собственно и управляет затворами силовых транзисторов. Исполльзование драйвера позволило отказаться от согласующего трансформатора, широко используемого в комьютерных блоках питания. Драйвер IR2110 нагружен на затворы через ускоряющие закрытие полевиков цепочки R24-VD4 и R25-VD5.
Силовые ключи VT2 и VT3 работают на первичную обмотки силового трансформатора. Средняя точка, необходимая для получения переменного напряжения в первичной обмотке трансформатора формируется элементами R30-C26 и R31-C27.
Несколько слов об алгоритме работы импульсного блока питания на TL494:
В момент подачи сетевого напряжения 220 В емкости фильтров первичного питания С15 и С16 заражаются через резисторы R8 и R11, что не позволяет перегрузиться диолному мосту VD током короткого замыканияполностью разряженных С15 и С16. Одновременно происходит зарядка конденсаторов С1, С3, С6, С19 через линейку резисторов R16, R18, R20 и R22, стабилизатор 7815 и резистор R21.
Как только величина напряжения на конденсаторе С6 достигнет 12 В стабилитрон VD1 "пробивается" и через него начинает течть ток заряжая конденсатор C18 и как только на плюсовом выводе этого конденсатора будет достигнута величина достаточная для открытия тиристора VS2 он откроется. Это повлечет включение реле К1, которое своими кнтактами зашунтирует токоограничивающие резисторы R8 и R11.Кроме этого открывшийся тиристор VS2 откроет транзистор VT1 и на контроллер TL494 и полумостовой драйвер IR2110. Контроллер начнет режим мягкого старта, длительность которого зависит от номиналов R7 и C13.
Во время мягкого старта длительность импульсов, открывающих силовые транзисторы увеличиваются постепенно, тем самым постепенно заряжая конденсаторы вторичного питания и ограничивая ток через выпрямительные диоды. Длительность увеличивается до тех пор, пока величина вторичного питания не станет достаточной для открытия светодиода оптрона IC1. Как только яркость светодиода оптрона станет достаточной для открытия транзистора длительность импульсов перестанет увеличиваться (рисунок 2).


Рисунок 2. Режим мягкого старта.

Тут следует отметить, что длительность мягкого старта ограничена, поскольку проходящего через резисторы R16, R18, R20, R22 тока не достаточно для питания контроллера TL494, драйвера IR2110 и включившейся обмотки рел - напряжение питания этих микросхем начнет уменьшаться и вскоре уменьшиться до величины, при которой TL494 перестанет вырабатывать импульсы управления. И именно до этого момента режим мягкого старта должен быть окончен и преобразователь должен выйти на нормальный режим работы, поскольку основное питание контроллер TL494 и дрейвер IR2110 получают от силового трансформатора (VD9, VD10 - выпрямитель со средней точкой, R23-C1-C3 - RC фильтр, IC3 - стабилизатор на 15 В) и именно поэтому конденсаторы C1, C3, C6, C19 имеют такие большие номиналы - они должны удерживать величину питания контроллера до выхода его на обычный режим работы.
Стабилизацию выходного напряжения TL494 осуществляет путем изменения длительности импульсов управления силовыми транзисторами при неизменной частоте - Ш иротно И мпульсная М одуляция - ШИМ . Это возможно лишь при условии, когда величина вторичного напряжения силового трансформатора выше требуемой на выходе стабилизатора минимум на 30%, но не более 60%.


Рисунок 3. Принцип работы ШИМ стабилизатора.

При увеличении нагрузки выходное напряжение начинает уменьшаться, светодиод оптрона IС1 начинает светиться меньше, транзистор оптрона закрывается, уменьшая напряжение на усилителе ошибки и тем самым увеличивая длительность импульсов управления до тех пор, пока действующее напряжение не достигнет величины стабилизации (рисунок 3). При уменьшении нагрузки напряжение начнет увеличиваться, светодиод оптрона IC1 начнет светиться ярче, тем самым открывая транзистор и уменьшая длительность управляющих импульсов до тех пор, пока величина действующего значения выходного напряжения не уменьшиться до стабилизируемой величины. Величину стабилизируемого напряжения регулируют подстроечным резистором R26.
Следует отметить, что контроллером TL494 регулируется не длительность каждого импульса в зависимости от выходного напряжения, а лишь среднее значение, т.е. измерительная часть имеет некотрую инерционость. Однако даже при установленных конденсаторах во вторичном питании емкостью 2200 мкФ провалы питания при пиковых кратковременных нагрузках не превышают 5 %, что вполне приемлемо для аппаратуры HI-FI класса. Мы же обычно ставим конденсаторы во вторичном питании 4700 мкФ, что дает уверенный запас на пиковые значения, а использование дросселя групповой стабилизации позволяет контролировать все 4 выходных силовых напряжения.
Данный импульсный блок питания оснащен защитой от перегрузки, измерительным элементом которой служит трансформатор тока TV1. Как только ток достигнет критической величины открывается тиристор VS1 и зашунитрует питание оконечного каскада контроллера. Импульсы управления исчезают и блок питания переходит в дежурный режим, в котором может находиться довольно долго, поскольку тиристор VS2 продолжает оставаться открытым - тока протекающего через резисторы R16, R18, R20 и R22 хватает для удержание его в открытом состоянии. Как расчитать транформатор тока .
Для вывода блока питания из дежурного режима необходимо нажать кнопку SA3, которая своим контактами зашунтирует тиристор VS2, ток через него перестанет течь и он закроется. Как только контакты SA3 разомкнуться транзистор VT1 закроется тме самы снимая питания с контроллера и драйвера. Таким образом схема управления перейдет в режим минимального потребления - тиристор VS2 закрыт, следовательно реле К1 выключено, транзистор VT1 закрыт, следовательно контроллер и драйвер обесточены. Конденсаторы С1, С3, С6 и С19 начинают заряжаться и как только напряжение достигнет 12 В откроется тиристор VS2 и произойдет запуск импульсного блока питания.
При необходимости перевести блок питания в дежурный режим можно воспользоваться кнопкой SA2, при нажатии на которую будут соеденены база и эмиттер транзистора VT1. Транзистор закроется и обесточит контроллер и драйвер. Импульсы управления исчезнут, исчезнут и вторичные напряжения. Однако питание не будет снято с реле К1 и повторного запука преобразователя не произойдет.
Данная схемотехника позволяет собрать источники питания от 300-400 Вт до 2000Вт, разумеется, что некоторые элементы схемы придется заменить, поскольку по своим параметрам они просто не выдержат больших нагрузок.
При сборке более мощных вариантов следует обратить внимание на конденсаторы слаживающих фильтров первичного питания С15 и С16. Суммарная емкость этих конденсатоов должна быть пропорционалаьная мощности блока питания и соответствовать пропорции 1 Вт выходной мощности преобразователя напряжения соответствует 1 мкФ емкости конденсатора фильтра первичного питания. Другими словами, если мощность блока питания составляет 400 Вт, то должно использоваться 2 конденсатора по 220 мкФ, если мощность 1000 Вт, то необходимо устанавливать 2 конденсатора по 470 мкФ или два по 680 мкФ.
Данное требование имеет две цели. Во первых снижаются пульсации первичного напряжение питания, что облегчает стабилицацию выходного напряжения. Во вторых использование двух конденсаторов вместо одного облегчает работу самого конденсатора, поскольку электролитические конденсаторы серии ТК гораздо легче достать, а они не совсем предназначены для использования в высокочастотных блоках питания - слишком велико внутренне сопроивление и на больших частотах эти конденсаторы будут греться. Используя два штуки снижается внутреннее сопротивление, а возникающий нагрев делится уже между двумя конденсаторами.
При использовании в качестве силовых транзисторов IRF740, IRF840, STP10NK60 и им аналогичных (подробнее о наиболее часто используемых в сетевых преобразователях транзисторах смотри таблицу внизу страницы) от диодов VD4 и VD5 можно отказаться вообще, а номиналы резисторов R24 и R25 уменьшить до 22 Ом - мощности драйвера IR2110 вполне хватит для управления этими транзисторами. Если же собирается более мощный импульсный блок питания, то потребуются и более мощные транзисторы. Внимание следует обращать и на максимальный ток транзистора и на его мощность рассеивания - импульсные стабилизированные блоки питания весьма чувствительны к правильности поставлееного снабера и без него силовые транзисторы греются сильнее поскольку через установленные в транзисторах диоды начинают протекать токи образовавшиеся из за самоиндукции. Подробнее о выборе снабера .
Так же не малую лепту в нагрев вносит увеличивающееся без снабера время закрытия - транзистор дольше находится в линейном режиме.
Довольно часто забывают еще об одной особенности полевых транзисторов - с увеличением температуры их максимальный ток снижается, причем довольно сильно. Исходя из этого при выборе силовых транзисторов для импульсных блоков питания следует иметь минимум двухкратный запас по максимальному току для блоков питания усилителей мощности и трехкратный для устройств работающих на большую не меняющуюся нагрузку, например индукционную плавильню или декоративное освещение, запитку низковольтного электроинструмента.
Стабилизация выходного напряжения осуществляется за счет дросселя групповой стабилизации L1 (ДГС). Следует обратить внимание на направление обмоток данного дросселя. Количество витков должно быть пропорционально выходным напряжениям. Разумеется, что есть формулы для расчета данного моточного узла, однако опыт показал, что габаритная мощность сердечника для ДГС должна составлять 20-25% от габаритной мощности силового трансформатора. Мотать можно до заполнения окна примерно на 2/3, не забывая, что если выходные напряжения разные, то обмотка с более высоким напряжением должна быть пропорциоанально больше, например нужно два двуполярных напряжения, одно на ±35 В, а второе для питания сабвуфера с напряжением ±50 В.
Мотаем ДГС сразу в четыре провода до заполнения 2/3 окна считая витки. Диаметр расчитывается исходя из напряженности тока 3-4 А/мм2 . Допустим у нас получилось 22 витка, составляем пропорцию:
22 витка / 35 В = Х витков / 50 В.
Х витков = 22 × 50 / 35 = 31,4 ≈ 31 виток
Далее обрезам два провода для ±35 В и доматываем еще 9 витков для напряжения ±50.
ВНИМАНИЕ! Помните, что качество стабилизации напрямую зависит от того как быстро будет изменяться напряжение к кторому подключен диод оптрона. Для улучшения коф стаилизации имеет смысл подключить дополнительную нагрузку к каждому напряжению в виде резисторов на 2 Вт и споротивлением 3,3 кОм. Нагрузочный резистор подключенный к напряжению, контролируемому оптроном должен быть меньше в 1,7...2,2 раза.

Моточные данные данные для сетевых импульсных источников питания на ферритовых кольцах проницаемостью 2000НМ сведены в таблицу 1.

МОТОЧНЫЕ ДАННЫЕ ДЛЯ ИМПУЛЬСНЫХ ТРАНСФОРМАТОРОВ
РАСЧИТАНЫ ПО МЕТОДИКЕ ЭНОРАСЯНА
Как показали многочисленные эксперименты количество витков можно смело уменьшать на 10-15 %
без боязни входа сердечника в насыщение.

Реали- зация

Типоразмер

Частота преобразования, кГц

1 кольцо К40х25х11

Габ. мощность

Витков на первичку

2 кольца К40х25х11

Габ. мощность

Витков на первичку

1 кольцо К45х28х8

Габ. мощность

Витков на первичку

2 кольца К45х28х8

Габ. мощность

Витков на первичку

3 кольца К45х28х81

Габ. мощность

Витков на первичку

4 кольца К45х28х8

Габ. мощность

Витков на первичку

5 колец К45х28х8

Габ. мощность

Витков на первичку

6 колец К45х28х8

Габ. мощность

Витков на первичку

7 колец К45х28х8

Габ. мощность

Витков на первичку

8 колец К45х28х8

Габ. мощность

Витков на первичку

9 колец К45х28х8

Габ. мощность

Витков на первичку

10 колец К45х28х81

Габ. мощность

Витков на первичку

Однако марку феррита узнать получается далеко не всегда, особенно если это феррит от строчных трансформаторов телевизоров. Выйти из ситуации можно выяснив количество витков опытным путем. Более подробно об этов в видео:

Используя приведенную выше схемотехнику импульсного блока питания были разработаны и опробованы несколько подмодификаций, предназначенные для решени той или иной задачи на различные мощности. Чертежи печатных платах этих блоков питания приведены ниже.
Печатная плата для импульсного стабилизированного блока питания мощностью до 1200...1500 Вт. Размер платы 269х130 mm. По сути это более усовершенствованный вариант предыдущей печатной платы. Отличается наличием дросселя групповой стабилизации позволяющим контролировать величену всех силовых напряжений, а так же дополнительным LC фильтром. Имеет управление вентилятором и защиту от перегрузки. Выходные напряжения состоят из двух двуполярных силовых источника и одного двуполярного слаботочного, предназначенного для питания предварительных каскадов.


Внешний вид печатной платы блока питания до 1500 Вт. СКАЧАТЬ В ФОРМАТЕ LAY

Стабилизированный импульсный сетевой блок питания мощностью до 1500...1800 Вт может быть выполне на печатной плате размером 272х100 mm. Блок питания расчитан под силовой трансформатор выполненный на кольцах К45 и расположенный горизонтально. Имеет два силовых двуполярных источника, которые могут объединиться в один источник для питания усилителя с двухуровневым питанием и один двуполярный слаботочный, для предварительных каскадов.


Печатная плата импульсного блока питания до 1800 Вт. СКАЧАТЬ В ФОРМАТЕ LAY

Этот блок питания может использоваться для питания от сети автомобильной аппаратуры большой мощности, например мощных автомобильных усилителей, автомобильных кондиционеров. Размеры платы 188х123. Используемые выпрямительные диоды Шотки паралеляться перемычками и выходной ток может достигать 120 А при напряжениии 14 В. Кроме этого блок питания может выдавать двуполярное напряжение с нагрузочной способностью до 1 А (больше не позволяют установленные интегральные стабилизаторы напряжения). Силовой трансформатор выполнен на кольца К45, фильтрующий дроссель силового напряжения на да двух кольцах К40х25х11. Встроена защита от перегрузки.


Внешний вид печатной платы блока питания для автомобильной аппаратуры СКАЧАТЬ В ФОРМАТЕ LAY

Блок питания до 2000 Вт вы полнены на двух платах размером 275х99, расположенных друг над другом. Напряжение контролируется по одному напряжению. Имеет защиту от перегрузки. В файле имеются насколько вариантов "второго этажа" для двух двуполярных напряжений, для двух однополярных напряжений, для напряжений необходимых для двух и трех уровневых напряжений. Силовой трансформатор расположен горизонтально и выполнен на кольцах К45.


Внешний вид "двухэтажного" блока питания СКАЧАТЬ В ФОРМАТЕ LAY

Блок питания с двумя двуполярными напряжениями или одним для двухуровневого усилителя выполнен на плате размером 277х154. Имет дроссель групповой стабилизации, защиту от перегрузки. Силовой трансформатора на кольцах К45 и расположен горизонтально. Мощность до 2000 Вт.


Внешний вид печатной платы СКАЧАТЬ В ФОРМАТЕ LAY

Практически такой же блок питания, что и выше, но имеет одно двуполярное выходное напряжение.


Внешний вид печатной платы СКАЧАТЬ В ФОРМАТЕ LAY

Импульсный блок питания имеет два силовых двуполярных стабилизированных напряжения и одно двуполярное слаботочное. Оснащен управлением вентилятора и зашитой от перегрузки. Имеет дроссель групповой стабилизации и дополнительные LC фильтры. Мощность до 2000...2400 Вт. Плата имеет размеры 278х146 mm


Внешний вид печатной платы СКАЧАТЬ В ФОРМАТЕ LAY

Печатная плата импульсного блока питания для усилителя мощности с двухуровневыми питанием размером 284х184 mm имеет дроссель групповой стабилизации и дополнительные LC фиьтры, защиту от перегрузки и управление вентилятором. Отличительной чертой является использование дискретных транзисторов для ускорения закрытия силовых транзисторов. Мощность до 2500...2800 Вт.


с двухуровневым питанием СКАЧАТЬ В ФОРМАТЕ LAY

Несколько измененный вариант предыдущей печатной платы с двумя двуполярными напряжениями. Размер 285х172. Мощность до 3000 Вт.


Внешний вид печатной платы блока питания для усилителя СКАЧАТЬ В ФОРМАТЕ LAY

Мостовой сетевой импульсный блок питания мощностью до 4000...4500 Вт выполнен на печатной плате размером 269х198 mm Имеет два двуполярных силовых напряжения, управление вентилятором и защиту от перегрузки. Использует дроссель групповой стабилизации. Желательно использование выносных дополнительных Lфильтров вторичного питания.


Внешний вид печатной платы блока питания для усилителя СКАЧАТЬ В ФОРМАТЕ LAY

Места под ферриты на платах гораздо больше, чем могло бы быть. Дело в том, что далеко не всегда быват необходитьмость уходить за пределы звукового диапазона. Поэтому и предусмотрены дополнительные площади на платах. На всякий случай небольшая подборка справочных данных по силовым транзисторам и ссылки, где бы их стал покупать я. Кстати сказать уже не единожды заказывал и TL494 и IR2110, и конечно же силовые транзисторы. Брал правда далеко не весь ассортимент, однако брака пока не попадалось.

ПОПУЛЯРНЫЕ ТРАНЗИСТОРЫ ДЛЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ

НАИМЕН-НИЕ

НАПРЯЖЕНИЕ

МОЩНОСТЬ

ЕМКОСТЬ
ЗАТВОРА

Qg
(ПРОИЗ-ТЕЛЬ)

Большая часть современных импульсных блоков питания изготавливается на микросхемах типа TL494, которая является импульсным ШИМ контроллером. Силовая часть изготавливается на мощных элементах, например транзисторах.Схема включения ТЛ494 простая, дополнительных радиодеталей требуется минимум, в datasheet подробно описано.

Варианты модификаций: TL494CN, TL494CD, TL494IN, TL494C, TL494CI.

Так же написал обзоры других популярных ИМС , .


  • 1. Характеристики и функционал
  • 2. Аналоги
  • 3. Типовые схемы включения для БП на TL494
  • 4. Схемы блоков питания
  • 5. Переделка ATX БП в лабораторный
  • 6. Datasheet
  • 7. Графики электрических характеристик
  • 8. Функционал микросхемы

Характеристики и функционал

Микросхема TL494 разработана как Шим контроллер для импульсных блоков питания, с фиксированной частотой работы. За задания рабочей частоты требуется два дополнительных внешних элемента резистор и конденсатор. Микросхема имеет источник опорного напряжения на 5В, погрешность которого 5%.

Область применения, указанная производителем:

  1. блоки питания мощностью более 90W AC-DС с PFC;
  2. микроволновые печи;
  3. повышающие преобразователи с 12В на 220В;
  4. источники энергоснабжения для серверов;
  5. инверторы для солнечных батарей;
  6. электрические велосипеды и мотоциклы;
  7. понижающие преобразователи;
  8. детекторы дыма;
  9. настольный компьютеры.

Аналоги

Самыми известными аналогами микросхемы TL494 стали отечественная KA7500B, КР1114ЕУ4 от Fairchild, Sharp IR3M02, UA494, Fujitsu MB3759. Схема включения аналогичны, распиновка может быть другой.

Новая TL594 является аналогом ТЛ494 с повышенной точность компаратора. TL598 аналог ТЛ594 с повторителем на выходе.

Типовые схемы включения для БП на TL494

Основные схемы включения TL494 собраны из даташитов различных производителей. Они могут служит основой для разработки аналогичных устройств с похожим функционалом.

Схемы блоков питания

Сложные схемы импульсных блоков питания TL494 рассматривать не буду. Они требуют множества деталей и времени, поэтому изготавливать своими руками не рационально. Проще у китайцев купить готовый аналогичный модуль за 300-500руб.

..

При сборке повышающих преобразователей напряжения особое внимание уделяйте охлаждению силовых транзисторов на выходе. Для 200W на выходе будет ток около 1А, относительно не много. Тестирование на стабильность работы проводить с максимально допустимой нагрузкой. Необходимую нагрузку лучше всего сформировать из ламп накаливания на 220 вольт, мощностью 20w, 40w, 60w, 100w. Не стоит перегревать транзисторы более чем на 100 градусов. Соблюдайте правила техники безопасности при работе с высоким напряжением. Семь раз померяй, один раз включи.

Повышающий преобразователь на TL494 практически не требуют настройки, повторяемость высокая. Перед сборкой проверьте номиналы резисторов и конденсаторов. Чем меньше будет отклонение, тем стабильней будет работать инвертор с 12 на 220 вольт.

Контроль температуры транзисторов лучше производить термопарой. Если радиатор маловат, то проще поставить вентилятор, чтобы не ставить новый радиатор.

Блок питания на TL494 своими руками мне приходилось изготавливать для усилителя сабвуфера в автомобиле. В то время автомобильные инверторы с 12В на 220В не продавались, и у китайцев не было Aliexpress. В качестве усилителя УНЧ применил микросхему серии TDA на 80W.

За последние 5 лет увеличился интерес с технике с электрическим приводом. Этому поспособствовали китайцы, начавшие массовое производство электрических велосипедов, современных колесо-мотор с высоким КПД. Лучшей реализацией считаю двух колёсные и одноколесные гироскутеры.В 2015 году китайская компания Ninebot купила американской Segway и начал производства 50 видов электрических скутеров типа Сегвея.

Для управления мощным низковольтным двигателем требуется хороший контроллер управления.

Переделка ATX БП в лабораторный

У каждого есть радиолюбителя есть мощный блок питания ATX от компьютера, который выдаёт 5В и 12В. Его мощность от 200вт до 500вт. Зная параметры управляющего контроллера, можно изменить параметры ATX источника. Например повысить напряжение с 12 до 30В. Популярны 2 способа, один от итальянских радиолюбителей.

Рассмотрим итальянский способ, который максимально простой и не требует перемотки трансформаторов. Выход ATX полностью убирается и дорабатывается согласно схеме. Огромное количество радиолюбителей повторили эту схему благодаря своей простоте. Напряжение на выходе от 1В до 30В, сила тока до 10А.

Datasheet

Микросхема настолько популярна, что её выпускает несколько производителей, навскидку я нашел 5 разных даташитов, от Motorola, Texas Instruments и других менее известных. Наиболее полные datasheet TL494 у Моторолы, который и опубликую.

Все даташиты, можно каждый скачать:

  • Motorola ;
  • Texas Instruments — самый лучший даташит;
  • Contek


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.