Значение генетики для медицины наследственные болезни человека. Генетика человека и ее значение для медицины

Генетика человека изучает явления наследственности и изменчивости на всех уровнях его организации и существования: молекулярном, клеточном, организменном, популяционном, биохорологическом, биогеохимическом.

Клиническая генетика в строгом смысле слова - прикладной раздел медицинской генетики, т.е. применение ее достижений к клиническим проблемам у пациентов или в их семьях: какая болезнь у пациента (диагноз), как ему помочь (лечение), как предупредить рождение больного потомства (прогноз и профилактика). В настоящее время клиническая генетика основывается на геномике, цитогенетике, биохимической генетике, иммуногенетике, формальной генетике, включая популяционную и эпидемиологическую, генетике соматических клеток и молекулярной генетике.

Медицинская генетика изучает роль наследственности в патологии человека, закономерности передачи от поколения к поколению наследственных болезней, разрабатывает методы диагностики, лечения и профилактики наследственной патологии, включая болезни с наследственной предрасположенностью. Это направление синтезирует медицинские и генетические открытия и достижения, направляя их на борьбу с болезнями и улучшение здоровья людей.

Значение генетики для медицины

изучение наследственных механизмов поддержания гомеостаза организма, обеспечивающих здоровье индивида;

изучение значения наследственных факторов в этиологии болезней;

изучение роли наследственных факторов в определении клинической картины болезней;

диагностика, лечение и профилактика наследственных болезней и т.д.

Профилактика наследственной патологии

Вся наследственная патология определяется грузом мутаций, вновь возникающих и унаследованных из предыдущих поколений.

С профилактической точки зрения всю наследственную патологию целесообразно подразделить на 3 категории: вновь возникающие мутации (в первую очередь это анеуплоидии и тяжелые формы доминантных мутаций); унаследованные от предыдущих поколений (как генные, так и хромосомные); болезни с наследственной предрасположенностью.

Различают 3 вида профилактики наследственной патологии.

Первичная профилактика

Под первичной профилактикой понимают действия, которые должны предупредить зачатие больного ребенка; это планирование деторождения и улучшение среды обитания человека.

Планирование деторождения включает 3 основные позиции:

Оптимальный репродуктивный возраст, который для женщин составляет 21-35 лет (более ранние или поздние беременности увеличивают вероятность рождения ребенка с врожденной патологией и хромосомными болезнями) (см. рис. 5.28);

Отказ от деторождения в случаях высокого риска наследственной и врожденной патологии (при отсутствии надежных методов дородовой диагностики, лечения, адаптации и реабилитации больных);

Отказ от деторождения в браках с кровными родственниками и между двумя гетерозиготными носителями патологического гена.

Улучшение среды обитания человека должно быть направлено главным образом на предупреждение вновь возникающих мутаций путем жесткого контроля содержания мутагенов и тератогенов в окружающей среде. Это особенно важно для профилактики всей группы соматических генетических болезней (врожденные пороки развития, злокачественные новообразования, иммунодефициты и т.п.).

Вторичная профилактика

Вторичная профилактика состоит в прерывании беременности

при высокой вероятности заболевания плода или пренатально диагностированной болезни. Прервать беременность можно только в установленные сроки и с согласия женщины. Основанием для элиминации эмбриона или плода является наследственная болезнь.

Прерывание беременности - не самое лучшее решение, но пока это единственный практически пригодный метод при большинстве тяжелых и смертельных генетических дефектов.

Третичная профилактика

Под третичной профилактикой наследственной патологии понимают коррекцию проявления патологических генотипов. Это можно назвать и нормокопированием, поскольку при патологическом генотипе стремятся получить нормальный фенотип.

Третичная профилактика проводится как при наследственных болезнях, так и (особенно часто) при болезнях с наследственной предрасположенностью. С ее помощью можно добиться полной нормализации функций или снижения выраженности патологического процесса. Для некоторых форм наследственной патологии она может совпадать с лечебными мероприятиями в общемедицинском смысле.

Предотвратить развитие наследственного заболевания (нормокопирование) можно внутриутробно или после рождения.

Для некоторых наследственных заболеваний возможно внутриутробное лечение (например, при резус-несовместимости, некоторых ацидуриях, галактоземии).

Развитие заболевания в настоящее время можно предотвратить путем коррекции (лечения) после рождения больного. Типичными примерами третичной профилактики могут быть галактоземия, фенилкетонурия, гипотиреоз (см. ниже) и др. Например, целиакия проявляется с началом прикорма ребенка манной кашей. В основе болезни лежит аллергия на злаковый белок глютен. Исключение глютена из пищи полностью гарантирует избавление от тяжелейшей патологии ЖКТ.

В генетическом плане можно выделить 5 подходов к профилактике наследственной патологии

Управление экспрессией генов

В середине 20-х годов XX века в экспериментах были обнаружены явления пенетрантности и экспрессивности, которые вскоре стали предметом изучения медицинской генетики. Выше отмечалось, что Н.К. Кольцов сформулировал понятие «евфеника», под которым он понимал формирование хороших качеств или исправление болезненных проявлений наследственности у человека путем создания соответствующих условий (лекарства, диета, воспитание и др.). Эти идеи стали реализовываться только в 60-х годах XX века, когда накопились сведения о первичных продуктах патологического гена и молекулярных механизмах патогенеза наследственных болезней. Зная механизмы действия патологических генов, можно разрабатывать методы их фенотипической коррекции, другими словами, управлять пенетрантностью ( частота проявления гена, определяемая по числу особей (в пределах родственной группы организмов), у которых проявляется признак, контролируемый данным геном.) и экспрессивностью ( степень выраженности признака, определяемого данным геном. Может меняться в зависимости от генотипа, в который входит данный ген, и от условий внешней среды) .

По мере прогресса науки накапливаются сведения о методах профилактики наследственной патологии на разных стадиях онтогенеза - о лечебных или диетических воздействиях. Клиническим примером управления экспрессией генов, уже прошедшим длительную проверку практикой, является предупреждение последствий фенилкетонурии, галактоземии и врожденного гипотиреоза. Клиническая картина этих болезней формируется в раннем постнатальном периоде, в связи с чем принцип третичной профилактики сравнительно простой. Болезнь должна быть диагностирована в течение нескольких дней после рождения, чтобы сразу применить профилактическое лечение, предупреждающее развитие патологического фенотипа (клинической картины). Нормокопирование может достигаться диетическими (при фенилкетонурии, галактоземии) или лекарственными (при гипотиреозе) методами.

Коррекция проявления патологических генов может начинаться с эмбриональной стадии развития. Закладываются основы так называемой преконцепционной и пренатальной профилактики наследственных болезней (в течение нескольких месяцев до зачатия и до родов). Так, например, гипофенилаланиновая диета для матери во время беременности уменьшает проявления фенилкетонурии в постнатальном периоде у ребенка. Отмечено, что врожденные аномалии нервной трубки (полигенный характер наследования) реже встречаются у детей женщин, получающих достаточное количество витаминов. Дальнейшая проверка показала, что если провести лечение женщин в течение 3-6 мес до зачатия и на протяжении первых месяцев беременности гипервитаминной (витамины С, Е, фолиевая кислота) диетой, то вероятность развития у ребенка аномалий нервной трубки существенно уменьшается. Это важно для семей, в которых уже есть больные дети, а также для популяций с высокой частотой патологических генов (например, по врожденным аномалиям нервной трубки - население Ирландии).

В перспективе могут быть разработаны новые методы внутриутробной коррекции патологического проявления генов, что особенно важно для семей, в которых по религиозным соображениям неприемлемо прерывание беременности.

Опыт пренатальной терапии плодов женского пола с дефицитом 21-гидроксилазы может служить отправной точкой для разработки методов лечения других наследственных болезней. Лечение проводится по следующему плану.

Беременным, имеющим риск рождения ребенка с врожденной гиперплазией коры надпочечников, до 10-й недели беременности назначают дексаметазон (20 мкг/кг) независимо от состояния и

пола плода. Дексаметазон подавляет секрецию андрогенов эмбриональными надпочечниками. Одновременно необходимо провести пренатальную диагностику пола плода и ДНК-диагностику мутаций в гене (путем либо биопсии хориона, либо амниоцентеза). Если обнаруживается, что плод мужского пола или что плод женского пола не поражен, то пренатальную терапию прекращают, а если у плода женского пола находят мутации в гомозиготном состоянии, то лечение продолжают до родов.

Пренатальное лечение низкими дозами дексаметазона вряд ли дает побочные эффекты. При наблюдении за детьми до 10-летнего возраста не обнаружено никаких отклонений. У женщин, получающих дексаметазон, наблюдаются небольшие побочные эффекты (колебания настроения, прибавка массы тела, повышение артериального давления, общий дискомфорт), но они согласны переносить эти неудобства ради здоровья дочерей. Положительные результаты лечения женских плодов с дефицитом 21-гидроксилазы существенно перевешивают отрицательные моменты.

Третичная профилактика на основе управления экспрессией генов особенно важна и эффективна для предупреждения болезней с наследственной предрасположенностью. Исключение из среды факторов, способствующих развитию патологического фенотипа, а иногда и обусловливающих его, - прямой путь к профилактике таких болезней.

Профилактике поддаются все моногенные формы наследственной предрасположенности. Это исключение из среды обитания проявляющих факторов, в первую очередь фармакологических средств у носителей недостаточности глюкозо-6-фосфатдегидрогеназы, аномальной псевдохолинэстеразы, мутантной ацетилтрансферазы. Это первичная (врожденная) непереносимость лекарств, а не приобретенная лекарственная болезнь.

Для работы в производственных условиях, провоцирующих болезненные состояния у лиц с мутантными аллелями (например, контакты со свинцом, пестицидами, окислителями), необходимо проводить отбор рабочих в соответствии с установленными принципами.

Хотя профилактика мультифакториальных состояний более сложная, поскольку они вызываются взаимодействием нескольких факторов среды и полигенных комплексов, все же при правильном семейном анализе можно добиться заметного замедления развития болезни и уменьшения ее клинических проявлений в результате исключения действия проявляющих средовых факторов. На этом принципе основана профилактика гипертонической болезни, атеросклероза, рака легких.

Элиминация эмбрионов и плодов с наследственной патологией

Механизмы элиминации нежизнеспособных эмбрионов и плодов отрабатывались эволюционно. У человека это спонтанные аборты и преждевременные роды. Конечно, не все они происходят по причине неполноценности эмбриона или плода; часть из них связана с условиями вынашивания, т.е. с состоянием женского организма. Однако определенно не менее чем в 50% случаев прерванных беременностей у плодов имеются либо врожденные пороки развития, либо наследственные болезни.

Таким образом, элиминация эмбрионов и плодов с наследственной патологией заменяет спонтанный аборт как природное явление. Методы пренатальной диагностики быстро развиваются, поэтому этот профилактический подход получает все большее значение. Установление диагноза наследственного заболевания у плода служит показанием для прерывания беременности.

Процедура пренатальной диагностики и особенно прерывание беременности должны проводиться с согласия женщины. Как указывалось выше, в некоторых семьях по религиозным соображениям беременность не может быть прервана.

Естественный отбор у человека в течение внутриутробного периода позволил американскому эмбриологу Дж. Уоркани в 1978 г. сформулировать концепцию тератаназии. Под термином «тератаназия» понимается естественный процесс просеивания (или отсеивания) плодов с врожденной патологией. Тератаназия может осуществляться путем создания непереносимых условий для плода с патологией, хотя такие условия вполне приемлемы для нормального плода. Эти факторы как бы выявляют патологическое состояние и одновременно вызывают гибель плода. Некоторые экспериментальные доказательства в пользу такой точки зрения уже имеются. Научные разработки могут быть направлены на поиск методов индуцированной селективной гибели плода с патологическим генотипом. Методы должны быть физиологичными для матери и абсолютно безопасными для нормального плода.

Генная инженерия на уровне зародышевых клеток

Профилактика наследственных болезней может быть наиболее полной и эффективной, если в зиготу будет встроен ген, по функции заменяющий мутантный ген. Устранение причины наследственной болезни (а именно это и есть наиболее фундаментальный аспект профилактики) означает достаточно серьезное маневрирование с генетической информацией в зиготе. Это могут быть введение нормального аллеля в геном путем трансфекции (Процесс искусственного введения в бактериальные клетки изолированных молекул фаговой ДНК, приводящий к образованию зрелого фагового потомства; также Т . - процесс искусственного переноса генетической информации в эукариотические клетки с помощью очищенной ДНК.) , обратная мутация патологического аллеля, включение нормального гена в работу, если он блокирован, выключение мутантного гена. Сложности этих задач очевидны, но интенсивные экспериментальные разработки в области генной инженерии свидетельствуют о принципиальной возможности их решения. Генно-инженерная профилактика наследственных болезней стала уже не утопией, а перспективой, хотя и неблизкой.

Предпосылки для коррекции генов человека в зародышевых клетках уже созданы. Их можно обобщить в виде следующих положений:

1. Первичная расшифровка генома человека завершена, особенно на уровне секвенирования нормальных и патологических аллелей. Можно надеяться, что для большинства наследственных болезней мутации будут секвенированы (определение последовательности нуклеотидов в гене .) в ближайшие годы. Интенсивно развивается функциональная геномика(раздел генетики, изучающий структуру и функционирование генома разл. организмов с помощью биол., физ.-хим. и компьютерных методов.) , благодаря которой будут известны межгенные взаимодействия.

2. Любые гены человека нетрудно получать в чистом виде на основе химического или биологического синтеза. Интересно, что ген глобина человека был одним из первых искусственно полученных генов.

3. Разработаны методы включения генов в геном человека с разными векторами или в чистом виде путем трансфекции.

4. Методы направленного химического мутагенеза позволяют индуцировать специфические мутации в строго определенном локусе (получение обратных мутаций - от патологического аллеля к нормальному).

5. В экспериментах на разных животных получены доказательства трансфекции отдельных генов на стадии зигот (дрозофила, мышь, коза, свинья и др.). Введенные гены функционируют в организме-реципиенте и передаются по наследству, хотя и не всегда по законам Менделя. Например, ген гормона роста крыс, введенный в геном зигот мышей, функционирует у родившихся мышей. Такие трансгенные мыши значительно больше по размерам и массе тела, чем обычные.

Генно-инженерная профилактика наследственных болезней на уровне зигот разработана пока слабо, хотя выбор способов синтеза генов и способов их доставки в клетки уже достаточно широк. Решение вопросов трансгеноза у человека сегодня упирается не только в генно-инженерные трудности, но и в этические проблемы. Ведь речь идет о композиции новых геномов, которые создаются не эволюцией, а человеком. Эти геномы вольются в генофонд человечества. Какова будет их судьба с генетической и социальной точек зрения, будут ли они функционировать как нормальные геномы, готово ли общество принять на себя последствия неудачных исходов? Сегодня ответить на эти вопросы трудно, а без ответа на них нельзя начинать клинические испытания, поскольку произойдет безвозвратное вмешательство в геном человека. Без объективной оценки эволюционных последствий генной инженерии нельзя применять эти методы у человека (даже с медицинскими целями на стадии зигот). Генетика человека еще далека от полного понимания всех особенностей функционирования генома. Неясно, как геном будет работать после введения в него дополнительной генетической информации, как он будет вести себя после мейоза, редукции числа хромосом, в сочетании с новой зародышевой клеткой и т.п.

Все сказанное выше дало основание специалистам в области биомедицинской этики на международном уровне (ВОЗ, ЮНЕСКО,Совет Европы) временно воздержаться от проведения экспериментов, а тем более от клинических испытаний с трансгенозом зародышевых клеток.

Глава 3.

ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ ЧЕЛОВЕКА. ЗНАЧЕНИЕ ГЕНЕТИКИ ДЛЯ МЕДИЦИНЫ

Генетика наряду с морфологией, физиологией и биохимией является теоретической базой медицины, дает ключ к пониманию молекулярно-генетических процессов, приводящих к развитию заболеваний.

Представления о передаваемых по наследству различиях между людьми существовали уже в античные времена (см. гл. 1). Уже в трудах древнегреческих философов ставится проблема врождённого и приобретённого (Гиппократ, Анаксагор, Аристотель, Платон). Некоторые из них даже предлагали «евгенические» меры. Так, Платон в своём труде «Политика» подробно объясняет как следует подбирать супругов, чтобы рождались дети, которые в будущем станут выдающимися личностями и в физическом, и в нравственном отношениях.

Английский врач Адамс (1756-1818) в своём труде «Трактат о предполагаемых наследственных свойствах болезней» сделал ряд замечательных выводов. Вот некоторые из них.

1. Существуют семейные и наследуемые факторы.

2. При семейных заболеваниях родители чаще состоят в родстве.

3. Наследственные заболевания могут проявляться в разном возрасте.

4. Существует предрасположенность к заболеваниям, которая приводит к заболеванию при воздействии внешних факторов.

5. Репродуктивная способность у многих больных с наследственными заболеваниями снижена.

Адамс критически относился к негативным евгеническим программам.

В 1820 г. немецкий профессор медицины Нассе правильно определил наиболее важные закономерности наследования гемофилии.

В работах большинства исследователей XIX века истинные факторы и ошибочные представления были перемешаны, а критериев для установления истины в то время еще не существовало. Генетика человека не имела основных теоретических положений. Как наука она сформировалась в 1865 г., когда появились биометрия и менделизм.

Большое влияние на развитие генетики человека оказали работы Ф. Гальтона. В 1865 г. он опубликовал статью «Наследование таланта и характера», в которой он писал: «…у нас есть все основания считать, что способности или особенности характера зависят от множества неизвестных причин». На основании своих исследований Гальтон сделал вывод о том, что большие способности и достижение известности сильно зависят от наследственности. Начиная с работ Гальтона, исследования в области генетики человека приобрели сильную евгеническую направленность. Позднее, в период нацизма в Германии (1933-1945), стало ясно, к каким ужасным последствиям может привести искажённое толкование утопической идеи об улучшении человеческого рода.

Вклад в генетику человека внесли работы английского врача А.Е.Гэррода по исследованию врожденных нарушений метаболизма при алкаптонурии, альбинизме и цистинурии. В 1908 г. Гэррод опубликовал свой классический труд, посвященный этой теме. В нем он назвал эти заболевания как «врожденные ошибки метаболизма», которые наследуются рецессивно и проявляются чаще в семьях, где родители близкие родственники. Он высказал также предположение, что различная реакция на лекарства и инфекционные агенты может быть обусловлена индивидуальными химическими различиями. Он писал: «…как среди представителей данного вида нет двух особей с идентичным строением тела, так не могут быть идентичными и химические процессы в их организмах». Гэррода по праву считают основателем биохимической генетики человека .

Как уже говорилось ранее, к концу XIX века были обнаружены хромосомы и изучены митоз и мейоз. На первых порах излюбленными объектами генетиков были растения и насекомые. Цитогенетика человека начала бурно развиваться с 1956 г., когда было установлено, что в клетках человека содержится 46 хромосом. Обнаружение трисомии по 21 хромосоме при синдроме Дауна и аномалии половых хромосом при нарушениях полового развития определило важность цитогенетики в медицине.

Открытие групп крови системы АВО К. Ландштейном в 1900 г. (Нобелевская премия 1930г.) и законов их наследования Дунгерном и Гиршфельдом в 1911 г. стало доказательством применимости законов Менделя к наследованию признаков у человека. В 1924 г. Бернштейн установил, что группы крови у человека контролируются серией множественных аллелей. Спустя 25-30 лет Винером, Левиным и Ландштейном был обнаружен резус-фактор (Rh) и показано, что гемолитическая желтуха новорожденных возникает вследствие иммунологической несовместимости матери и плода.

С периода своего зарождения генетика человека развивалась не только как теоретическая, но и как клиническая дисциплина. С одной стороны, изучение общих закономерностей наследования признаков в ряду поколений, развитие хромосомной теории наследственности стимулировало сбор родословных и их генетический анализ; с другой стороны, изучение патологических вариантов признаков (предмет врачебной профессии) служило основой для познания наследственности человека. На основе использования законов классической генетики формировалось понимание общих закономерностей наследственной патологии, причин клинического полиморфизма, признание роли внешней среды в развитии болезней с наследственной предрасположенностью.

Основателем медицинской генетики в России по праву считается С.Н.Давиденков , одновременно и генетик, и невропатолог. Он первым поставил вопрос о создании каталога генов (1925 г.) и организовал первую в мире медико-генетическую консультацию (1929г.). По генетике наследственных болезней нервной системы опубликовал несколько книг: «Наследственные болезни нервной системы» (1932г.), «Проблемы полиморфизма наследственных болезней нервной системы» (1934г.), «Эволюционно-генетические проблемы в невропатологии» (1947 г.).

Наиболее яркий этап взаимодействия генетики человека и медицины начинается с конца 50-х гг., после открытия в 1959 г. хромосомной природы наследственных болезней и введения в медицинскую практику цитогенетического метода исследований. На основе взаимодействия трех ветвей генетики человека – цитогенетики, менделевской и биохимической генетики – формируются современная медицинская и клиническая генетика , основными задачами которых являются:

    изучение наследственных механизмов поддержания гомеостаза организма, обеспечивающих здоровье индивида;

    изучение значения наследственных факторов в этиологии болезней;

    изучение роли наследственных факторов в определении клинической картины болезней;

    диагностика, лечение и профилактика наследственных болезней и т.д.

Непосредственная связь и взаимовлияние генетики человека и медицины стали в последние 40 лет определяющими факторами активного изучения наследственности человека и реализации их достижений в практике.

Значение генетики для медицины огромно. В человеческих популяциях насчитывается свыше 4000 форм наследственных болезней. Около 5% детей рождаются с наследственными или врожденными болезнями. Вклад наследственных и врожденных болезней в младенческую и детскую смертность в развитых странах (по материалам ВОЗ) составляет 30%. Прогресс в развитии медицины и общества (улучшение медицинского обслуживания, повышение уровня жизни) приводит к относительному возрастанию доли генетически обусловленной патологии в заболеваемости, смертности и инвалидизации. В то же время, человек сталкивается с новыми факторами среды, ранее не встречавшимися на протяжении всей его эволюции, испытывает большие нагрузки социального и экологического характера (избыток информации, стрессы, загрязнения атмосферы, в том числе мутагенными и канцерогенными факторами химической и физической природы). Новая среда может привести к повышению уровня мутационного процесса и, как следствие этого, появлению новой наследственной патологии.

Доказан и существенный вклад генетических факторов в развитие онкозаболеваний, а также таких широко распространенных мультифакториальных болезней, как сердечно-сосудистые, язвенные болезни желудка и двенадцатиперстной кишки, сахарный диабет, психические заболевания и т.д. Для лечения и профилактики наследственных и, в частности, мультифакториальных болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии, интегрально понимать все стадии индивидуального развития под углом реализации наследственной информации.

Таким образом, генетическое образование врача – одно из необходимых условий для диагностики, лечения и профилактики наследственных болезней

Генетика предоставляет клинической медицине:

    Методы ранней диагностики наследственных болезней;

    Методы пренатальной (дородовой) диагностики наследственных болезней; интенсивно развиваются и методы преимплантационной (до имплантации зародыша) диагностики наследственных болезней;

    Просеивающие программы диагностики наследственных болезней обмена веществ у новорожденных, что позволяет вовремя вмешаться в течение болезни и предотвратить аномальное развитие или гибель новорожденных;

    Молекулярно-генетические и цитогенетические методы дифференциальной диагностики онкозаболеваний;

    Методы диагностики наследственной предрасположенности к развитию болезней;

    Комплексную систему профилактики наследственных болезней, внедрение которой обеспечило снижение частоты рождения детей с наследственной патологией на 60%. Ведущую роль в профилактике наследственных болезней играет медико-генетическое консультирование – специализированный вид медицинской помощи, заключающийся в определении прогноза рождения ребенка с патологией на основе уточненного диагноза, в объяснении вероятности этого события консультирующимся и помощи семье в принятии решения о деторождении.

Успехи молекулярной генетики в области первичных продуктов мутантных генов и в понимании патогенеза наследственных болезней позволили улучшить методы лечения многих заболеваний (фенилкетонурия, галактоземия, гипотиреоз, гемофилия и т.д.).

Важнейшей частью генетики человека сегодня являются экогенетика и фармакогенетика, изучающие значение генетических факторов в индивидуальных реакциях организма на факторы окружающей среды (химические, биологические и физические) и на лекарственные препараты, соответственно. В последнее время многочисленные исследования роли генетических факторов, влияющих на токсичность фармацевтических препаратов, в сочетании со стремительным ростом объема информации о структуре и функциях генома человека привели к возникновению качественно нового направления – фармакогеномики . Задача фармакогеномики – проанализировать на уровне целого генома биохимические и генетические механизмы, лежащие в основе индивидуальных различий реакции на лекарственные препараты, и разработать на этой основе индивидуальную терапию, т.е. терапию, адаптированную к индивидуальному пациенту.

Итогом развития генной инженерии конца ХХ века явилось создание целого ряда генетических технологий, позволяющих решать задачи генетико-гигиенического нормирования факторов окружающей среды (предупреждение их мутагенных, тератогенных и канцерогенных эффектов), производства лекарственных препаратов, создания новых вакцин и сывороток для лечения целого ряда заболеваний.

Методами генной инженерии получены клоны клеток кишечной палочки, способные продуцировать соматотропин, инсулин, интерферон, интерлейкины, брадикинин и другие лекарственные препараты в промышленных масштабах.

Разработаны методы внесения генов патогенных вирусов в бактериальные клетки и приготовления из синтезируемых ими белков противовирусных сывороток. Таким образом, например, получена сыворотка против одной из форм гепатита.

  1. Предмет, методы и история развития генетики . Значение генетики для практики

    Контрольная работа >> Биология

    Предмет, методы и история развития генетики . Значение генетики для практики. Генетика , как биологическая наука. Связь генетики с другими науками. Биология... методы находят применение в медицине для ранней диагностики некоторых наследственных заболеваний...

  2. История развития генетики (3)

    Курсовая работа >> Биология

    Аннотация Работа посвящена изучению истории развития генетики – науки о... дальнейшем развитии генетики . Важное значение имели работы... выявил важную роль генетики в медицине , в частности, ... развитии генетики : доменделевские опыты, явившиеся предпосылками для ...

  3. История развития генетики (2)

    Реферат >> Биология

    Которой используются в медицине , биологической промышленности и сельском хозяйстве. ИСТОРИЯ РАЗВИТИЯ ПРЕДСТАВЛЕНИЙ О НАСЛЕДСТВЕННОСТИ... в МГУ самостоятельный курс генетики . Исключительно важное значение для последующего развития

Значение генетики для медицины и здравоохранения

Предмет и задачи генетики человека. Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. Формирование медицинской генетики началось в 30-е гг. XX в., когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.

Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека.

Методы изучения наследственности человека. При изучении наследственности и изменчивости человека используют следующие методы: генеалогический, близнецовый, цитогенетическии, биохимический, дерматоглифический, гибридизации соматических клеток, моделирования и др.

Генеалогический метод позволяет выяснить родственные связи и проследить наследование нормальных или патологических признаков среди близких и дальних родственников в данной семье на основе составления родословной -- генеалогии. Если есть родословные, то, используя суммарные данные по нескольким семьям, можно определить тип наследования признака -- доминантный или рецессивный, сцепленный с полом или ауто-сомный, атакже его моногенность или полигенность. Генеалогическим методом доказано наследование многих заболеваний, например сахарного диабета, шизофрении, гемофилии и др.

Генеалогический метод используется для диагностики наследственных болезней и медико-генетического консультирования; он позволяет осуществлять генетическую профилактику (предупреждение рождения больного ребенка) и раннюю профилактику наследственных болезней.

Близнецовый метод состоит в изучении развития признаков у близнецов. Он позволяет определять роль генотипа в наследовании сложных признаков, а также оценивать влияние таких факторов, как воспитание, обучение и др.

Известно, что у человека близнецы бывают однояйцевыми (монозиготными) и разнояйцевыми (дизиготными). Однояйцевые, или идентичные, близнецы развиваются из одной яйцеклетки, оплодотворенной одним сперматозоидом. Они всегда одного пола и поразительно похожи друг на друга, так как имеют один и тот же генотип. Кроме того, у них одинаковая группа крови, одинаковые отпечатки пальцев и почерк, их путают даже родители и не различают по запаху собаки. Только у идентичных близнецов на 100% удаются пересадки органов, поскольку у них одинаков набор белков и пересаженные ткани не отторгаются. Доля однояйцевых близнецов у человека составляет около 35--38% от общего их числа.

Разнояйцевые, или дизиготные, близнецы развиваются из двух разных яйцеклеток, одновременно оплодотворенных различными сперматозоидами. Дизиготные близнецы могут быть как одного, так и разного пола, а с генетической точки зрения они сходны не больше, чем обычные братья и сестры.

Изучение однояйцевых близнецов в течение всей их жизни, в особенности если они живут в разных социально-экономических и природно-климатических условиях, интересно тем, что отличия между ними в развитии физических и психических свойств объясняются не разными генотипами, а влиянием условий среды.

Цитогенетичесий метод основан на микроскопическом исследовании структуры хромосом у здоровых и больных людей. Цитогенетический контроль применяют при диагностике ряда наследственных заболеваний, связанных с явлениями анеуплоидии и различными хромосомными перестройками. Он позволяет также изучать старение тканей на основе исследований возрастной динамики структуры клеток, устанавливать мутагенное действие факторов внешней среды на человека и т. д.

В последние годы цитогенетический метод приобрел большое значение в связи с возможностями генетического анализа человека, которые открыла гибридизация соматических клеток в культуре. Получение межвидовых гибридов клеток (например, человека и мыши) позволяет в значительной степени приблизиться к решению проблем, связанных с невозможностью направленных скрещиваний, локализовать ген в определенной хромосоме, установить группу сцепления для ряда признаков и т. д. Объединение генеалогического метода с цитогенетическим, а также с новейшими методами генной инженерии значительно ускорило процесс картирования генов у человека.

Биохимические методы изучения наследственности человека помогают обнаружить ряд заболеваний обмена веществ (углеводного, аминокислотного, липидного и др.) при помощи, например, исследования биологических жидкостей (крови, мочи, амниотической жидкости) путем качественного или количественного анализа. Причиной этих болезней является изменение активности определенных ферментов.

С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо установить промежуточные продукты обмена. По результатам биохимических анализов возможно поставить диагноз болезни и определить методы лечения. Ранняя диагностика и применение различных диет на первых этапах постэмбрионального развития позволяют излечить некоторые заболевания или хотя бы облегчить состояние больных с неполноценными ферментными системами.

Как и любая другая дисциплина, современная генетика человека использует методы смежных наук: физиологии, молекулярной биологии, генной инженерии, биологического и математического моделирования и т. д. Значительное место в решении проблем медицинской генетики занимает онтогенетический метод, который позволяет рассматривать развитие нормальных и патологических признаков в ходе индивидуального развития организма.

Наследственные болезни человека, их лечение и профилактика. К настоящему времени зарегистрировано более 2 тыс. наследственных болезней человека, причем большинство из них связано с психическими расстройствами. По данным Всемирной организации здравоохранения, благодаря применению новых методов диагностики ежегодно регистрируется в среднем три новых наследственных заболевания, которые встречаются в практике врача любой специальности: терапевта, хирурга, невропатолога, акушера-гинеколога, педиатра, эндокринолога и т. д. Болезней, не имеющих абсолютно никакого отношения к наследственности, практически не существует. Течение разных заболеваний (вирусных, бактериальных, микозов и даже травм) и выздоровление после них в той или иной мере зависят от наследственных иммунологических, физиологических, поведенческих и психических особенностей индивидуума.

Условно наследственные болезни можно подразделить на три большие группы: болезни обмена веществ, молекулярные болезни, которые обычно вызываются генными мутациями, и хромосомные болезни.

Генные мутации и нарушения обмена веществ. Генные мутации могут выражаться в повышении или понижении активности некоторых ферментов, вплоть до их отсутствия. Фенотипи-чески такие мутации проявляются как наследственные болезни обмена веществ, которые определяются по отсутствию или избытку продукта соответствующей биохимической реакции.

Генные мутации классифицируют по их фенотипическому проявлению, т. е. как болезни, связанные с нарушением аминокислотного, углеводного, липидного, минерального обмена, обмена нуклеиновых кислот.

Примером нарушения аминокислотного метаболизма является альбинизм -- относительно безобидная болезнь, встречающаяся в странах Западной Европы с частотой 1:25000. Причиной заболевания является дефект фермента тирозиназы, в результате чего блокируется превращение тирозина в меланин. У альбиносов молочный цвет кожи, очень светлые волосы и отсутствует пигмент в радужной оболочке глаз. Они имеют повышенную чувствительность к солнечному свету, вызывающему у них воспалительные заболевания кожи.

Одним из наиболее распространенных заболеваний углеводного обмена является сахарный диабет. Эта болезнь связана с дефицитом гормона инсулина, что приводит к нарушению процесса образования гликогена и повышению уровня глюкозы в крови.

Ряд патологических признаков (гипертония, атеросклероз, подагра и др.) определяются не одним, а несколькими генами (явление полимерии). Это болезни с наследственным предрасположением, которые в большей степени зависят от условий среды: в благоприятных условиях такие заболевания могут и не проявиться.

Хромосомные болезни. Этот тип наследственных заболеваний связан с изменением числа или структуры хромосом. Частота хромосомных аномалий у новорожденных составляет от 0,6 до 1%, а на стадии 8--12 недель их имеют около 3% эмбрионов. Среди самопроизвольных выкидышей частота хромосомных аномалий равна примерно 30%, а на ранних сроках (до двух месяцев) - 50% и выше.

У человека описаны все типы хромосомных и геномных мутаций, включая анеуплоидию, которая может быть двух типов -- моносомия и полисомия. Особой тяжестью отличается моносомия.

Моносомия всего организма описана для Х-хромосомы. Это синдром Шерешевского--Тернера (44+Х), проявляющийся у женщин, для которых характерны патологические изменения телосложения (малый рост, короткая шея), нарушения в развитии половой системы (отсутствие большинства женских вторичных половых признаков), умственная ограниченность. Частота встречаемости этой аномалии 1:4000--5000.

Женищны-трисомики (44+ХХХ), как правило, отличаются нарушениями полового, физического и умственного развития, хотя у части больных эти признаки могут не проявляться. Известны случаи плодовитости таких женщин. Частота синдрома 1:1000.

Мужчины с синдромом Клайнфельтера (44+XXY) характеризуются нарушением развития и активности половых желез, евнухоидным типом телосложения (более узкие, чем таз, плечи, оволосение и отложение жира на теле по женскому типу, удлиненные по сравнению с туловищем руки и ноги). Отсюда и более высокий рост. Эти признаки в сочетании с некоторой психической отсталостью проявляются у относительно нормального мальчика начиная с момента полового созревания.

Синдром Клайнфельтера наблюдается при полисомии не только по Х-хромосоме (XXX XXXY, XXXXY), но и по У-хромосоме (XYY. XXYY. XXYYY). Частота синдрома 1:1000.

Из числа аутосомных болезней наиболее изучена трисомия по 21-й хромосоме, или синдром Дауна. По данным разных авторов, частота рождения детей с синдромом Дауна составляет 1:500--700 новорожденных, а за последние десятилетия частота трисомии-21 увеличилась.

Типичные признаки больных с синдромом Дауна: маленький нос с широкой плоской переносицей, раскосые глаза с эпикантусом -- нависающей складкой над верхним веком, деформированные небольшие ушные раковины, полуоткрытый рот, низкий рост, умственная отсталость. Около половины больных имеют порок сердца и крупных сосудов.

Существует прямая связь между риском рождения детей с синдромом Дауна и возрастом матери. Установлено, что 22--40% детей с этой болезнью рождаются у матерей старше 40 лет (2--3 % женщин детородного возраста).

Здесь рассмотрены лишь некоторые примеры генных и хромосомных болезней человека, которые, однако, дают определенное представление о сложности и хрупкости его генетической организации.

Основным путем предотвращения наследственных заболеваний является их профилактика. Для этого во многих странах мира, в том числе и в Беларуси, существует сеть учреждений, обеспечивающих медико-генетическое консультирование населения. В первую очередь его услугами должны пользоваться лица, вступающие в брак, у которых имеются генетически неблагополучные родственники.

Генетическая консультация обязательна при вступлении в брак родственников, лиц старше 30--40 лет, а также работающих на производстве с вредными условиями труда. Врачи и генетики смогут определить степень риска рождения генетически неполноценного потомства и обеспечить контроль за ребенком в период его внутриутробного развития. Следует отметить, что курение, употребление алкоголя и наркотиков матерью или отцом будущего ребенка резко повышают вероятность рождения младенца с тяжелыми наследственными недугами.

В случае рождения больного ребенка иногда возможно его медикаментозное, диетическое и гормональное лечение. Наглядным примером, подтверждающим возможности медицины в борьбе с наследственными болезнями, может служить полиомиелит. Эта болезнь характеризуется наследственной предрасположенностью, однако непосредственной причиной заболевания является вирусная инфекция. Проведение массовой иммунизации против возбудителя болезни позволило избавить всех наследственно предрасположенных к ней детей от тяжелых последствий заболевания. Диетическое и гормональное лечение успешно применяется при лечении фенилкетонурии, сахарного диабета и других болезней.

Прогресс в развитии медицины и общества приводит к относительному возрастанию доли генетически обусловленной патологии в заболеваемости, смертности, социальной дизадаптации (инвалидизации).

Известно более 4000 нозологических форм наследственных болезней. Около 5-5,5% детей рождаются с наследственными или врождёнными болезнями.

Тип и распространённость наследственной патологии у детей

Тип патологии

Распространённость, %

Генные болезни

1 (среди новорождённых)

Хромосомные болезни

0,5 (среди новорождённых)

Болезни с существенным компонентом наследственной предрасположенности

3-3,5 (среди детей до 5 лет)

Генетические соматические нарушения

Неизвестна

Несовместимость матери и плода

0,4 (среди новорождённых)

С возрастом меняется «профиль» наследственной патологии, но «груз» патологии не уменьшается. Хотя частота тяжёлых форм наследственных болезней снижается за счёт летальности в детском возрасте, в пубертатном периоде и позже проявляются новые болезни. После 20-30 лет начинают проявляться болезни с наследственной предрасположенностью.

Половина спонтанных абортов обусловлена генетическими причинами.

Не менее 30% перинатальной и неонатальной смертности обусловлено врождёнными пороками развития и наследственными болезнями с другими проявлениями. Анализ причин детской смертности в целом также показывает существенное значение генетических факторов.

Вклад наследственных и врождённых болезней в младенческую и детскую смертность в развитых странах (по материалам ВОЗ)

Главные причины смерти в возрасте до 1 года

Доля среди умерших, %

Главные причины смерти в возрасте от 1 года до 4 лет

Доля среди умерших, %

Перинатальные факторы

Несчастные случаи

Врождённые и наследственные болезни

Синдром внезапной смерти ребёнка

Инфекции

Инфекции

Не менее 25% всех больничных коек занято пациентами, страдающими болезнями с наследственной предрасположенностью.

Как известно, значительная доля социальных расходов в развитых странах идёт на обеспечение инвалидов с детского возраста. Огромна роль генетических факторов в этиологии и патогенезе инвалидизирующих состояний в детском возрасте.

Доказана существенная роль наследственной предрасположенности в возникновении широко распространённых болезней (ишемическая болезнь сердца, эссенциальная гипертензия, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, бронхиальная астма и др.). Следовательно, для лечения и профилактики этой группы болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии.

Медицинская генетика помогает понять взаимодействие биологических и средовых факторов (включая специфические) в патологии человека.

Человек сталкивается с новыми факторами среды, ранее никогда не встречавшимися на протяжении всей его эволюции, испытывает большие нагрузки социального и экологического характера (избыток информации, стрессы, загрязнение атмосферы и др.). В то же время в развитых странах улучшается медицинское обслуживание, повышается уровень жизни, что меняет направленность и интенсивность отбора. Новая среда может повысить уровень мутационного процесса или изменить проявляемость генов. И то и другое приведёт к дополнительному появлению наследственной патологии.

Знание основ медицинской генетики позволяет врачу понимать механизмы индивидуального течения болезни и выбирать соответствующие методы лечения. На основе медико-генетических знаний приобретаются навыки диагностики наследственных болезней, а также появляется умение направлять пациентов и членов их семей на медико-генетическое консультирование для первичной и вторичной профилактики наследственной патологии.

Приобретение медико-генетических знаний способствует формированию чётких ориентиров в восприятии новых медико-биологических открытий, что для врачебной профессии необходимо в полной мере, поскольку прогресс науки быстро и глубоко изменяет клиническую практику.

Наследственные болезни длительное время не поддавались лечению, а единственным методом профилактики была рекомендация воздержаться от деторождения. Эти времена прошли.

Современная медицинская генетика вооружила клиницистов методами ранней, досимптомной (доклинической) и даже пренатальной диагностики наследственных болезней. Интенсивно развиваются и в некоторых центрах уже применяются методы преимплантационной (до имплантации зародыша) диагностики.

Понимание молекулярных механизмов патогенеза наследственных болезней и высокие медицинские технологии обеспечили успешное лечение многих форм патологии

Сложилась стройная система профилактики наследственных болезней: медико-генетическое консультирование, преконцепционная профилактика, пренатальная диагностика, массовая диагностика у новорождённых наследственных болезней обмена, поддающихся диетической и лекарственной коррекции, диспансеризация больных и членов их семей. Внедрение этой системы обеспечивает снижение частоты рождения детей с врождёнными пороками развития и наследственными болезнями на 60-70%. Врачи и организаторы здравоохранения могут активно участвовать в реализации достижений медицинской генетики.

И изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. Формирование медицинской генетики началось в 30-е гг. XX в., когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.

Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека.

Примером нарушения аминокислотного метаболизма является альбинизм - относительно безобидная болезнь , встречающаяся в странах Западной Европы с частотой 1:25000. Причиной заболевания является дефект фермента тирозиназы, в результате чего блокируется превращение тирозина в меланин. У альбиносов молочный цвет кожи, очень светлые волосы и отсутствует пигмент в радужной оболочке глаз . Они имеют повышенную чувствительность к солнечному свету, вызывающему у них воспалительные заболевания кожи.

Одним из наиболее распространенных заболеваний углеводного обмена является сахарный диабет. Эта болезнь связана с дефицитом гормона инсулина, что приводит к нарушению процесса образования гликогена и повышению уровня глюкозы в крови.

Ряд патологических признаков (гипертония, атеросклероз, подагра и др.) определяются не одним, а несколькими генами (явление полимерии). Это болезни с наследственным предрасположением, которые в большей степени зависят от условий среды: в благоприятных условиях такие заболевания могут и не проявиться.

Хромосомные болезни. Этот тип наследственных заболеваний связан с изменением числа или структуры хромосом. Частота хромосомных аномалий у новорожденных составляет от 0,6 до 1%, а на стадии 8-12 недель их имеют около 3% эмбрионов. Среди самопроизвольных выкидышей частота хромосомных аномалий равна примерно 30%, а на ранних сроках (до двух месяцев) -- 50% и выше.

У человека описаны все типы хромосомных и геномных мутаций, включая анеуплоидию, которая может быть двух типов -мо-иосомия и полисомия. Особой тяжестью отличается моносомия.

Моносомия всего организма описана для Х-хромосомы. Это синдром Шерешевского -Тернера (44+Х), проявляющийся у женщин, для которых характерны патологические изменения телосложения (малый рост , короткая шея), нарушения в развитии половой системы (отсутствие большинства женских вторичных половых признаков), умственная ограниченность. Частота встречаемости этой аномалии 1:4000-5000.

Женищны-трисомики (44+ХХХ), как правило, отличаются нарушениями полового, физического и умственного развития, хотя у части больных эти признаки могут не проявляться. Известны случаи плодовитости таких женщин. Частота синдрома 1:1000.

Мужчины с синдромом Клайнфельтера (44+XXY) характеризуются нарушением развития и активности половых желез, ев-нухоидным типом телосложения (более узкие, чем таз , плечи, оволосение и отложение жира на теле по женскому типу, удлиненные по сравнению с туловищем руки и ноги). Отсюда и более высокий рост. Эти признаки в сочетании с некоторой психической отсталостью проявляются у относительно нормального мальчика начиная с момента полового созревания .

Синдром Клайнфельтера наблюдается при полисомии не только по Х-хромосоме (XXX XXXY, XXXXY), но и по У-хромосоме (XYY. XXYY. XXYYY). Частота синдрома 1:1000.

Из числа аутосомных болезней наиболее изучена трисомия по 21-й хромосоме, или синдром Дауна. По данным разных авторов, частота рождения детей с синдромом Дауна составляет 1:500-700 новорожденных, а за последние десятилетия частота трисомии-21 увеличилась.

Типичные признаки больных с синдромом Дауна: маленький нос с широкой плоской переносицей, раскосые глаза с эпиканту-сом - нависающей складкой над верхним веком, деформированные небольшие ушные раковины, полуоткрытый рот, низкий рост, умственная отсталость. Около половины больных имеют порок сердца и крупных сосудов.

Существует прямая связь между риском рождения детей с синдромом Дауна и возрастом матери. Установлено, что 22-40% детей с этой болезнью рождаются у матерей старше 40 лет (2-3 % женщин детородного возраста).

Здесь рассмотрены лишь некоторые примеры генных и хромосомных болезней человека, которые, однако, дают определенное представление о сложности и хрупкости его генетической организации.

Основным путем предотвращения наследственных заболеваний является их профилактика. Для этого во многих странах мира, в том числе и в Беларуси, существует сеть учреждений, обеспечивающих медико-генетическое консультирование населения. В первую очередь его услугами должны пользоваться лица, вступающие в брак, у которых имеются генетически неблагополучные родственники.

Генетическая консультация обязательна при вступлении в брак родственников, лиц старше 30-40 лет, а также работающих на производстве с вредными условиями труда. Врачи и генетики смогут определить степень риска рождения генетически неполноценного потомства и обеспечить контроль за ребенком в период его внутриутробного развития. Следует отметить, что курение , употребление алкоголя и наркотиков матерью или отцом будущего ребенка резко повышают вероятность рождения младенца с тяжелыми наследственными недугами.

В случае рождения больного ребенка иногда возможно его медикаментозное, диетическое и гормональное лечение. Наглядным примером, подтверждающим возможности медицины в борьбе с наследственными болезнями, может служить полиомиелит . Эта болезнь характеризуется наследственной предрасположенностью, однако непосредственной причиной заболевания является вирусная инфекция. Проведение массовой иммунизации против возбудителя болезни позволило избавить всех наследственно предрасположенных к ней детей от тяжелых последствий заболевания. Диетическое и гормональное лечение успешно применяется при лечении фенилкетонурии, сахарного диабета и других болезней.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"