Формула полной вероятности имеет вид. Формула полной вероятности: теория и примеры решения задач

Пример №1 . Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от трех поставщиков. Первый поставляет 50 % всех комплектующих деталей, второй - 20 %, третий - 30 % деталей.
Известно, что качество поставляемых деталей разное, и в продукции первого поставщика процент брака составляет 4 %, второго - 5 %, третьего - 2 %. Определить вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной.

Решение . Обозначим события: A - «выбранная деталь бракована», H i - «выбранная деталь получена от i-го поставщика», i =1, 2, 3 Гипотезы H 1 , H 2 , H 3 образуют полную группу несовместных событий. По условию
P(H 1) = 0.5; P(H 2) = 0.2; P(H 3) = 0.3
P(A|H 1) = 0.04; P(A|H 2) = 0.05; P(A|H 3) = 0.02

По формуле полной вероятности (1.11) вероятность события A равна
P(A) = P(H 1) · P(A|H 1) + P(H 2) · P(A|H 2) + P(H 3) · P(A|H 3) = 0.5 · 0.04 + 0.2 · 0.05 + 0.3 · 0.02=0.036
Вероятность того, что выбранная наудачу деталь окажется бракованной, равна 0.036.

Пусть в условиях предыдущего примера событие A уже произошло: выбранная деталь оказалась бракованной. Какова вероятность того, что она была получена от первого поставщика? Ответ на этот вопрос дает формула Байеса .
Мы начинали анализ вероятностей, имея лишь предварительные, априорные значения вероятностей событий. Затем был произведен опыт (выбрана деталь), и мы получили дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить значения априорных вероятностей. Новые значения вероятностей тех же событий будут уже апостериорными (послеопытными) вероятностями гипотез (рис. 1.5).

Схема переоценки гипотез
Пусть событие A может осуществиться лишь вместе с одной из гипотез H 1 , H 2 , …, H n (полная группа несовместных событий). Априорные вероятности гипотез мы обозначали P(H i) условные вероятности события A - P(A|H i), i = 1, 2,…, n. Если опыт уже произведен и в результате него наступило событие A, то апостериорными вероятностями гипотез будут условные вероятности P(H i |A), i = 1, 2,…, n. В обозначениях предыдущего примера P(H 1 |A) - вероятность того, что выбранная деталь, оказавшаяся бракованной, была получена от первого поставщика.
Нас интересует вероятность события H k |A Рассмотрим совместное наступление событий H k и A то есть событие AH k . Его вероятность можно найти двумя способами, используя формулы умножения (1.5) и (1.6):
P(AH k) = P(H k)P(A|H k);
P(AH k) = P(A)P(H k |A).

Приравняем правые части этих формул
P(H k) · P(A|H k) = P(A) · P(H k |A),

отсюда апостериорная вероятность гипотезы H k равна

В знаменателе стоит полная вероятность события A. Подставив вместо P(A) ее значение по формуле полной вероятности (1.11), получим:
(1.12)
Формула (1.12) называется формулой Байеса и применяется для переоценки вероятностей гипотез.
В условиях предыдущего примера найдем вероятность того, что бракованная деталь была получена от первого поставщика. Сведем в одну таблицу известные нам по условию априорные вероятности гипотез P(H i) условные вероятности P(A|H i) рассчитанные в процессе решения совместные вероятности P(AH i) = P(H i) · P(A|H i) и рассчитанные по формуле (1.12) апостериорные вероятности P(H k |A), i,k = 1, 2,…, n (табл. 1.3).

Таблица 1.3 - Переоценка гипотез

Гипотезы H i Вероятности
Априорные P(H i) Условные P(A|H i) Совместные P(AH i) Апостериорные P(H i |A)
1 2 3 4 5

H 1 - деталь получена от первого поставщика

0.5 0.04 0.02

H 2 - деталь получена от второго поставщика

0.2 0.05 0.01

H 3 - деталь получена от третьего поставщика

0.3 0.02 0.006
Сумма 1.0 - 0.036 1
Рассмотрим последнюю строку этой таблицы. Во второй колонке стоит сумма вероятностей несовместных событий H 1 , H 2 , H 3 , образующих полную группу:
P(Ω) = P(H 1 + H 2 + H 3) = P(H 1) + P(H 2) + P(H 3) = 0.5 + 0.2 + 0.3 = 1
В четвертой колонке значение в каждой строке (совместные вероятности) получено по правилу умножения вероятностей перемножением соответствующих значений во второй и третьей колонках, а в последней строке 0.036 - есть полная вероятность события A (по формуле полной вероятности).
В колонке 5 вычислены апостериорные вероятности гипотез по формуле Байеса (1.12):

Аналогично рассчитываются апостериорные вероятности P(H 2 |A) и P(H 3 |A), причем числитель дроби - совместные вероятности, записанные в соответствующих строках колонки 4, а знаменатель - полная вероятность события A, записанная в последней строке колонки 4.
Сумма вероятностей гипотез после опыта равна 1 и записана в последней строке пятой колонки.
Итак, вероятность того, что бракованная деталь была получена от первого поставщика, равна 0.555. Послеопытная вероятность больше априорной (за счет большого объема поставки). Послеопытная вероятность того, что бракованная деталь была получена от второго поставщика, равна 0.278 и также больше доопытной (за счет большого количества брака). Послеопытная вероятность того, что бракованная деталь была получена от третьего поставщика, равна 0.167.

Пример №3 . Имеются три одинаковые урны; в первой урне два белых и один черный шар; во второй - три белых и один черный; в третьей - два белых и два черных шара. Для опыта наугад выбрана одна урна и из нее вынут шар. Найдите вероятность того, что этот шар белый.
Решение. Рассмотрим три гипотезы: H 1 - выбрана первая урна, H 2 - выбрана вторая урна, H 3 - выбрана третья урна и событие A - вынут белый шар.
Так как гипотезы по условию задачи равновозможны, то

Условные вероятности события A при этих гипотезах соответственно равны:
По формуле полной вероятности

Пример №4 . В пирамиде стоят 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, а стреляя из винтовки без оптического прицела, - с вероятностью 0,46. Найдите вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Решение. Здесь первым испытанием является случайный выбор винтовки, вторым - стрельба по мишени. Рассмотрим следующие события: A - стрелок поразит мишень; H 1 - стрелок возьмет винтовку с оптическим прицелом; H 2 - стрелок возьмет винтовку без оптического прицела. Используем формулу полной вероятности. Имеем


Учитывая, что винтовки выбираются по одной, и используя формулу классической вероятности, получаем: P(H 1) = 3/19, P(H 2) = 16/19.
Условные вероятности заданы в условии задачи: P(A|H 1) = 0;81 и P(A|H 2) = 0;46. Следовательно,

Пример №5 . Из урны, содержащей 2 белых и 3 черных шара, наудачу извлекаются два шара и добавляется в урну 1 белый шар. Найдите вероятность того, что наудачу взятый шар окажется белым.
Решение. Событие “извлечен белый шар” обозначим через A. Событие H 1 - наудачу извлекли два белых шара; H 2 - наудачу извлекли два черных шара; H 3 - извлекли один белый шар и один черный. Тогда вероятности выдвинутых гипотез


Условные вероятности при данных гипотезах соответственно равны: P(A|H 1) = 1/4 - вероятность извлечь белый шар, если в урне в данный момент один белый и три черных ша-ра, P(A|H 2) = 3/4 - вероятность извлечь белый шар, если в урне в данный момент три белых и один черный шар, P(A|H 3) = 2/4 = 1/2 - вероятность извлечь белый шар, если в урне в данный момент два белых и два черных шара. В соответствии с формулой полной вероятности

Пример №6 . Производится два выстрела по цели. Вероятность попадания при первом выстреле 0,2, при втором - 0,6. Вероятность разрушения цели при одном попадании 0,3, при двух - 0,9. Найдите вероятность того, что цель будет разрушена.
Решение. Пусть событие A - цель разрушена. Для этого достаточно попадания с одного выстрела из двух или поражение цели подряд двумя выстрелами без промахов. Выдвинем гипотезы: H 1 - оба выстрела попали в цель. Тогда P(H 1) = 0,2 · 0,6 = 0;12. H 2 - либо первый раз, либо второй раз был совершен промах. Тогда P(H 2) = 0,2 · 0,4 + 0,8 · 0,6 = 0,56. Гипотеза H 3 - оба выстрела были промахи - не учитывается, так как вероятность разрушения цели при этом нулевая. Тогда условные вероятности соответственно равны: вероятность разрушения цели при условии обоих удачных выстрелов равна P(A|H 1) = 0,9, а вероятность разрушения цели при условии только одного удачного выстрела P(A|H 2) = 0,3. Тогда вероятность разрушения цели по формуле полной вероятности равна.

События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

Отсюда следует, что

Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
– лампа изготовлена третьим заводом.

Искомую вероятность находим по формуле полной вероятности:

Формула Байеса. Пусть – полная группа попарно несовместных событий (гипотезы). А – случайное событие. Тогда,

Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .

Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .


Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

По формуле полной вероятности получаем:

По формуле Байеса .

Пример 19. Пусть в урне пять шаров и все предположения о количестве белых шаров равновозможные. Из урны наудачу взят шар, он оказался белым. Какое предположение о начальном составе урны наиболее вероятно?

Решение. Пусть – гипотеза, состоящая в том, что в урне белых шаров , т. е. возможно сделать шесть предположений. Тогда по условию задачи имеем .

Введем событие А – наудачу взятый шар белый. Вычислим . Так как , то по формуле Байеса имеем:

Таким образом, наиболее вероятной является гипотеза , т. к. .

Пример 20. Два из трех независимо работающих элемента вычислительного устройства отказали. Найдите вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие гипотезы:

– отказали первый и второй элементы, а третий элемент исправен. Поскольку элементы работают независимо, применима теорема умножения:

Цель работы: сформировать навыки решения задач по теории вероятностей с помощью формулы полной вероятности и формулы Байеса.

Формула полной вероятности

Вероятность события А , которое может наступить лишь при условии появления одного из несовместных событий В х,В 2 ,...,В п, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Эту формулу называют формулой полной вероятности.

Вероятность гипотез. Формула Байеса

Пусть событие А может наступить при условии появления одного из несовместных событий В ь В 2 ,...,В п, образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А . Требуется определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Условные вероятности гипотез находят по формуле

В этой формуле индекс / = 1,2

Эту формулу называют формулой Байеса (по имени английского математика, который её вывел; опубликована в 1764 г.). Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А .

Задача 1. Завод изготавливает определённого типа детали, каждая деталь имеет дефект с вероятностью 0,05. Деталь осматривается одним контролёром; он обнаруживает дефект с вероятностью 0,97, а если дефект не обнаружен, пропускает деталь в готовую продукцию. Кроме того, контролер может по ошибке забраковать деталь, не имеющую дефекта; вероятность этого равна 0,01. Найти вероятности следующих событий: А - деталь будет забракована; В - деталь будет забракована, но ошибочно; С - деталь будет пропущена в готовую продукцию с дефектом.

Решение

Обозначим гипотезы:

Н = (на контроль поступит стандартная деталь);

Н =(на контроль поступит нестандартная деталь).

Событие А = (деталь будет забракована).

Из условия задачи находим вероятности

Р Н (А) = 0,01; Pfi(A) = 0,97.

По формуле полной вероятности получаем

Вероятность того, что деталь будет забракована ошибочно, равна

Найдём вероятность того, что деталь будет пропущена в готовую продукцию с дефектом:

Ответ:

Задача 2. Изделие проверяется на стандартность одним из трёх товароведов. Вероятность того, что изделие попадёт к первому товароведу, равна 0,25, ко второму - 0,26 и к третьему - 0,49. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,95, вторым - 0,98, третьим - 0,97. Найти вероятность того, что стандартное изделие проверено вторым контролёром.

Решение

Обозначим события:

Л. = (изделие для проверки попадёт к /-му товароведу); / = 1, 2, 3;

В = (изделие будет признано стандартным).

По условию задачи известны вероятности:

Также известны условные вероятности

По формуле Байеса находим вероятность того, что стандартное изделие проверено вторым контролёром:

Ответ: «0,263.

Задача 3. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. С конвейера взята нестандартная деталь. Найти вероятность того, что эта деталь произведена вторым автоматом.

Решение

Обозначим события:

А. = (взятая с конвейера деталь произведена /-м автоматом); / = 1,2;

В = (взятая деталь окажется нестандартной).

Также известны условные вероятности

По формуле полной вероятности находим

По формуле Байеса находим вероятность того, что взятая нестандартная деталь произведена вторым автоматом:

Ответ: 0,75.

Задача 4. Испытывается прибор, состоящий из двух узлов, надёжность которых равна 0,8 и 0,9 соответственно. Узлы отказывают независимо друг от друга. Прибор отказал. Найти с учётом этого вероятности гипотез:

  • а) неисправен только первый узел;
  • б) неисправен только второй узел;
  • в) неисправны оба узла.

Решение

Обозначим события:

Д = (7-й узел не выйдет из строя); i = 1,2;

Д - соответствующие противоположные события;

А = (при испытании будет отказ прибора).

Из условия задачи получаем: Р(Д) = 0,8; Р(Л 2) = 0,9.

По свойству вероятностей противоположных событий

Событие А равно сумме произведений независимых событий

Используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получаем

Теперь находим вероятности гипотез:

Ответ:

Задача 5. На заводе болты изготавливаются на трёх станках, которые производят соответственно 25%, 30% и 45% всего количества болтов. В продукции станков брак составляет соответственно 4%, 3% и 2%. Какова вероятность того, что болт, случайно взятый из поступившей продукции, окажется дефектным?

Решение

Обозначим события:

4 = (наудачу взятый болт изготовлен на /-м станке); i = 1, 2, 3;

В = (взятый наудачу болт окажется дефектным).

Из условия задачи по формуле классической вероятности находим вероятности гипотез:

Также по формуле классической вероятности находим условные вероятности:

По формуле полной вероятности находим

Ответ: 0,028.

Задача 6. Электронная схема принадлежит одной из трёх партий с вероятностями 0,25; 0,5 и 0,25. Вероятность того, что схема проработает сверх гарантийного срока службы для каждой из партий, соответственно составляет 0,1; 0,2 и 0,4. Найти вероятность того, что наугад взятая схема проработает сверх гарантийного срока службы.

Решение

Обозначим события:

4 = (наугад взятая схема из г-й партии); i = 1, 2, 3;

В = (наугад взятая схема проработает сверх гарантийного срока службы).

По условию задачи известны вероятности гипотез:

Также известны условные вероятности:

По формуле полной вероятности находим

Ответ: 0,225.

Задача 7. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определить вероятность того, что отказали оба блока.

Решение

Обозначим события:

Д = (z-й блок выйдет из строя); i = 1,2;

А = (устройство выйдет из строя).

Из условия задачи по свойству вероятностей противоположных событий получаем: ДД) = 1-0,99 = 0,01; ДД) = 1-0,97 = 0,03.

Событие А наступает только тогда, когда наступает хотя бы одно из событий Д или А 2 . Поэтому это событие равно сумме событий А = Д + А 2 .

По теореме сложения вероятностей совместных событий получаем

По формуле Байеса находим вероятность того, что устройство вышло из строя из-за отказа обоих блоков.

Ответ:

Задачи для самостоятельного решения Задача 1. На складе телевизионного ателье имеется 70% кинескопов, изготовленных заводом № 1; остальные кинескопы изготовлены заводом № 2. Вероятность того, что кинескоп не выйдет из строя в течение гарантийного срока службы, равна 0,8 для кинескопов завода № 1 и 0,7 - для кинескопов завода № 2. Кинескоп выдержал гарантийный срок службы. Найти вероятность того, что он изготовлен заводом № 2.

Задача 2. На сборку поступают детали с трёх автоматов. Известно, что 1-й автомат даёт 0,3% брака, 2-й - 0,2%, 3-й - 0,4%. Найти вероятность поступления на сборку бракованной детали, если с 1-го автомата поступили 1000, со 2-го - 2000, с 3-го - 2500 деталей.

Задача 3. На двух станках производятся одинаковые детали. Вероятность того, что деталь, произведённая на первом станке, будет стандартной, равна 0,8, а на втором - 0,9. Производительность второго станка втрое больше производительности первого. Найти вероятность того, что стандартной будет деталь, взятая наудачу с транспортёра, на который поступают детали с обоих станков.

Задача 4. Руководитель компании решил воспользоваться услугами двух из трёх транспортных фирм. Вероятности несвоевременной доставки груза для первой, второй и третьей фирм равны соответственно 0,05; 0,1 и 0,07. Сопоставив эти данные с данными о безопасности грузоперевозок, руководитель пришёл к выводу о равнозначности выбора и решил сделать его по жребию. Найти вероятность того, что отправленный груз будет доставлен своевременно.

Задача 5. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определите вероятность того, что отказал второй блок.

Задача 6. В сборочный цех поступают детали с трёх автоматов. Первый автомат даёт 3% брака, второй - 1% и третий - 2%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата поступило соответственно 500, 200, 300 деталей.

Задача 7. На склад поступает продукция трёх фирм. Причём продукция первой фирмы составляет 20%, второй - 46% и третьей - 34%. Известно также, что средний процент нестандартных изделий для первой фирмы равен 5%, для второй - 2% и для третьей - 1%. Найти вероятность того, что наудачу взятое изделие произведено второй фирмой, если оно оказалось стандартным.

Задача 8. Брак в продукции завода вследствие дефекта а составляет 5%, причём среди забракованных по признаку а продукции в 10% случаев встречается дефект р. А в продукции, свободной от дефекта а , дефект р встречается в 1% случаев. Найти вероятность встречи дефекта Р во всей продукции.

Задача 9. В фирме имеются 10 новых автомобилей и 5 старых, которые ранее находились в ремонте. Вероятность исправной работы для нового авто равна 0,94, старого - 0,91. Найти вероятность того, что наудачу выбранный автомобиль будет исправно работать.

Задача 10. Два датчика посылают сигналы в общий канал связи, причём первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искажённый сигнал от первого датчика равна 0,01, от второго - 0,03. Какова вероятность получить искажённый сигнал в общем канале связи?

Задача 11. Имеется пять партий изделий: три партии по 8 штук, из которых 6 стандартных и 2 нестандартных, и две партии по 10 штук, из которых 7 стандартных и 3 нестандартных. Наудачу выбирают одну из партий, а из этой партии берут деталь. Определить вероятность того, что взятая деталь будет стандартной.

Задача 12. Сборщик получает в среднем 50% деталей первого завода, 30% - второго завода и 20% - третьего завода. Вероятность того, что деталь первого завода отличного качества, равна 0,7; для деталей второго и третьего заводов соответственно 0,8 и 0,9. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что деталь изготовлена первым заводом.

Задача 13. Таможенный досмотр автомашин осуществляют два инспектора. В среднем из 100 машин 45 проходят через первого инспектора. Вероятность того, что при досмотре машина, соответствующая таможенным правилам, не будет задержана, составляет 0,95 у первого инспектора и 0,85 - у второго. Найти вероятность того, что машина, соответствующая таможенным правилам, не будет задержана.

Задача 14. Детали, необходимые для сборки прибора, поступают с двух автоматов, производительность которых одинакова. Вычислите вероятность поступления на сборку стандартной детали, если один из автоматов даёт в среднем 3% нарушения стандарта, а второй - 2%.

Задача 15. Тренер по тяжёлой атлетике рассчитал, что для получения командных зачётных очков в данной весовой категории спортсмен должен толкнуть штангу в 200 кг. На место в команде претендуют Иванов, Петров и Сидоров. Иванов за время тренировок пытался поднять такой вес в 7 случаях, а поднял в 3 из них. Петров поднял в 6 случаях из 13, а Сидоров имеет 35%-ную вероятность успешно справиться со штангой. Тренер случайным жребием выбирает одного спортсмена в команду.

  • а) Найти вероятность того, что выбранный спортсмен принесёт команде зачётные очки.
  • б) Команда не получила зачётных очков. Найти вероятность того, что выступал Сидоров.

Задача 16. В белом ящике 12 красных и 6 синих шаров. В черном - 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Задача 17. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.

Задача 18. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Задача 19. В ящик, содержащий 3 одинаковые детали, брошена стандартная деталь, а затем наудачу одна деталь извлечена. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.

Задача 20. Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти вместе с одним из событий:

образующих полную группу несовместных событий. Будем эти события называть гипотезами.

Докажем, что в этом случае

, (3.4.1)

т.е. вероятность события вычисляется как сумма произведений вероятности каждой гипотезы на вероятность события при этой гипотезе.

Формула (3.4.1) носит название формулы полной вероятности.

Доказательство. Так как гипотезы образуют полную группу, то событие может появиться только в комбинации с какой-либо из этих гипотез:

Так как гипотезы несовместны, то и комбинации также несовместны; применяя к ним теорему сложения, получим:

Применяя к событию теорему умножения, получим:

,

что и требовалось доказать.

Пример 1. Имеются три одинаковые на вид урны; в первой урне два белых и один черный шар; во второй – три белых и один черный; в третьей – два белых и два черных шара. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение. Рассмотрим три гипотезы:

Выбор первой урны,

Выбор второй урны,

Выбор третьей урны

и событие – появление белого шара.

Так как гипотезы, по условию задачи, равновозможные, то

.

Условные вероятности события при этих гипотезах соответственно равны:

По формуле полной вероятности

.

Пример 2. По самолету производится три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, при двух попаданиях – с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Решение. Рассмотрим четыре гипотезы:

В самолет не попало ни одного снаряда,

В самолет попал один снаряд,

В самолет попало два снаряда,

В самолет попало три снаряда.

Пользуясь теоремами сложения и умножения, найдем вероятности этих гипотез:

Условные вероятности события (выход самолета из строя) при этих гипотезах равны:

Применяя формулу полной вероятности, получим:

Заметим, что первую гипотезу можно было бы и не вводить в рассмотрение, так как соответствующий член в формуле полной вероятности обращается в нуль. Так обычно и поступают при применении формулы полной вероятности, рассматривая не полную группу несовместных гипотез, а только те из них, при которых данное событие возможно.

Пример 3. Работа двигателя контролируется двумя регуляторами. Рассматривается определенный период времени , в течение которого желательно обеспечить безотказную работу двигателя. При наличии обоих регуляторов двигатель отказывается с вероятностью , при работе только первого из них – с вероятностью , при работе только второго - , при отказе обоих регуляторов – с вероятностью . Первый из регуляторов имеет надежность , второй - . Все элементы выходят из строя независимо друг от друга. Найти полную надежность (вероятность безотказной работы) двигателя.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.