Строение холинергического и адренергического синапса. медиаторы

И ацетилкоэнзима А (митохондриального происхождения) при участии цитоплазматического энзима холинацетилазы (холинацетилтрансферазы). Депонируется ацетилхолин в синаптических пузырьках (везикулах). В каждом из них находится несколько тысяч молекул ацетилхолина. Нервные импульсы вызывают высвобождение ацетилхолина в синаптическую щель, после чего он взаимодействует с холинорецепторами.

По имеющимся данным, холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (α, α, β, γ, δ), окружающих ионный (натриевый) канал и проходящих через всю толщу липидной мембраны. Две молекулы ацетилхолина взаимодействуют с двумя α-субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны.

Виды холинорецепторов

Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых

  • мускариночувствительных холинорецепторов - м-холинорецепторы (мускарин - алкалоид из ряда ядовитых грибов, например мухоморов) и
  • никотиночувствительных холинорецепторов - н-холинорецепторы (никотин - алкалоид из листьев табака).

М-холинорецепторы расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных холинергических (парасимпатических) волокон. Кроме того, они имеются на нейронах вегетативных ганглиев и в ЦНС - в коре головного мозга, ретикулярной формации). Установлена гетерогенность м-холинорецепторов разной локализации, что проявляется в их неодинаковой чувствительности к фармакологическим веществам.

Выделяют следующие виды м-холинорецепторов:

  • м 1 -холинорецепторы в ЦНС и в вегетативных ганглиях (однако последние локализуются вне синапсов);
  • м 2 -холинорецепторы - основной подтип м-холинорецепторов в сердце; некоторые пресинаптические м 2 -холинорецепторы снижают высвобождение ацетилхолина;
  • м 3 -холинорепепторы - в гладких мышцах, в большинстве экзокринных желез;
  • м 4 -холинорецепторы - в сердце, стенке легочных альвеол, ЦНС;
  • м 5 -холинорецепторы - в ЦНС, в слюнных железах, радужной оболочке, в мононуклеарных клетках крови.

Воздействие на холинорецепторы

Основные эффекты известных фармакологических веществ, влияющих на м-холинорецепторы, связаны с их взаимодействием с постсинаптическими м 2 - и м 3 -холинорецепторами.

Н-холинорецепторы находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (в симпатических и парасимпатических ганглиях), мозговом слое надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц и ЦНС (в нейрогипофизе, клетках Реншоу и др.). Чувствительность к веществам разных н-холинорецепторов неодинакова. Так, н-холинорецепторы вегетативных ганглиев (н-холинорецепторы нейронального типа) существенно отличаются от н-холинорецепторов скелетных мышц (н-холинорецепторы мышечного типа). Этим объясняется возможность избирательного блока ганглиев (ганглиоблокирующими препаратами) или нервно-мышечной передачи (курареподобными препаратами)

В регуляции высвобождения ацетилхолина в нейроэффекторных синапсах принимают участие пресинаптические холино- и адренорецепторы. Их возбуждение угнетает высвобождение ацетилхолина.

Взаимодействуя с н-холинорецепторами и изменяя их конформацию, ацетилхолин повышает проницаемость постсинаптической мембраны. При возбуждающем эффекте ацетилхолина ионы натрия проникают внутрь клетки, что ведет к деполяризации постсинаптической мембраны. Первоначально это проявляется локальным синаптическим потенциалом, который, достигнув определенной величины, генерирует потенциал действия. Затем местное возбуждение, ограниченное синаптической областью, распространяется по всей мембране клетки. При стимуляции м-холинорецепторов в передаче сигнала важную роль играют G-белки и вторичные мессенджеры (циклический аденозинмонофосфат – цАМФ; 1,2-диацилглицерол; инозитол(1,4,5)трифосфат).

Действие ацетилхолина очень кратковременно, так как он быстро гидролизуется ферментом ацетилхолинэстеразой (например, в нервно-мышечных синапсах или, как в вегетативных ганглиях, диффундирует из синаптической щели). Холин , образующийся при гидролизе ацетилхолина, в значительном количестве (50%) захватывается пресинаптическими окончаниями, транспортируется в цитоплазму, где вновь используется для биосинтеза ацетилхолина.

Вещества, воздействующие на холинергические синапсы

Химические (в том числе фармакологические) вещества могут воздействовать на разные процессы, имеющие отношение к синаптической передаче:

  • синтез ацетилхолина;
  • высвобождение медиатора (например, карбахолин усиливает выделение ацетилхолина на уровне пресинаптических окончаний, а также ботулиновый токсин, препятствующий высвобождению медиатора);
  • взаимодействие ацетилхолина с холинорецепторами;
  • энзиматический гидролиз ацетилхолина;
  • захват пресинаптическими окончаниями холина, образующегося при гидролизе ацетилхолина (например, гемихолиний, который угнетает нейрональный захват - транспорт холина через пресинаптическую мембрану).

Вещества, влияющие на холинорецепторы, могут оказывать стимулирующий (холиномиметический) или угнетающий (холиноблокирующий) эффект. Основой классификации таких средств является направленность их действия на определенные холинорецепторы. Исходя из этого принципа, препараты, влияющие на холинергические синапсы, могут быть систематизированы следующим образом:

  • Средства, влияющие на м- и н-холинорецепторы
    • М,н-холиномиметики
    • М,н-холиноблокаторы
  • Антихолинэстеразные средства
  • Средства, влияющие на м-холинорецепторы
    • М-холиномиметики (мускариномиметические средства)
    • М-холиноблокаторы (антихолинергические, атропиноподобные средства)
      • платифиллина гидротартрат
      • ипратропия бромид
      • скополамина гидробромид
  • Средства, влияющие на н-холинорецепторы
    • Н-холиномиметики (никотиномиметические средства)
      • цититон
      • лобелина гидрохлорид
    • Блокаторы н-холинорецепторов или связанных с ними ионных каналов
      • Ганглиоблокирующие средства
        • арфонад
      • Курареподобные средства (миорелаксанты периферического действия)
        • тубокурарина хлорид
        • панкурония бромид
        • пипекурония бромид

Литература

  • Харкевич Д.А. Фармакология. М.: ГЭОТАР-МЕД, 2004

См.также


Wikimedia Foundation . 2010 .

Смотреть что такое "Холинергические синапсы" в других словарях:

    - (от Холин и греч. érgon работа) (сокращённое название ацетилхолинергических волокон), нервные волокна окончания которых при передаче импульс, выделяют Медиатор ацетилхолин. Содержатся в периферической и центральной нервной системе… … Википедия

    I Синапс (греч. synapsis соприкосновение, соединение) специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически С. образован… … Медицинская энциклопедия

    Уксуснокислый эфир Холина: CH3COOCH2CH2C(CH3)3OH; бесцветные кристаллы, легко растворимы в воде, спирте, хлороформе, нерастворимы в эфире. Молекулярная масса 163,2. А. биологически активное вещество, широко распространённое в природе. В… … Большая советская энциклопедия

    Трансмиттеры (биол.), вещества, осуществляющие перенос возбуждения с нервного окончания на рабочий орган и с одной нервной клетки на другую. Предположение, что передача возбуждения (См. Возбуждение) связана с образованием каких то… … Большая советская энциклопедия

    Антихолинергические средства, фармакологические вещества, блокирующие передачу возбуждения с холинергических нервных волокон (См. Холинергические нервные волокна), антагонисты медиатора ацетилхолина. Относятся к различным группам… … Большая советская энциклопедия

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

  • 6. М-холиномиметические средства.
  • 7. Н-холиномиметические средства. Применение никотиномиметиков для борьбы с табакокурением.
  • 8. М-холиноблокирующие средства.
  • 9. Ганглиоблокирующие средства.
  • 11. Адреномиметические средства.
  • 14. Средства для общей анестезии. Определение. Детерминанты глубины, скорости развития и выхода из наркоза. Требования к идеальному наркотическому средству.
  • 15. Средства для ингаляционного наркоза.
  • 16. Средства для неингаляционного наркоза.
  • 17. Спирт этиловый. Острое и хроническое отравление. Лечение.
  • 18. Седативно-гипнотические средства. Острое отравление и меры помощи.
  • 19. Общие представления о проблеме боли и обезболивании. Средства, используемые при нейропатических болевых синдромах.
  • 20. Наркотические анальгетики. Острое и хроническое отравление. Принципы и средства лечения.
  • 21. Ненаркотические анальгетики и антипиретики.
  • 22. Противоэпилептические средства.
  • 23. Средства, эффективные при эпилептическом статусе и других судорожных синдромах.
  • 24. Противопаркинсонические средства и средства для лечения спастичности.
  • 32. Средства для предупреждения и купирования бронхоспазма.
  • 33. Отхаркивающие и муколитические средства.
  • 34. Противокашлевые средства.
  • 35. Средства, применяемые при отеке легких.
  • 36. Средства, применяемые при сердечной недостаточности (общая характеристика) Негликозидные кардиотонические средства.
  • 37. Сердечные гликозиды. Интоксикация сердечными гликозидами. Меры помощи.
  • 38. Противоаритмические средства.
  • 39. Антиангинальные средства.
  • 40. Основные принципы лекарственной терапии инфаркта миокарда.
  • 41. Антигипертензивные симпатоплегические и вазорелаксирующие средства.
  • I. Средства, влияющие на аппетит
  • II. Средства при снижении секреции желудка
  • I. Производные сульфонилмочевины
  • 70. Противомикробные средства. Общая характеристика. Основные термины и понятия в области химиотерапии инфекций.
  • 71. Антисептики и дезинфицирующие средства. Общая характеристика. Отличие их от химиотерапевтических средств.
  • 72. Антисептики – соединения металлов, галогенсодержащие вещества. Окислители. Красители.
  • 73. Антисептики алифатического, ароматического и нитрофуранового ряда. Детергенты. Кислоты и щелочи. Полигуанидины.
  • 74. Основные принципы химиотерапии. Принципы классификации антибиотиков.
  • 75. Пенициллины.
  • 76. Цефалоспорины.
  • 77. Карбапенемы и монобактамы
  • 78. Макролиды и азалиды.
  • 79. Тетрациклины и амфениколы.
  • 80. Аминогликозиды.
  • 81. Антибиотики группы линкозамидов. Фузидиевая кислота. Оксазолидиноны.
  • 82. Антибиотики гликопептиды и полипептиды.
  • 83. Побочное действие антибиотиков.
  • 84. Комбинированная антибиотикотерапия. Рациональные комбинации.
  • 85. Сульфаниламидные препараты.
  • 86. Производные нитрофурана, оксихинолина, хинолона, фторхинолона, нитроимидазола.
  • 87. Противотуберкулезные средства.
  • 88. Противоспирохетозные и противовирусные средства.
  • 89. Противомалярийные и противоамебные средства.
  • 90. Средства, применяемые при жиардиазе, трихомониазе, токсоплазмозе, лейшманиозе, пневмоцистозе.
  • 91. Противомикозные средства.
  • I. Средства, применяемые при лечении заболеваний, вызванных патогенными грибами
  • II. Средства, применяемые при лечении заболеваний, вызванных условно-патогенными грибами (например, при кандидамикозе)
  • 92. Антигельминтные средства.
  • 93. Противобластомные средства.
  • 94. Средства, применяемые при чесотке и педикулёзе.
  • Частная фармакология

    1. Схема строения и функциональная роль периферической нервной системы. Передача возбуждения в холинергических и адренергических синапсах.

    эффекты, вызванные повышением активности симпатического отдела

    автономной нервной системы:

    Радужка – сокращение радиальной мышцы ( 1 -Ар)

    Цилиарная мышца – расслабляется (-Ар)

    2) сердце:

    Синоатриальный узел, эктопические пейсмейкер – ускорение ( 1 -Ар)

    Сократимость – повышается ( 1 -Ар)

    3) ГМК сосудов:

    Кожа, сосуды внутренних органов – сокращаются (-Ар)

    Сосуды скелетных мышц – расслабляются ( 2 -Ар)

    4) бронхиолярные ГМК: расслабляются ( 2 -Ар)

    ГМК стенок – расслабляются ( 2 ,  2 -Ар)

    ГМК сфинктеров – сокращаются ( 1 -Ар)

    Мышечное сплетение – угнетается (-Ар)

    6) ГМК мочеполовой системы:

    Стенки мочевого пузыря – расслабляются ( 2 -Ар)

    Сфинктер – сокращается ( 1 -Ар)

    Матка при беременности – расслабляется ( 2 -Ар) или сокращается (-Ар)

    Пенис, семенные пузырьки – эякуляция (-Ар)

    Пиломоторные ГМК - сокращаются (-Ар)

    Потовые железы: терморегуляторные – активация (М-Хр), апокриновые – активация (-Ар)

    8) метаболические функции:

    Печень: глюконеогенез и глюкогенолез (/ 2 -Ар)

    Жировые клетки: липолиз ( 3 -Ар)

    Почки: выделение ренина ( 1 -Ар)

    эффекты, обусловленные повышением тонуса парасимпатического отдела

    автономной нервной системы.

    Радужка – сокращение циркулярной мышцы (М 3 -Хр)

    Цилиарная мышца – сокращается (М 3 -Хр)

    2) сердце:

    Синоатриальный узел – замедляется (М 2 -Хр)

    Сократимость – замедляется (М 2 -Хр)

    3) ГМК сосудов:

    Эндотелий – выделение эндотелиального релаксирующего фактора NO (М 3 -Хр)

    4) бронхиолярные ГМК: сокращаются (М 3 -Хр)

    ГМК стенок – сокращаются (М 3 -Хр)

    ГМК сфинктеров – расслабляются (М 3 -Хр)

    Секреция – повышается (М 3 -Хр)

    Мышечное сплетение – активируется (М 1 -Хр)

    6) ГМК мочеполовой системы:

    Стенки мочевого пузыря – сокращаются (М 3 -Хр)

    Сфинктер – расслабляются (М 3 -Хр)

    Матка при беременности –сокращается (М 3 -Хр)

    Пенис, семенные пузырьки – эрекция (М-Хр)

    строение холинергического синапса.

    В холинэргических синапсах передача возбуждения осуществляется посредством ацетилхолина. АцХ синтезируется в цитоплазме окончаний холинэргических нейронов. Он образуется из холина и АцКоА при участии цитоплазматического энзима холинацетилазы. Депонируется он в синаптических пузырьках (везикулах). Нервные импульсы вызывают высвобождение АцХ в синаптическую щель, после чего он взаимодействует с холинорецепторами. Структура ХР не установлена. По имеющимся данным, ХР имеет 5 белковых субъединиц (,,,), окружающих ионный (натриевый) канал и проходящий через всю толщу липидной мембраны. АцХ взаимодействует с -субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны.

    ХР бывают: мускариночувствительные и никотиночувствительные. МХР расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных парасимпатических волокон, а также на нейронах вегетативных ганглиев и в ЦНС (в коре, ретикулярной формации). Есть м 1 -ХР (в вегетативных ганглиях, ЦНС), м 2 -ХР (сердце), м 3 -ХР (гладкие мышцы, экзокринные железы). НХР находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон, мозговом веществе надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц, ЦНС. Эффекты возбуждения ПНС: сердце (брадикардия, снижение сократимости, возбудимости, проводимости, понижение АД); бронхи (бронхоспазм, повышение секреции бронхиальных желёз); глаз (сужение зрачка, понижение внутриглазного давления, спазм аккомодации); сфинктеры (понижение тонуса); гладкие мышцы (повышение тонуса и перистальтики ЖКТ, повышение тонуса мочевого пузыря); железы (повышение секреции желёз ЖКТ, гиперсаливация слюнных желёз). Эффекты возбуждения СНС: сердце (тахикардия, повышение сократимости, возбудимости, повышение АД); бронхи (расширение, понижение секреции желёз); глаз (расширение зрачка, повышение внутриглазного давления, паралич аккомодации); гладкие мышцы (снижение тонуса, перистальтики ЖКТ); сфинктеры (повышение тонуса); железы (понижение секреции).

    Классификация ХЭ средств:

    Холиномиметики делятся на М- и Н- (бывают: 1.прямого (ацетилхолин, карбохолин) и 2.непрямого (обратимого действия (прозерин, галантамин,изостегмин, оксазил) и необратимого действия) действия ; М (пилокарпина гидрохлорид, ацеклидин); Н (никотин, лобелин, цититон, анабазин).

    Холиноблокаторы делятся на М- и Н- (1.центрального (амизил, циклодол, тропацин) и 2.периферического (спазмолитин, апрофен) действия ), М (атропин, платифиллин, скопаламин, метацин, гастрозепин, тровентол), Н (1.ганглиоблокаторы (бензогексоний, арфонад, пентамин, гигроний; 2.миорелаксанты ; 3.курареподобные средства (деполяризующие (дитилин); антидеполяризующие (тубокурарина гидрохлорид, панкуроний, пиперкуроний); смешанного действия (диоксоний)).

    строение адренергического синапса.

    В адренергических синапсах передача возбуждения осуществляется посредством норадреналина. В пределах периферической иннервации норадреналин принимает участие в передаче импульсов с адренергических волокон на эффекторные клетки. Адренэргические аксоны, подходя к эффектору, разветвляются на тонкую сеть волокон с варикозными утолщениями, выполняющими функцию нервных окончаний, которые участвуют в образовании синаптических контактов с эффекторными клетками. В варикозных утолщениях находятся везикулы (пузырьки), содержащие медиатор норадреналин. Биосинтез норадреналина осуществляется в адренергических нейронах из тирозина с участием ряда энзимов. Образование ДОФА и дофамина происходит в цитоплазме нейронов, а норадреналина в везикулах. В ответ на нервные импульсы происходит высвобождение норадреналина в синаптическую щель и последующее взаимодействие его с адренорецепторами постсинаптической мембраны.

    Различают  и -адренорецепторы.

    Сосуды кожи, почек, кишечника ( 1 и  2) - при их стимуляции - сокращение мышц, сужение сосудов.

    Сосуды скелетных мышц, печени, коронарные сосуды ( 2) - расширение.

    Вены ( 1) - сужение.

    Сердце ( 1) - повышение ЧСС, силы сердечных сокращений, повышение проводимости, возбудимости миокарда, повышение потребности миокарда в кислороде).

    Бронхи ( 2) - расширение.

    Глаз (радиальная мышца) ( 1) - мидриаз, снижение ВГД.

    Кишечник и мускулатура ( 1) - расслабление, снижение тонуса, перистальтики.

    Сфинктеры кишечника ( 1) - сокращение сфинктеров.

    Матка (миометрий) ( 2) - снижение тонуса.

    Шейка матки ( 1) - сокращение.

    Простата, сфинктеры мочевого пузыря, простатическая часть уретры ( 1) - повышение тонуса, эякуляция.

    Почки (юкстагломерулярный аппарат) ( 1 и  2) - повышение секреции ренина.

    Капсула селезёнки ( 1) - сокращение.

    Тромбоциты ( 2 и  2) - соответственно повышение и понижении агрегации.

    -клетки поджелудочной железы ( 1) - понижение секреции инсулина.

    Депо гликогена ( 2) - гликогенолиз.

    Жировые депо ( 3) - липолиз и термогенез в жировой ткани.

    Классификация средств, влияющих на адренэргические синапсы.

    Делятся на адреномиметики и адреноблокаторы.

    Адреномиметики бывают прямого и непрямого действия. Прямого действия бывают:  (адреналин - все виды рецепторов, норадреналин - все, кроме  2); (мезатон -  1 , нафтизин, глазолин -  2); (изодрин - 1 , 2 , добутамин -  1 , тербутамин -  2 , сальбутамол -  2). Непрямого действия, или симпатомиметики (фенамин, эфедрина гидрохлорид).

    Адреноблокаторы бывают: непрямого и прямого действия. Непрямого действия или симпатолитики (резерпин, октадин, орнид). Прямого действия:  (лабетолол - 1 , 1 , 2); (фентоламин -  1 , 2 , тропафен - 1 , 2 , празозин -  1); (анаприлин -  1 , 2 , окспренолол -  1 , 2 , атенолол -  1).

    Холинергические синапсы представлены более широко.

    Работа холинергического синапса.

    Медиатор – ацетилхолин. Ацетилхолин синтезируется во всех нервных окончаниях(холинергических) из аминоспирта холина и предварительно активированного ацетата – ацилКоА под действием фермента – ацетилхолинэстеразы. Ацетилхолин синтезируется в везикулах нервных окончаний. Эти везикулы увеличиваются в размерах, подходя к пресинаптической мембране. Большие содержат готовый ацетилхолин.

    Ацетилхолин, выделившийся в синаптическую щель, взаимодействует с холинорецепторами на постсинаптической мембране.

    Рецепторы делятся на:

    1.м – холинорецепторы(возбуждаются алкалоидом из мухомора – мускарином и блокируется алкалоидом атропином)

    2.н – холинорецепторы(возбуждаются малыми дозами никотина и блокируются большими дозами никотина).

    Н – холинорецепторы – на скелетной мускулатуре(Н м - холинорецепторы), в ганглиях(Н н - холинорецепторы). На исполнительных органах парасимпатики – М – холинорецепторы.

    М – холинорецепторы делятся на 3 подтипа: М 1 , М 2 , М 3 .

    М 1 – локализованы в ЦНС и их возбуждение – кратковременная память. В вегетативных ганглиях(модулирующая роль) париетальных клеток желудка.

    М 2 – их возбуждение связано с торможением функции любого органа, на котором они расположены(в основном сердце).

    М 3 – расположены в гладких мышцах и железах. Все эффекты, связанные с их возбуждением – связаны с усилением функции органов(но сфинктеры расслабляются). Железы усиливают секрецию.

    Механизм функционирования М – рецепторов.

    М 1 и М 3 – рецепторы через G q – белок связаны с фосфолипазой С, то есть при их возбуждении идет наработка инозитолтрифосфата и диацилглицерина, следовательно идет повышение концентрации свободного кальция, то есть повышается тонус мышц.

    М 2 – связаны через G i – белок с аденилатциклазой или ионными каналами. Их возбуждение приведет к уменьшению активности аденилатциклазы, повышению проводимости, что приводит к выходу калия из клетки, то есть возникает гиперполяризация, и как следствие снижение функции.

    Н – холинорецепторы не разделены на подтипы, а по локализации делятся на:

    1.никотиновые мышечного типа(Н м). Находятся на скелетных мышцах

    2.нейронального типа(Н н). Локализация: в ганглиях(как симпатики, так и парасимпатики) – эффект возбуждения – усиление проводимости; в мозговом слое надпочечников – эффект – усиление выделения адреналина; каротидный клубочек – возбуждение приводит к рефлекторной активации дыхания в ЦНС.

    Механизм действия.

    Н – рецепторы представляют собой натриевый ионный канал(5 субъединиц - 2α, β, γ, δ). Вещество, взаимодействующее с этим рецептором, взаимодействует с α – субъединицей, которые формируют натриевый канал. При его возбуждении входящий ток натрия, то есть идет деполяризация, следствием становится сокращение мышцы.


    Второй этап работы синапса: после того как ацетилхолин провзаимодействовал с рецепторами, он подвергается действию фермента – ацетилхолинэстеразы(разрушается). Реакция очень быстрая.

    Аминоспирт холин, который образовался в результате разрушения ацетилхолина в синаптической щели, подвергается обратному захвату в нервное окончание(около 50%) и вновь идет на синтез ацетилхолина.

    Классификация лекарств.

    1.вещества, усиливающие работу холинергического синапса

    · прямого типа действия(М –Н – холиномиметики – ацетилхолин, карбохолин; М – миметики – мускарин, пилокарпин; Н – миметики – никотин, цититон, лобелин)

    · непрямого типа действия:

    ü антихолинэстеразные(блокируют ацетилхолинэстеразу). Делятся на вещества обратимого действия – прозерин, физостигмин, галантамин и необратимого действия – армин.

    ü Вещества, усиливающие выделение ацетилхолина из нервных окончаний – аминопиридин, цисаприд(усиливает выделение ацетилхолина в кишечнике)

    2.вещества, ослабляющие проведение возбуждения в холинергическом синапсе.

    М – Н – холиномиметики.

    Как лекарственные вещества почти не применяются, так как эффект очень краток.

    Карбохолин.

    Эфир карбаминовой кислоты. Действует более продолжительно(не разрушается ацетилхолинэстеразой). Используется при послеоперационной атонии гладкомышечных органов и редко в глаз для лечения глаукомы.

    Рассмотрим две группы одновременно М – Н – холиномиметиков и М – холиномиметиков, так как их эффекты одинаковы(никотиновые эффекты затушевываются более сильным возбуждением мускариновых рецепторов). Выявить у лекарственного средства наличие никотинового препарата можно только, если предварительно заблокировать атропином мускариновые рецепторы.

    Холинергические
    синапсы - синапсы, в
    которых передача
    возбуждения
    осуществляется
    посредством
    ацетилхолина
    (нейромедиатор, осуществляющий
    нервно-мышечную передачу, а также
    основной нейромедиатор в
    парасимпатической нервной системе).

    Холинорецепторы разной локализации обладают
    неодинаковой чувствительностью к
    фармакологическим веществам. На этом основано
    выделение так называемых
    мускариночувствительных холинорецепторов -
    м-холинорецепторы (мускарин - алкалоид из
    ряда ядовитых грибов, например мухоморов) и
    никотиночувствительных холинорецепторов - нхолинорецепторы (никотин - алкалоид из
    листьев табака).

    М-холинорецепторы возбуждаются ядом
    мухомора мускарином и блокируются атропином.
    Они локализованы в нервной системе и внутренних
    органах, получающих парасимпатическую
    иннервацию (вызывают угнетение сердца,
    сокращение гладких мышц, повышают
    секреторную функцию экзокринных желез).

    Выделяют следующие виды м-холинорецепторов:

    ВЫДЕЛЯЮТ СЛЕДУЮЩИЕ ВИДЫ М-ХОЛИНОРЕЦЕПТОРОВ:
    м1-холинорецепторы в ЦНС и в вегетативных ганглиях
    (однако последние локализуются вне синапсов);
    м2-холинорецепторы - основной подтип мхолинорецепторов в сердце; некоторые
    пресинаптические м2-холинорецепторы снижают
    высвобождение ацетилхолина;
    м3-холинорецепторы - в гладких мышцах, в
    большинстве экзокринных желез;
    м4-холинорецепторы - в сердце, стенке легочных
    альвеол, ЦНС;
    м5-холинорецепторы - в ЦНС, в слюнных железах,
    радужной оболочке, в мононуклеарных клетках крови.

    Н-холинорецепторы возбуждаются
    алкалоидом табака никотином в
    малых дозах, блокируются
    никотином в больших дозах.
    Биохимическая идентификация и
    выделение Н-холинорецепторы стали
    возможны благодаря открытию их
    избирательного
    высокомолекулярного лиганда бунгаротоксина - яда тайваньской
    гадюки Burnrus multicintus и кобры
    Naja naja.
    Н-холинорецепторы широко
    представлены в организме. Их
    классифицируют на Нхолинорецепторы нейронального (H)
    и мышечного (М) типов

    Локализация нейрональных Н-холинорецепторов следующая:
    Кора больших полушарий, продолговатый мозг, клетки Реншоу
    спинного мозга, нейрогипофиз (повышают секрецию вазопрессина)
    Вегетативные ганглии (участвуют в проведении импульсов с
    преганглионарных волокон на постганглионарные);
    Мозговой слой надпочечников (повышают секрецию адреналина,
    норадреналина);
    Каротидные клубочки (участвуют в рефлекторном возбуждении
    дыхательного центра).
    Мышечные Н-холинорецепторы вызывают сокращение скелетных
    мышц

    КЛАССИФИКАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ, ВЛИЯЮЩИХ НА ХОЛИНЕРГИЧЕСКИЕ СИНАПСЫ

    Холиномиметики
    М, Н-холиномиметики
    М-холиномиметики
    Н-холиномиметики
    (ганглиостимуляторы)
    ^
    ацетилхолин-хлорид,
    карбахолин
    пилокарпин, ацеклидин цитизин, лобелин
    Средства, повышающие выделение ацетилхолина
    цисаприд
    Антихолинэстеразные средства
    Обратимые блокаторы
    физостигмин,
    Необратимые блокаторы прозерин
    армин
    галантамин,
    амиридин,
    Холиноблокаторы
    М-холиноблокаторы
    Н-холиноблокаторы
    (ганглиоблокаторы)
    атропин,скополамин,платифиллин,
    метацин, пиренцепин, ипратропия бромид
    бензогексоний,
    пентамин,
    гигроний
    арфонад,пахикарпин, пирилен
    Миорелаксанты
    Антидеполяризующие Тубокурарин-хлорид, пипекурония бромид,
    Деполяризующие
    атракурия бесилат, мелликтин
    дитилин
    Миооелаксанты

    холинергическая крапивница

    ХОЛИНЕРГИЧЕСКАЯ КРАПИВНИЦА
    Холинергическая
    крапивница – это
    кожная аллергическая
    реакция, которая
    возникает по причине
    чувствительности
    иммунной системы к
    медиатору
    ацетилхолину.

    Повышенная выработка
    ацетилхолина происходит в
    различных случаях:
    стресс;
    эмоциональные нагрузки;
    чрезмерные физические
    нагрузки, вызывающие
    потоотделение;
    воздействие на организм
    высоких температур
    (пребывание в сауне, парной,
    горячей ванной и пр.).

    При том, что каждый из нас время от времени подвергается
    массированной атаке ацетилхолина, далеко не все страдают
    от холинергической крапивницы. Почему? Потому что в
    дополнение к повышенной чувствительности к ацетилхолину
    у человека должна быть предрасположенность к аллергии.
    Лишь два этих фактора, объединенные вместе, становятся
    причиной развития холинергической крапивницы.
    Гиперчувствительность организма к ацетилхолину часто
    возникает на фоне хронических заболеваний желудочнокишечного тракта, нарушений работы щитовидной железы и
    вегетососудистой и нейроциркуляторной дистонии.

    Первыми признаками становятся мелкие
    пузырьки диаметром 1-3 мм, появляющиеся на
    коже. Слегка розоватые в центре, по периметру
    они окрашены в ярко-красный цвет; область
    вокруг пузырьков часто отечная и возвышается
    над участками здоровой кожи.
    В основном пузырьки возникают на коже шеи,
    декольте, предплечий, грудной клетки. Гораздо
    реже высыпания при холинергической
    крапивнице локализуются в нижней части
    туловища и на ногах.
    Высыпания вызывают сильный зуд и жжение.

    Так как ацетилхолин – это медиатор нервной системы, при
    избыточной чувствительности к нему могут проявляться другие
    симптомы, свидетельствующие о чрезмерной активности нервной
    системы: диарея, слюнотечение, тошнота, рвота.
    В большинстве случаев рецидив холинергической крапивницы
    сопровождается внезапным повышением температуры тела.

    Основные средства для
    лечения холинергической
    формы крапивницы –
    мази и гели, содержащие
    атропин и экстракт
    красавки. Они наносятся
    1-2 раза в день на
    участки кожи с сыпью.

    Как предотвратить рецидивы?

    КАК ПРЕДОТВРАТИТЬ РЕЦИДИВЫ?
    Исключите из рациона пряные и острые блюда, а также
    горячие напитки и алкоголь.
    Принимайте ванну и душ, соблюдая температурные
    условия – вода должна быть не горячее 36-37°C.
    Старайтесь избегать эмоциональных нагрузок.
    При занятиях какими-либо видами физической
    деятельности придерживайтесь следующего правила:
    прекращайте работать (заниматься спортом, танцевать)
    при появлении легкой испарины на лице – не допускайте,
    чтобы ваша активность вызывала обильное
    потоотделение.
    Если вы знаете, что вам предстоит пережить стрессовую
    ситуацию заранее примите успокаивающие средства.

    Холинергические синапсы локализованы во внутренних органах, получающих постганглионарные парасимпатические волокна, в вегетативных ганглиях, моз­говом слое надпочечников, каротидных клубочках, скелетных мышцах. Передача возбуждения в холинергических синапсах происходит с помощью ацетилхолина.

    Ацетилхолин синтезируется в цитоплазме окончаний холинергических нервов из ацетил- Ко А и холина при участии фермента холинацетилтрансферазы (холи-нацетилазы) и депонируется в синаптических пузырьках (везикулах). Под влия­нием нервных импульсов ацетилхолин высвобождается из везикул в синаптичес­кую щель. Происходит это следующим образом. Импульс, достигший пресинаптической мембраны, вызывает ее деполяризацию, в результате чего от­крываются потенциалозависимые кальциевые каналы, через которые ионы каль­ция проникают в нервное окончание. Концентрация Са 2+ в цитоплазме нервного окончания повышается, что способствует слиянию мембраны везикул с преси­наптической мембраной и экзоцитозу везикул (рис. 8.1). Процесс слияния везикулярной и пресинаптической мембран, а, следовательно, экзоцитоз ве­зикул и выделение ацетилхолина блокируется ботулиновым токсином. Вы­свобождение ацетилхолина блокируют также вещества, которые снижают по­ступление Са 2+ в цитоплазму нервных окончаний, например, аминогликозидные антибиотики.

    После высвобождения в синаптическую щель ацетилхолин стимулирует холи-норецепторы, локализованные как на постсинаптической, так и на пресинапти­ческой мембране холинергических синапсов.


    В синаптической щели ацетилхолин очень быстро гидролизуется ферментом ацетилхолинэстеразой с образованием холина и уксусной кислоты. Холин захва­тывается нервными окончаниями (подвергается обратному нейрональному зах­вату) и вновь включается в синтез ацетилхолина. В плазме крови, печени и дру­гих органах присутствует фермент - бутирилхолинэстераза (псевдохолинэстераза, ложная холинэстераза), которая также может инактивировать ацетилхолин.



    На передачу возбуждения в холинергических синапсах могут воздействовать вещества, которые оказывают влияние на следующие процессы: синтез ацетил­холина и его депонирование в везикулах; высвобождение ацетилхолина; взаимо­действие ацетилхолина с холинорецепторами; гидролиз ацетилхолина в синап­тической щели; обратный нейрональный захват холина пресинаптическими окончаниями. Депонирование ацетилхолина в везикулах уменьшает везамикол, который блокирует транспорт ацетилхолина из цитоплазмы в везикулы. Высво­бождение ацетилхолина в синаптическую щель стимулирует 4-аминопиридин (пимадин). Блокирует высвобождение ацетилхолина ботулиновый токсин (ботокс). Обратный нейрональный захват холина ингибирует гемихолиний, который при­меняют в экспериментальных исследованиях.

    В медицинской практике в основном используют вещества, которые непос­редственно взаимодействуют с холинорецепторами: холиномиметики (ве­щества, стимулирующие холинорецепторы), или холиноблокаторы (веще­ства, которые блокируют холинорецепторы и таким образом препятствуют действию на них ацетилхолина). Применяют вещества, которые ингибируют гид­ролиз ацетилхолина, - ингибиторы ацетилхолинэстеразы (антихолинэсте-разные средства).


    СРЕДСТВА, СТИМУЛИРУЮЩИЕ ХОЛИНЕРГИЧЕСКИЕ СИНАПСЫ

    В этой группе выделяют холиномиметики - вещества, которые подобно ацетилхолину непосредственно стимулируют холинорецепторы, и антихо-линэстеразные средства, которые, ингибируя ацетилхолинэстеразу, по­вышают концентрацию ацетилхолина в синаптической щели и таким образом уси­ливают и пролонгируют действие ацетилхолина.

    Холиномиметики

    Холинорецепторы разных холинергических синапсов обладают неодинаковой чувствительностью к одним и тем же веществам. Холинорецепторы, локализо­ванные в постсинаптической мембране клеток эффекторных органов у оконча­ний постганглионарных парасимпатических волокон, проявляют повышенную чувствительность к мускарину (алкалоиду, выделенному из некоторых видов му­хоморов). Такие рецепторы называют мускариночувствительными, или М-холи-норецепторами.

    Холинорецепторы, расположенные в постсинаптической мембране нейронов симпатических и парасимпатических ганглиев, хромаффинных клеток мозгового вещества надпочечников, в каротидных клубочках (которые находятся в месте деления общих сонных артерий) и на концевой пластинке скелетных мышц, наи­более чувствительны к никотину и поэтому называются никотиночувствитель-ными рецепторами или Н-холинорецепторами. Эти рецепторы подразделяются на Н-холинорецепторы нейронального типа (Н н) и Н-холинорецепторы мышеч­ного типа (Н м), различающиеся по локализации (см. табл. 8.1) и по чувствитель­ности к фармакологическим веществам.

    Вещества, которые избирательно блокируют Н н -холинорецепторы ганглиев, мозгового вещества надпочечников и каротидных клубочков, называются ганг-лиоблокаторами, а вещества, преимущественно блокирующие Н-холинорецеп­торы скелетных мышц - курареподобными средствами.

    Среди холиномиметиков выделяют вещества, которые преимущественно стимулируют М-холинорецепторы (М-холиномиметики), Н-холинорецепторы (Н-холиномиметики) или оба подтипа холинорецепторов одновременно (М-, Н-холиномиметики).

    Классификация холиномиметиков

    М-холиномиметики: мускарин, пилокарпин, ацеклидин.

    Н-холиномиметики: никотин, цититон, лобелии.

    М,Н-холиномиметики: ацетилхолин, карбахолин.

    М-холиномиметики

    М-холиномиметики стимулируют М-холинорецепторы, расположенные в мем­бране клеток эффекторных органов и тканей, получающих парасимпатическую иннервацию. М-холинорецепторы подразделяются на несколько подтипов, ко­торые проявляют неодинаковую чувствительность к разным фармакологическим веществам. Обнаружено 5 подтипов М-холинорецепторов (М,-, М 2 -, М 3 -, М 4 -, М 5 -). Наиболее хорошо изучены М,-, М 2 - и М 3 -холинорецепторы (см. табл. 8.1). Все М-холинорецепторы относятся к мембранным рецепторам, взаимодейству­ющим с G-белками, а через них с определенными ферментами или ионными ка­налами (см. гл. «Фармакодинамика»). Так, М 2 -холинорецепторы мембран кардио-


    Таблица 8.1. Подтипы холинорецепторов и эффекты, вызываемые их стимуляцией

    М-холинорецепторы

    м, ЦНС Энтерохромаффиноподобные клетки желудка Выделение гистамина, который стимулирует секрецию хлористоводородной кислоты пари­етальными клетками желудка
    м 2 Сердце Пресинаптическая мембрана окончаний постганглионарных парасимпатических волокон Уменьшение частоты сердечных сокращений. Угнетение атриовентрикулярной проводимости. Снижение сократительной активности пред­сердий Снижение высвобождения ацетилхолина
    м 3 (иннер- вируе- мые) Круговая мышца радужной оболочки Цилиарная (ресничная) мышца глаза Гладкие мышцы бронхов, желуд­ка, кишечника, желчного пу­зыря и желчных протоков, мочевого пузыря, матки Экзокринные железы (брон­хиальные железы, железы же­лудка, кишечника, слюнные, слезные, носоглоточные и по­товые железы) Сокращение, сужение зрачков Сокращение, спазм аккомодации (глаз устанав­ливается на ближнюю точку видения) Повышение тонуса (за исключением сфинкте­ров) и усиление моторики желудка, кишечника и мочевого пузыря Повышение секреции
    м 3 (неин- нервиру- емые) Эндотелиальные клетки крове­носных сосудов Выделение эндотелиального релаксирующего фактора (N0), который вызывает расслабле­ние гладких мышц сосудов

    Н-холинорецепторы

    миоцитов взаимодействуют с Gj-белками, угнетающими аденилатциклазу. При их стимуляции в клетках снижается синтез цАМФ и, как следствие, активность цАМФ-зависимой протеинкиназы, фосфорилирующей белки. В кардиомиоци-тах нарушается фосфорилирование кальциевых каналов - в результате мень­ше Са 2+ поступает в клетки синоатриального узла в фазу 4 потенциала действия. Это приводит к снижению автоматизма синоатриального узла и, следовательно,


    к уменьшению частоты сердечных сокращений. Уменьшаются также и другие показатели работы сердца (см. табл. 8.1).

    М 3 -холинорецепторы гладкомышечных клеток и клеток экзокринных же­лез взаимодействуют с Gq-белками, которые активируют фосфолипазу С. При участии этого фермента из фосфолипидов клеточных мембран образуется ино-зитол-1,4,5-трифосфат (1Р 3), который способствует высвобождению Са 2+ из сар-коплазматического ретикулума (внутриклеточного депо кальция). В резуль­тате при стимуляции М 3 -холинорецепторов концентрация Са 2+ в цитоплазме клеток увеличивается, что вызывает повышение тонуса гладких мышц внут­ренних органов и увеличение секреции экзокринных желез. Кроме того, в мемб­ране эндотелиальных клеток сосудов располагаются неиннервируемые (внеси-наптические) М 3 -холинорецепторы. При их стимуляции увеличивается высвобож­дение из эндотелиальных клеток эндотелиального релаксирующего фактора (N0), который вызывает расслабление гладкомышечных клеток сосудов. Это приводит к снижению тонуса сосудов и уменьшению артериального давления.

    М,-холинорецепторы сопряжены с Gq-белками. Стимуляция М,-холино-рецепторов энтерохромаффиноподобных клеток желудка приводит к повы­шению концентрации цитоплазматического Са 2+ и увеличению секреции эти­ми клетками гистамина. Гистамин, в свою очередь, действуя на париетальные клетки желудка, стимулирует секрецию хлористоводородной кислоты. Подти­пы М-холинорецепторов и эффекты, вызываемые их стимуляцией, представле­ны в табл. 8.1.

    Прототипом М-холиномиметиков является алкалоид мускарин, содержа­щийся в грибах мухоморах. Мускарин вызывает эффекты, связанные со стиму­ляцией всех подтипов М-холинорецепторов, приведенных в табл. 8.1. Через ге-матоэнцефалический барьер мускарин не проникает и поэтому не оказывает существенного влияния на ЦНС. Мускарин не используется в качестве лекар­ственного средства. При отравлении мухоморами, содержащими мускарин, про­является его токсическое действие, связанное с возбуждением М-холинорецеп­торов. При этом отмечаются сужение зрачков, спазм аккомодации, обильное слюнотечение и потоотделение, повышение тонуса бронхов и секреции бронхи­альных желез (что проявляется ощущением удушья), брадикардия и снижение артериального давления, спастические боли в животе, диарея, тошнота и рвота. При отравлении мухоморами проводят промывание желудка и дают солевые сла­бительные. Для устранения действия мускарина применяют М-холиноблокатор атропин.


    Пилокарпин является алкалоидом листьев кустарника Pilocarpus pinna-tifolius Jaborandi, произрастающего в Южной Америке. Пилокарпин, применяе­мый в медицинской практике, получают синтетическим путем. Пилокарпин ока­зывает прямое стимулирующее действие на М-холинорецепторы и вызывает все эффекты, характерные для препаратов этой группы (см. табл. 8.1). Особенно силь­но пилокарпин повышает секрецию желез, поэтому его иногда назначают внутрь при ксеростомии (сухость слизистой оболочки полости рта). Но поскольку пи­локарпин обладает довольно высокой токсичностью, его в основном приме­няют местно в виде глазных лекарственных форм для снижения внутриглазно­го давления.

    Величина внутриглазного давления в основном зависит от двух процессов: образования и оттока внутриглазной жидкости (водянистой влаги глаза), кото­рая продуцируется ресничным телом, а оттекает главным образом через дренаж­ную систему угла передней камеры глаза (между радужкой и роговицей). Эта дре­нажная система включает трабекулярную сеть (гребенчатую связку) и венозный синус склеры (шлеммов канал). Через щелевидные пространства между трабеку-лами (фонтановы пространства) трабекулярной сети жидкость фильтруется в шлеммов канал, а оттуда по коллекторным сосудам оттекает в поверхностные вены склеры (рис. 8.2).


    Снизить внутриглазное давление можно, уменьшив продукцию внутриглазной жидкости и/или увеличив ее отток. Отток внутриглазной жидкости во многом зависит от размера зрачка, который регулируется двумя мышцами радужной обо­лочки: круговой мышцей (m. sphincter pupillae) и радиальной мышцей (т. dilatator pupillae). Круговая мышца зрачка иннервируется парасимпатическими волокна­ми (п. oculomotorius), а радиальная - симпатическими (п. sympaticus). При со­кращении круговой мышцы зрачок суживается, а при сокращении радиальной мышцы - расширяется.

    Пилокарпин, как все М-холиномиметики, вызывает сокращение круговой мышцы радужной оболочки и сужение зрачков (миоз). При этом радужная обо­лочка становится тоньше, что способствует раскрытию угла передней камеры глаза и оттоку внутриглазной жидкости через фонтановы пространства в шлеммов ка­нал. Это приводит к снижению внутриглазного давления.

    Способность пилокарпина снижать внутриглазное давление используется при лечении глаукомы - заболевания, которое характеризуется постоянным или пе­риодическим повышением внутриглазного давления, что может привести к атро­фии зрительного нерва и потере зрения. Глаукома бывает открытоугольной и зак-рытоугольной. Открытоугольная форма глаукомы связана с нарушением дренажной системы угла передней камеры глаза, через которую осуществляется отток внутриглазной жидкости; сам угол при этом открыт. Закрытоугольная фор­ма развивается при нарушении доступа к углу передней камеры глаза чаще всего при его частичном или полном закрытии корнем радужки. Внутриглазное давле­ние при этом может повыситься до 60-80 мм рт.ст. (в норме внутриглазное давле­ние составляет от 16 до 26 мм рт.ст.).

    В связи со способностью суживать зрачки (миотическое действие) пилокар­пин обладает высокой эффективностью при лечении закрытоугольной глаукомы ив этом случае используется в первую очередь (является препаратом выбора). Назначают пилокарпин и при открытоугольной глаукоме. Пилокарпин приме­няют в виде 1-2% водных растворов (продолжительность действия - 4-8 ч), растворов с добавлением полимерных соединений, оказывающих пролонгиро­ванное действие (8-12 ч), мазей и специальных глазных пленок из полимерно­го материала (глазные пленки с пилокарпином закладывают за нижнее веко 1-2 раза в сутки).

    Пилокарпин вызывает сокращение ресничной мышцы, что приводит к рас­слаблению цинновой связки, расстягивающей хрусталик. Кривизна хрусталика увеличивается, он приобретает более выпуклую форму. При увеличении кривиз­ны хрусталика повышается его преломляющая способность - глаз устанавлива­ется на ближнюю точку видения (лучше видны предметы, находящиеся вблизи). Это явление, которое называется спазмом аккомодации, является побочным эф­фектом пилокарпина. При закапывании в конъюнктивальный мешок пилокар­пин практически не всасывается в кровь и не оказывает заметного резорбтивного действия.

    Ацеклидин является синтетическим соединением с прямым стимулирую­щим действием на М-холинорецепторы и вызывает все эффекты, связанные с воз­буждением этих рецепторов (см. табл. 8.1).

    Ацеклидин можно применять местно (инсталлировать в конъюнктивальный мешок) для понижения внутриглазного давления при глаукоме. После однократ­ной инсталляции снижение внутриглазного давления продолжается до 6 ч. Од­нако растворы ацеклидина обладают местнораздражающим действием и могут вызвать раздражение конъюнктивы.


    В связи с меньшей по сравнению с пилокарпином токсичностью ацеклидин применяется для резорбтивного действия при атонии кишечника и мочевого пу­зыря. Побочные эффекты: слюнотечение, диарея, спазмы гладкомышечных ор­ганов. Вследствие того, что ацеклидин повышает тонус гладких мышц бронхов, он противопоказан при бронхиальной астме.

    При передозировке М-холиномиметиков используют их антагонисты - М-хо-линоблокаторы (атропин и атропиноподобные средства).

    Н-холиномиметики

    К этой группе относятся алкалоиды никотин, лобелии, цитизин, которые дей­ствуют преимущественно на Н-холинорецепторы нейронального типа, локали­зованные на нейронах симпатических и парасимпатических ганглиев, хромаф-финных клетках мозгового вещества надпочечников, в каротидных клубочках и в ЦНС. На Н-холинорецепторы скелетных мышц эти вещества действуют в значи­тельно больших дозах.

    Н-холинорецепторы относятся к мембранным рецепторам, непосредственно связанным с ионными каналами. По структуре они являются гликопротеинами и состоят из нескольких субъединиц. Так Н-холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (а, а, (3, у, 6), которые окружают ион­ный (натриевый) канал. При связывании двух молекул ацетилхолина с α-субъе-диницами происходит открытие Na + -канала. Ионы Na + входят в клетку, что при­водит к деполяризации постсинаптической мембраны концевой пластинки скелетных мышц и мышечному сокращению.

    Никотин - алкалоид, который содержится в листьях табака (Nicotiana tabacum, Nicotiana rustica). В основном никотин попадает в организм человека во время курения табака, примерно 3 мг - за время курения одной сигареты (смер­тельная доза никотина - 60 мг). Он быстро всасывается со слизистых оболочек дыхательных путей (также хорошо проникает через неповрежденную кожу).

    Никотин.стимулирует Н-холинорецепторы симпатических и парасимпатичес­ких ганглиев, хромаффинных клеток мозгового вещества надпочечников (повы­шает выделение адреналина и норадреналина) и каротидных клубочков (стиму­лирует дыхательный и сосудодвигательный центры). Стимуляция симпатических ганглиев, мозгового вещества надпочечников и каротидных клубочков приводит к наиболее характерным для никотина эффектам со стороны сердечно-сосудистой системы: увеличению частоты сердечных сокращений, сужению сосудов и повы­шению артериального давления. Стимуляция парасимпатических ганглиев вызы­вает повышение тонуса и моторики кишечника и повышение секреции экзокрин-ныхжелез (большие дозы никотина оказывают на эти процессы угнетающее влияние). Стимуляция Н-холинорецепторов парасимпатических ганглиев является также причиной брадикардии, которая может наблюдаться в начале действия никотина.

    Так как никотин обладает высокой липофильностью (является третичным ами­ном), он быстро проникает через гематоэнцефалический барьер в ткани мозга. В ЦНС никотин вызывает высвобождение дофамина, некоторых других биоген-


    ных аминов и возбуждающих аминокислот, с чем связывают субъективные при­ятные ощущения, возникающие у курильщиков. В небольших дозах никотин сти­мулирует дыхательный центр, а в больших дозах вызывает его угнетение вплоть до остановки дыхания (паралич дыхательного центра). В больших дозах никотин вызывает тремор и судороги. Действуя на триггерную зону рвотного центра, ни­котин может вызвать тошноту и рвоту.

    Никотин в основном метаболизируется в печени и выводится почками в неиз­мененном виде и в виде метаболитов. Таким образом он быстро элиминируется из организма (t ]/2 - 1,5-2 ч). К действию никотина быстро развивается толерант­ность (привыкание).

    Острое отравление никотином может произойти при попадании растворов никотина на кожу или слизистые оболочки. При этом отмечаются гиперсалива­ция, тошнота, рвота, диарея, брадикардия, а затем тахикардия, повышение арте­риального давления, сначала одышка, а затем угнетение дыхания, возможны су­дороги. Смерть наступает от паралича дыхательного центра. Основной мерой помощи является искусственное дыхание.

    При курении табака возможно хроническое отравление никотином, а также другими токсичными веществами, которые содержатся в табачном дыме и могут оказывать раздражающее и канцерогенное действие. Для большинства куриль­щиков типичны воспалительные заболевания дыхательных путей, например, хро­нический бронхит; чаще отмечается рак легких. Повышается риск сердечно-со­судистых заболеваний.

    К никотину развивается психическая зависимость, поэтому при прекращении курения у курильщиков возникает синдром отмены, который связан с возникно­вением тягостных ощущений, снижением работоспособности. Для уменьшения синдрома отмены рекомендуют в период отвыкания от курения использовать же­вательную резинку, содержащую никотин (2 или 4 мг), или трансдермальную те­рапевтическую систему (специальный накожный пластырь, который в течение 24 ч равномерно выделяет небольшие количества никотина).

    В медицинской практике иногда используют Н-холиномиметики лобелии и цитизин.

    Лобелии - алкалоид растения Lobelia inflata является третичным амином. Стимулируя Н-холинорецепторы каротидных клубочков, лобелии рефлекторно возбуждает дыхательный и сосудодвигательный центры.

    Цитизин - алкалоид, который содержится в растениях ракитник (Cytisus laburnum) и термопсис (Thermopsis lanceolata), по структуре является вторичным амином. По действию сходен с лобелином, но несколько сильнее возбуждает ды­хательный центр.

    Цитизин и лобелии входят в состав таблеток «Табекс» и «Лобесил», которые применяют для облегчения отвыкания от курения. Препарат цититон (0,15% ра­створ цитизина) и раствор лобелина иногда вводят внутривенно для рефлектор­ной стимуляции дыхания. Однако эти препараты эффективны только при сохра­нении рефлекторной возбудимости дыхательного центра. Поэтому их не применяют при отравлении веществами, которые снижают возбудимость дыха­тельного центра (снотворные средства, наркотические анальгетики).

    М, Н-холиномиметики

    Ацетилхолин является медиатором во всех холинергических синапсах и стимулирует как М-, так и Н-холинорецепторы. Ацетилхолин выпускают в виде лиофилизированного препарата ацетилхолин-хлорида. При введении ацетилхо-


    лина в организм преобладают его эффекты, связанные со стимуляцией М-холи­норецепторов: брадикардия, расширение сосудов и понижение артериального дав­ления, повышение тонуса и усиление перистальтики ЖКТ, повышение тонуса глад­ких мышц бронхов, желчного и мочевого пузыря, матки, усиление секреции бронхиальных и пищеварительных желез. Стимулирующее влияние ацетилхолина на периферические Н-холинорецепторы (никотиноподобное действие) про­является при блокаде М-холинорецепторов (например, атропином). В результате на фоне атропина ацетилхолин вызывает тахикардию, сужение сосудов и, как след­ствие, повышение артериального давления. Происходит это вследствие возбуж­дения симпатических ганглиев, повышения выделения адреналина хромаффинными клетками мозгового вещества надпочечников и стимуляции каротидных клубочков.

    В очень больших дозах ацетилхолин может вызвать стойкую деполяризацию постсинаптической мембраны и блокаду передачи возбуждения в холинергических синапсах.

    По химической структуре ацетилхолин является четвертичным аммониевым соединением и поэтому плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС.

    В организме ацетилхолин быстро разрушается ацетилхолинэстеразой и поэто­му оказывает кратковременное действие (несколько минут). По этой причине ацетилхолин почти не используют в качестве лекарственного средства. В основ­ном ацетилхолин применяют при проведении экспериментов.

    Карбахол (карбахолин) является аналогом ацетилхолина, но в отличие от
    него практически не разрушается ацетилхолинэстеразой и поэтому действует бо­
    лее продолжительно (в течение 1-1,5 ч). Вызывает такие же фармакологичес­
    кие эффекты. Раствор карбахола в виде глазных капель изредка используют при
    глаукоме.