Ренин-ангиотензин-альдостероновая система. Ренин-ангиотензиновая система Активность ренин ангиотензин альдостероновой системы

Альдостерон у человека является основным представителем минералокортикоидных гормонов, производных холестерола.

Синтез

Осуществляется в клубочковой зоне коры надпочечников. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой, 11-гидроксилазой и 18-гидроксилазой . В конечном итоге образуется альдостерон.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют :

  • ангиотензин II , выделяемый при активации ренин-ангиотензиновой системы,
  • повышение концентрации ионов калия в крови (связано с деполяризацией мембран, открытием кальциевых каналов и активацией аденилатциклазы).

Активация ренин-ангиотензиновой системы

  1. Для активации этой системы существует два пусковых момента:
  • снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока – атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п.
  • снижение концентрации ионов Na + в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой.

  1. При выполнении одного или обоих пунктов клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин .
  2. Для ренина в плазме имеется субстрат – белок α2-глобулиновой фракции ангиотензиноген . В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I . Далее ангиотензин I при участии ангиотензин-превращающего фермента (АПФ) превращается в ангиотензин II .
  3. Главными мишенями ангиотензина II служат гладкие миоциты кровеносных сосудов и клубочковая зона коры надпочечников:
  • стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления .
  • из надпочечников после стимуляции секретируется альдостерон , действующий на дистальные канальцы почек.

При воздействии альдостерона на канальцы почек увеличивается реабсорбция ионов Na + , вслед за натрием движется вода . В результате давление в кровеносной системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови и, значит, в первичной моче, что снижает активность РААС.

Активация ренин-ангиотензин-альдостероновой системы

Механизм действия

Цитозольный.

Мишени и эффекты

Воздействует на слюнные железы, на дистальные канальцы и собирательные трубочки почек. В почках усиливает реабсорбцию ионов натрия и потерю ионов калия посредством следующих эффектов:

  • увеличивает количество Na + ,K + -АТФазы на базальной мембране эпителиальных клеток,
  • стимулирует синтез митохондриальных белков и увеличение количества нарабатываемой в клетке энергии для работы Na + ,K + -АТФазы,
  • стимулирует образование Na-каналов на апикальной мембране клеток почечного эпителия.

Патология

Гиперфункция

Синдром Конна (первичный альдостеронизм) – возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм – гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина II. Отмечается повышение артериального давления и появление отеков.

Пионерские исследования Пейджа (Page), Хелмера (Helmer) и Браун-Менендеса (Braun-Menendez) в 1930-х годах показали, что ренин представляет собой фермент, расщепляющий α 2 -глобулин (ангиотензиноген) с образованием декапептида (ангиотензина I). Последний затем расщепляется ангиотензинпревращающим ферментом (АПФ) с образованием октапептида (ангиотензина II), который обладает мощной сосудосуживающей активностью. В те же годы Гольдблатт (Goldblatt) установил, что снижение кровотока в почках экспериментальных животных приводит к повышению артериального давления. В дальнейшем эти два факта удалось связать между собой: снижение кровотока в почках стимулирует ренин-ангиотензиновую систему, что и приводит к повышению артериального давления. Данная схема формирует фундамент современных представлений о регуляции артериального давления.

Ренин

Гладкомышечные клетки в месте вхождения приносящей артериолы в почечный клубочек («юкстагломерулярные») обладают секреторной функцией; они вырабатывают и секретируют ренин - протеолитический фермент с молекулярной массой около 40000. К юкстагломерулярным примыкают специализированные клетки толстого восходящего колена петли Генле, расположенного в корковом веществе почек. Эта область нефрона носит название плотного пятна. Юкстагломерулярные клетки и плотное пятно вместе образуют юкстагломерулярный аппарат, и их взаимодействие играет важнейшую роль в регуляции секреции ренина.
Синтез ренина включает ряд этапов, начинающихся с трансляции рениновой мРНК в препроренин. N-концевая последовательность препроренина (из 23 аминокислотных остатков) направляет белок в эндоплазматический ретикулум, где отщепляется с образованием проренина. Проренин гликозилируется в аппарате Гольджи и либо прямо секретируется в кровь нерегулируемым образом, либо упаковывается в секреторные гранулы, где превращается в активный ренин. Хотя на долю проренина приходится целых 50-90% общего ренина крови, его физиологическая роль остается неясной. Вне почек он практически не превращается в ренин. При микроангиопатических осложнениях сахарного диабета 1-го типа уровень проренина в плазме несколько повышается.

Выделение ренина из секреторных гранул в кровь контролируется тремя основными механизмами:

  1. барорецепторами стенок приносящих артериол, которые стимулируются при снижении перфузионного давления; этот эффект опосредован, вероятно, местной продукцией простагландинов;
  2. рецепторами сердца и крупных артерий, которые активируют симпатическую нервную систему, приводя к повышению уровня катехоламинов в крови и прямой нервной стимуляции юкстагломерулярных клеток (через β 1 -адренорецепторы);
  3. клетками плотного пятна, которые стимулируются при снижении концентрации ионов Na + и СГ в канальцевой жидкости, поступающей в этот сегмент нефрона. Главным посредником этого эффекта являются, по-видимому, ионы СГ.

Попав в кровь, ренин выщепляет декапептид ангиотензин I из N-концевой последовательности ангиотензиногена. Затем ангиотензин I под действием АПФ превращается в октапептид ангиотензин II. Концентрация АПФ наиболее высока в легких. Он присутствует также на люминальной мембране эндотелиальных клеток сосудов, в почечных клубочках, головном мозге и других органах. Различные ангиотензиназы, локализованные в большинстве тканей, быстро разрушают ангиотензин II, и его период полужизни в плазме составляет менее 1 минуты.

Ангиотензиноген

Ангиотензиноген (субстрат ренина) представляет собой α 2 -глобулин, секретируемый печенью. Концентрация этого белка (молекулярная масса около 60000) в плазме человека составляет 1 ммоль/л. В норме концентрация ангиотензиногена ниже V макс реакции, катализируемой ренином. Поэтому при увеличении концентрации ангиотензиногена количество образующегося ангиотензина при том же уровне ренина в плазме должно возрастать. При гипертонической болезни содержание ангиотензиногена в плазме повышено, и эта болезнь, по-видимому, сцеплена с вариантом аллеля гена ангиотензиногена. Глюкокортикоиды и эстрогены стимулируют печеночную продукцию ангиотензиногена, что обусловливает повышение артериального давления при приеме пероральных контрацептивов, содержащих эстрогены.
При уменьшении содержания Na + в организме, сопровождающемся повышением уровня ренина в плазме, скорость метаболизма ангиотензиногена резко возрастает. Поскольку концентрация продуктов его распада в таких условиях не меняется, это возрастание, по-видимому, компенсируется повышенной печеночной продукцией ангиотензиногена. Механизм такого повышения остается неясным, хотя известно, что ангиотензин II стимулирует продукцию ангиотензиногена.

Ангиотензинпревращающий фермент

АПФ (дипептидил-карбоксипептидаза) представляет собой гликопротеин с молекулярной массой 130000-160000, который выщепляет дипептиды из многих субстратов. Помимо ангиотензина I, к таким субстратам относятся брадикинин, энкефалины и вещество Р. Ингибиторы АПФ широко используются для предотвращения образования ангиотензина II в крови и, тем самым, блокады его эффектов. Поскольку АПФ действует на целый ряд субстратов, результаты ингибирования этого фермента не всегда сводятся к изменению активности ренин-ангиотензиновой системы. Действительно, в гипотензивном эффекте ингибиторов АПФ может играть роль повышение уровня кининов, которые способствуют высвобождению оксида азота из эндотелия сосудов. Антагонисты брадикинина ослабляют гипотензивный эффект ингибиторов АПФ. Повышение уровня кининов может опосредовать и другой эффект ингибиторов АПФ, а именно - увеличение чувствительности тканей к инсулину и снижение уровня глюкозы в крови у больных сахарным диабетом 2-го типа. Кроме того, накопление кининов может лежать в основе двух из наиболее важных побочных эффектов ингибиторов АПФ: кашля, отека Квинке и анафилаксии.
Превращать ангиотензин I в ангиотензин II, помимо АПФ, могут и сериновые протеазы, называемые химазами. Эти ферменты присутствуют в различных тканях; их активность особенно высока в желудочках сердца. Таким образом, существует и АПФ-независимый механизм образования ангиотензина II.

Ангиотензин II

Подобно другим пептидным гормонам, ангиотензин II связывается с рецепторами, локализованными на плазматической мембране клеток-мишеней. Описаны два класса рецепторов ангиотензина II - AT1 и АТ2; их мРНК выделены и клонированы. Практически все известные сердечно-сосудистые, почечные и надпочечниковые эффекты ангиотензина II реализуются через рецепторы AT1, тогда как рецепторы АТ2 могут опосредовать влияние этого пептида на дифференцировку и рост клеток. Рецепторы обоих классов содержат семь трансмембранных доменов. AT1 сопряжены с G-белком, который активирует фосфолипазу С, усиливая, тем самым, гидролиз фосфоинозитида с образованием инозитолтрифосфата и диацилглицерина. Эти «вторые мессенджеры» запускают каскад внутриклеточных реакций, включающих повышение концентрации кальция в клетках, активацию протеинкиназ и, вероятно, снижение внутриклеточной концентрации цАМФ. Механизм проведения сигнала от рецепторов АТ2 остается неизвестным.
Ангиотензин II является мощным прессорным фактором; сужая артериолы, он увеличивает общее периферическое сопротивление. Вазоконстрикция происходит во всех тканях, включая почки, и играет роль в механизме ауторегуляции почечного кровотока. Кроме того, ангиотензин II увеличивает частоту и силу сердечных сокращений.
Действуя непосредственно на кору надпочечников, ангиотензин II стимулирует секрецию альдостерона, и является наиболее важным регулятором секреции этого гормона. Он играет ключевую роль в регуляции баланса Na + . Например, уменьшение объема внеклеточной жидкости при недостаточном потреблении Na + стимулирует ренин-ангиотензиновую систему. С одной стороны, вазоконстрикторное действие ангиотензина II способствует поддержанию артериального давления в условиях сниженного внеклеточного объема жидкости, а с другой - ангиотензин II стимулирует секрецию альдостерона, вызывая задержку натрия, что способствует сохранению объема плазмы.
При хроническом уменьшении внутрисосудистого объема, характерном для низкого потребления Na + , постоянно повышенный уровень ангиотензина II обусловливает снижение числа рецепторов AT1 в сосудах, и степень вазоконстдэикции оказывается меньше ожидаемой. В отличие от этого, число рецепторов AT1 в клубочковой зоне коры надпочечников при снижении внутрисосудистого объема увеличивается, и секреция альдостерона под действием ангиотензина II возрастает в большей степени. Предполагается, что противоположные влияния хронического снижения внутрисосудистого объема на чувствительность сосудов и надпочечников к ангиотензину II физиологически оправданы: в условиях низкого потребления Na + резкое усиление секреции альдостерона увеличивает реабсорбцию этого иона в почках без значительного повышения артериального давления. В некоторых случаях гипертонической болезни такая «натриевая модуляция» чувствительности надпочечников и сосудов к ангиотензину II нарушается.
Ангиотензин II усиливает реакции периферических сосудов и сердца на симпатические влияния (за счет облегчения секреции норадреналина нервными окончаниями и повышения чувствительности гладкомышечной оболочки сосудов к этому трансмиттеру). Кроме того, под влиянием ангиотензина II возрастает секреция адреналина мозговым веществом надпочечников.
В клинике используют ряд антагонистов ангиотензина II, которые действуют только на AT1-рецепторы, не влияя на эффекты, опосредуемые АТ2-рецепторами. С другой стороны, ингибиторы АПФ снижают активность рецепторов обоих классов. Блокаторы ангиотензиновых рецепторов не влияют на уровень брадикинина. Поскольку ингибиторы АПФ снижают артериальное давление отчасти за счет повышения уровня брадикинина, а ангиотензин II образуется даже при блокаде АПФ, сочетание ингибиторов АПФ с блокаторами ATl может снижать артериальное давление в большей степени, чем каждый из этих препаратов в отдельности.
Блокада образования и периферических эффектов ангиотензина II используется в терапевтических целях. Например, повышение уровня ангиотензина II при застойной сердечной недостаточности с низким сердечным выбросом способствует задержке соли и воды и, вызывая вазоконстрикцию, увеличивает периферическое сосудистое сопротивление, а тем самым, и посленагрузку на сердце. Ингибиторы АПФ или блокаторы ангиотензиновых рецепторов расширяют периферические сосуды, улучшают перфузию тканей и производительность миокарда, а также способствуют выведению соли и воды через почки.

Влияние ангиотензина II на головной мозг

Ангиотензин II - полярный пептид, не проникающий через гематоэнцефалический барьер. Однако он может влиять на мозг, действуя через структуры, прилегающие к мозговым желудочкам и лежащие за пределами гематоэнцефалического барьера. Особое значение в действии ангиотензина II имеют субфорникальный орган, сосудистый орган терминальной пластинки и каудальная часть дна IV желудочка.
Ангиотензин II вызывает сильную жажду. Рецепторы, опосредующие этот эффект, расположены преимущественно в субфорникальном органе. Под влиянием ангиотензина II усиливается также секреция вазопрессина (в основном из-за повышения осмоляльности плазмы). Таким образом, ренин-ангиотензиновая система может играть важную роль в регуляции водного баланса, особенно в условиях гиповолемии.
Ряд моделей патогенеза артериальной гипертонии предполагает образование ангиотензина II непосредственно в мозге. Однако степень повышения артериального давления, обусловленная мозговыми эффектами ангиотензина II, значительно меньше той, которая связана с непосредственным влиянием этого пептида на сосуды. У большинства животных рецепторы, опосредующие мозговые гипертензивные эффекты ангиотензина II, расположены в area postrema. Другие центральные эффекты ангиотензина II включают стимуляцию секреции АКТГ, снижение АРП и усиление тяги к соли, особенно в связи с повышением уровня минералокортикоидов. Значение всех этих (и других) центральных эффектов ангиотензина еще предстоит выяснить.

Локальные ренин-ангиотензионовые системы

Все компоненты ренин-ангиотензиновой системы присутствуют не только в общем кровотоке, но и в различных тканях, и поэтому ангиотензин II может образовываться локально. К таким тканям относятся почки, головной мозг, сердце, яичники, надпочечники, яички и периферические сосуды. В почках ангиотензин II прямо стимулирует ре-абсорбцию Na + в верхних сегментах проксимальных канальцев (отчасти за счет активации контртранспорта Na + /H + на люминальной мембране). Ангиотензин II местного или системного происхождения играет также ключевую роль в поддержании СКФ при гиповолемии и снижении артериального кровотока. Под влиянием ангиотензина II выносящие артериолы сужаются в большей степени, чем приносящие, что приводит к повышению гидравлического давления в капиллярах почечных клубочков и препятствует снижению СКФ при уменьшении перфузии почек.

Ренин-ангиотензиновая система и артериальная гипертония

Гипертоническая болезнь

{module директ4}

Артериальное давление зависит как от минутного объема сердца, так и от периферического сопротивления сосудов. Гипертоническая болезнь обусловлена повышением именно периферического сосудистого сопротивления, которое, в свою очередь, определяется сложным взаимодействием множества системно и местно продуцируемых гормонов и факторов роста, а также нейрогенными влияниями. Однако конкретный фактор (или факторы), лежащий в основе патогенеза гипертонической болезни, до сих пор не установлен. Известные данные об увеличении артериального давления при нарушении перфузии почек и повышении секреции ренина позволяют усматривать роль ренин-ангиотензиновой системы в этиологии гипертонической болезни.
Еще в начале 1970-х годов Лара (Laragh) с сотр. предложили оценивать относительную роль вазоконстрикции и увеличения внутрисосудистого объема в патогенезе гипертонической болезни по АРП. При повышенной АРП ведущим механизмом развития этой болезни считалась вазоконстрикция, а при низкой АРП - увеличение внутрисосудистого объема. Хотя такое представление теоретически оправдано, оно не всегда подтверждается результатами исследования гемодинамики. Кроме того, средства, влияющие на ренин-ангиотензиновую систему (ингибиторы АПФ, блокаторы ангиотензиновых рецепторов), помогают даже при гипертонической болезни с низкой АРП.
Как отмечалось выше, диета с низким содержание Na + увеличивает реакцию надпочечников на ангиотензин II, одновременно снижая чувствительность сосудов к этому пептиду. Нагрузка Na + оказывает противоположное действие. У здорового человека, потребляющего большое количество Na + , изменение реактивности надпочечников и сосудов способствует повышению почечного кровотока и снижению реабсорбции Na + в почках. И то, и другое облегчает выведение избыточного количества Na + из организма. Почти в 50% случаев гипертонической болезни с нормальной или повышенной АРП находят нарушение способности выводить натриевую нагрузку. Предполагается, что основной дефект связан либо с локальной продукцией ангиотензина II, либо с нарушением его рецепторов, вследствие чего колебания в потреблении Na + не меняют реактивности тканей-мишеней. Ингибиторы АПФ, снижая уровень ангиотензина И, восстанавливают реактивность надпочечников и сосудов в таких случаях.
Примерно у 25% больных АРП снижена. Артериальная гипертония с низкой АРП чаще обнаруживается у представителей черной расы и пожилых людей. Предполагается, что в этих случаях артериальное давление особенно чувствительно к соли, и его снижения легче всего добиться с помощью диуретиков и антагонистов кальция. Хотя раньше считали, что ингибиторы АПФ неэффективны при гипертонической болезни с низкой АРП, недавние исследования показывают, что величина АРП не может служить предиктором эффективности лекарственных средств этого класса. Не исключено, что эффективность ингибиторов АПФ в таких случаях связана с повышением уровня брадикинина или с торможением местной продукции ангиотензина II в почках, головном мозге и сосудах. Это подтверждается недавними исследованиями на трансгенных крысах (носителях мышиного гена ренина). У таких крыс наблюдалась тяжелая и часто летальная форма артериальной гипертонии, которую удавалось ослабить ингибиторами АПФ или блокаторами ангиотензиновых рецепторов. Хотя АРП, а также уровни ангиотензина II в плазме и ренина в крови почечной вены у этих животных были сниженными, содержание ренина в надпочечниках и уровень проренина в плазме оказались повышенными, причем адреналэктомия приводила к снижению артериального давления. Таким образом, АРП в системной крови не отражает состояния локальной ренин-ангиотензиновой системы и ее роли в патогенезе артериальной гипертонии.
Недавние молекулярные исследования также подтверждают участие ренин-ангиотензиновой системы в патогенезе гипертонической болезни. У сибсов обнаружено сцепление между аллелем гена ангиотензиногена и гипертонической болезнью. Выявлена корреляция между уровнем ангиотензиногена в плазме и артериальным давлением; при гипертонической болезни концентрация ангиотензиногена повышена. Больше того, если родители страдают гипертонической болезнью, то уровень ангиотензиногена повышен и у их детей с нормальным артериальным давлением.

Реноваскулярная гипертония

Реноваскулярная гипертония - наиболее распространенная причина ренинзависимого повышения артериального давления. По разным данным, она обнаруживается у 1-4% больных с артериальной гипертонией и является наиболее курабельной формой этого заболевания. Среди афроамериканцев патология почечной артерии и реноваскулярная гипертония встречаются реже, чем среди представителей белой расы. Атеросклероз или фиброзно-мышечная гиперплазия стенок почечных артерий приводят к снижению перфузии почек и усилению продукции ренина и ангиотензина II. Артериальное давление повышается, но высокий уровень ангиотензина II подавляет секрецию ренина контрлатеральной почкой. Поэтому общая АРП может оставаться нормальной или возрастать лишь в незначительной степени. Повышение артериального давления может быть связано и с другими анатомическими причинами: инфарктом почек, кистами, гидронефрозом и т. п.
Учитывая относительно невысокую частоту таких случаев, скрининг всех больных с повышенным артериальным давлением на реноваскулярную гипертонию нецелесообразен. Вначале следует убедиться в «неидиопатической» природе артериальной гипертонии у данного больного.

Реноваскулярную гипертонию следует подозревать в следующих случаях:

  1. при тяжелой гипертонии (диастолическое артериальное давление > 120 мм рт. ст.) с прогрессирующей почечной недостаточностью или рефрактерностью к агрессивной медикаментозной терапии;
  2. при быстром нарастании артериального давления или злокачественной гипертонии с ретинопатией III или IV стадии;
  3. при умеренной или тяжелой гипертонии у больных с диффузным атеросклерозом или случайно выявленной асимметрией размеров почек;
  4. при остром повышении уровня креатинина в плазме (вследствие неизвестных причин или на фоне лечения ингибиторами АПФ);
  5. при остром повышении ранее стабильного артериального давления;
  6. при прослушивании систоло-диастолического шума над брюшной аортой;
  7. при развитии гипертонии у людей моложе 20 лет или старше 50 лет;
  8. при умеренной или тяжелой гипертонии у людей с повторными эпизодами отека легких;
  9. при гипокалиемии на фоне нормальной или повышенной АРП в отсутствие диуретической терапии;
  10. при отсутствии артериальной гипертонии в семейном анамнезе.

Острое ухудшение функции почек на фоне лечения ингибиторами АПФ или блокаторами ангиотензиновых рецепторов указывает на двусторонний стеноз почечных артерий. В такой ситуации давление в клубочках обеих почек поддерживается ангиотензином II, сужающим выносящие артериолы, а устранение этого эффекта приводит к снижению внутриклубочкового давления и СКФ.
Стандартным методом диагностики поражения почечных сосудов является ангиография почек. Однако это исследование сопряжено с риском острого некроза канальцев, и поэтому применяют неинвазивные способы визуализации почечных сосудов и фармакологические пробы. К современным методам диагностики реноваскулярной патологии относятся: 1) стимуляционная проба с каптоприлом и определением АРП; 2) ренография с каптоприлом; 3) доплеровское исследование; 4) магнитно-резонансная ангиография (МРА); 5) спиральная КТ.
Само по себе повышение базального уровня ренина в плазме не доказывает наличия реноваскулярной гипертонии, так как он повышен лишь у 50-80% таких больных. В норме ингибитор АПФ каптоприл, блокируя действие ангиотензина II по механизму отрицательной обратной связи, вызывает реактивную гиперренинемию. У больных со стенозом почечной артерии эта реакция усилена, и уровень ренина, определяемый через 1 час после приема каптоприла, оказывается гораздо выше, чем при гипертонической болезни. Чувствительность и специфичность этой пробы составляют соответственно 93-100% и 80-95%. Она менее чувствительна у лиц черной расы, у молодых больных, у больных с почечной недостаточностью или получающих гипотензивную терапию.
Стеноз почечной артерии стимулирует ренин-ангиотензиновую систему ипсилатеральной почки, и ангиотензин II, сужая выносящие артериолы, способствует сохранению внутриклубочкового давления и СКФ. Ингибиторы АПФ (например, каптоприл) снижают продукцию ангиотензина II и, тем самым, понижают давление в клубочках и СКФ. Изотопное сканирование почек до и после приема каптоприла позволяет выявить одностороннюю ишемию почки. Если максимальное накопление изотопа в одной почке снижено или замедлено по сравнению с другой, то это указывает на поражение почечных сосудов. Чувствительность данной пробы у больных группы высокого риска по стенозу почечной артерии достигает 90%.
Недавно для диагностики стеноза почечных артерий начали использовать сочетание дуплексного УЗИ почек с измерением артериального почечного кровотока (доплеровским исследованием). Специфичность такого комплексного метода превышает 90%, но зависит от опыта исследователя. Скопление газов в кишечнике, ожирение, недавно перенесенные операции или присутствие добавочной почечной артерии затрудняют визуализацию стеноза. Данные о скорости кровотока, полученные при доплеровском исследовании, позволяют рассчитать сопротивление в почечной артерии и решить, кому из больных может помочь реваскуляризация.
В отличие от старых наблюдений, в которых чувствительность МРА оценивалась в 92-97%, современные исследования свидетельствуют лишь о 62% чувствительности и 84% специфичности этого метода. Чувствительность МРА особенно низка при стенозе почечной артерии, связанном с фиброзно-мышечной дисплазией. Самым чувствительным методом обнаружения стеноза почечной артерии является, по-видимому, спиральная КТ; чувствительность и специфичность этого метода в отдельных исследованиях достигала соответственно 98% и 94%.
В связи с отсутствием достаточно чувствительных неинвазивных методов, которые позволяли бы полностью исключить стеноз почечной артерии, клиницистам нередко приходится решать, когда и как исследовать состояние почечного кровотока у больных с артериальной гипертонией. Манн (Mann) и Пиккеринг (Pickering), исходя из индекса клинического подозрения, предложили практический алгоритм отбора больных для диагностики реноваскулярной гипертензии и ангиографии почек. У больных группы умеренного риска целесообразно начинать с доплеровского исследования с расчетом сопротивления почечных сосудов.
Больным с реноваскулярной гипертонией показана анатомическая коррекция почечных сосудов. Если при артериографии обнаруживается сужение одной или обеих почечных артерий больше чем на 75%, это указывает на возможность почечного генеза артериальной гипертонии. О гемодинамическом значении стеноза можно судить, определяя уровень ренина в крови почечной вены на стороне стеноза и сопоставляя его с уровнем ренина в крови, оттекающей от контрлатеральной почки. Значимым обычно считают отношение этих уровней больше 1,5, хотя и меньшее отношение не исключает диагноз. Прием ингибитора АПФ до катетеризации почечных вен может повысить чувствительность этой пробы. Хирургическое лечение нормализует артериальное давление более чем у 90% больных со стенозом почечной артерии и односторонним повышением секреции ренина. Однако ангиопластика или хирургическая операция эффективны и у многих больных с отношением уровней ренина в обеих почечных венах меньше 1,5. Поэтому определение такого отношения при значительном стенозе почечной артерии больше не считается необходимым. Этот показатель может быть полезным при двустороннем стенозе или стенозе сегментарных почечных артерий, так как позволяет установить, какая почка или ее сегмент является источником повышенной продукции ренина.
Предвидеть эффективность реваскуляризации почки помогает расчет индекса сопротивления почечной артерии [(1 - скорость кровотока в конце диастолы)/(максимальная скорость кровотока в систолу) х 100] по данным дуплексного доплеровского исследования. При индексе сопротивления больше 80 хирургическое вмешательство, как правило, оказывалось безуспешным. Примерно у 80% больных функция почки продолжала ухудшаться, а существенное снижение артериального давления наблюдалось только у одного больного. Напротив, при индексе сопротивления меньше 80 реваскуляризация почки приводила к снижению артериального давления больше чем у 90% больных. Высокий индекс сопротивления свидетельствует, вероятно, о поражении внутрипочечных сосудов и гломеру-лосклерозе. Поэтому восстановление проходимости главных почечных артерий в таких случаях не снижает артериального давления и не улучшает функции почек. Недавние исследования подтвердили отсутствие снижения артериального давления после реваскуляризации у больных с выраженным стенозом почечных артерий (> 70%) и сниженной функцией почек (СКФ < 50 мл/мин). Однако СКФ после реваскуляризации несколько увеличивалась.
Анатомическую коррекцию почечных артерий производят либо путем чрескожной ангиопластики (со стентированием или без него), либо прямым хирургическим вмешательством. Вопрос об оптимальном методе лечения остается открытым, так как рандомизированных исследований, в которых сравнивались бы результаты ангиопластики (со стентированием или без него), хирургической операции и медикаментозной терапии, не проводилось. При фиброзно-мышечной дисплазии методом выбора является все же ангиопластика, которая, по разным данным, излечивает 50-85% больных. В 30-35% случаев ангиопластика улучшает состояние больных, и только менее чем в 15% случаев оказывается неэффективной. При атеросклеротическом стенозе почечных артерий выбор метода лечения гораздо более труден. Успех вмешательства зависит от места сужения артерий. В целом при поражении главных почечных артерий лучшие результаты дает ангиопластика, а при сужении их устьев требуется стентирование. Одна только ангиопластика при атеросклерозе почечных артерий устраняет артериальную гипертонию у 8-20% больных, приводит к снижению давления в 50-60% случаев и оказывается неэффективной в 20-30% случаев. Кроме того, в течение 2 лет после такой процедуры у 8-30% больных наблюдается рестеноз почечной артерии. Еще менее успешна ангиопластика при двустороннем поражении почечных артерий или хронической артериальной гипертонии. Для повышения эффективности ангиопластики используют стенты. По данным ряда неконтролируемых исследований, снижение артериального давления в таких случаях наблюдается у 65-88% больных, а рестеноз развивается лишь у 11-14% из них. При проведении реваскуляризации почек необходимо учитывать риски атероэмболии (связанной с ангиографией), ухудшения почечной функции и нефротоксичности (вследствие применения йодированных рентгено-контрастных веществ).
Другая важная проблема заключается в оценке возможности улучшения функции почек после вмешательства, особенно при двустороннем стенозе почечных артерий со снижением почечного кровотока и СКФ, но обсуждение этой проблемы выходит за рамки задач данной главы. Лечение больных с атеросклеротическим стенозом почечной артерии требует принятия общих мер борьбы с атеросклерозом - отказа от курения, достижения целевых значений артериального давления и устранения нарушений липидного обмена. Недавно показано, что статины не только замедляют, но и способствуют регрессу атеросклеростических повреждений.
Хирургическая коррекция стеноза почечной артерии обычно производится путем эндартерэктомии или шунтирования. Эти методы, как правило, эффективнее ангиопластики, но операция может сопровождаться и большей смертностью, особенно у пожилых больных с сопутствующими сердечно-сосудистыми заболеваниями. В большинстве медицинских центров реваскуляризацию почек предпочитают производить методом чрескожной ангиопластики с установкой стентов, особенно при стенозах устьев почечных артерий. Хирургическую реваскуляризацию проводят лишь при неэффективности ангиопластики или при необходимости одновременной операции на аорте.
В случаях общего плохого состояния больного или сомнений в диагнозе используют медикаментозное лечение. Недавние рандомизированные контролируемые исследования показали, что рева-скуляризация почек у больных с подозрением на реноваскулярную гипертонию, получающих консервативное медикаментозное лечение, не всегда дает желаемые результаты. Особенно эффективными являются ингибиторы АПФ и селективные антагонисты AT1-рецепторов, хотя, как уже упоминалось, при двустороннем стенозе почечных артерий они могут снижать сопротивление выносящих клубоч-ковых артериол и, тем самым, ухудшать функцию почек. Применяют также β-адреноблокаторы и антагонисты кальция.

Ренинсекретирующие опухоли

Ренинсекретирующие опухоли встречаются крайне редко. Обычно они представляют собой гемангиоперицитомы, содержащие элементы юкстагломерулярных клеток. Эти опухоли выявляются при КТ и характеризуются повышенным уровнем ренина в венозной крови пораженной почки. Описаны и другие ренинсекретирующие новообразования (например, опухоль Вильмса, опухоли легких), сопровождающиеся вторичным альдостеронизмом с артериальной гипертонией и гипокалиемией.

Ускоренная артериальная гипертония

Ускоренная артериальная гипертония характеризуется острым и значительным повышением диастолического давления. В ее основе лежит прогрессирующий артериосклероз. Концентрации ренина и альдостерона в плазме могут достигать очень высоких значений. Считается, что гиперренинемия и ускоренное развитие артериальной гипертонии обусловлены спазмами сосудов и обширным склерозом коркового вещества почек. Интенсивная гипотензивная терапия обычно устраняет спазмы сосудов и со временем приводит к снижению артериального давления.

Эстрогенная терапия

Заместительная эстрогенная терапия или прием пероральных контрацептивов могут увеличивать концентрацию альдостерона в сыворотке. Это обусловлено повышением продукции ангиотензиногена и, вероятно, ангиотензина II. Вторично возрастает и уровень альдостерона, но гипокалиемия при приеме эстрогенов развивается редко.

Ренин-ангиотензин-альдостероновая система является комплексом ферментов и гормонов, которые поддерживают гомеостаз. Регулирует равновесие соли и воды в организме и уровень артериального давления.

Механизм работы

Физиология ренин-ангиотензин-альдостероновой системы берет начало на границе коркового и где имеются юкстагломерулярные клетки, вырабатывающие пептидазу (фермент) - ренин.

Ренин является гормоном и начальным звеном РААС.

Ситуации, при которых ренин выделяется в кровь

Существует несколько состояний, при которых идет попадание гормона в кровеносное русло:

  1. Уменьшение кровотока в ткани почек - при воспалительных процессах (гломерулонефрит др.), при диабетической нефропатии, опухолях почек.
  2. Снижение (при кровотечении, многократной рвоте, поносах, ожогах).
  3. Падение уровня артериального давления. В артериях почек имеются барорецепторы, которые реагируют на изменение системного давления.
  4. Изменение концентрации ионов натрия. В организме человека имеются скопления клеток, которые отвечают на изменение ионного состава крови стимуляцией выработки ренина. Соль теряется при обильном потоотделении, а также при рвоте.
  5. Стрессы, психоэмоциональные нагрузки. почки иннервируется симпатическими нервами, которые активируются при негативных психологических влияниях.

В крови ренин встречается с белком - ангиотензиногеном, который вырабатывается клетками печени и забирает у него фрагмент. Образуется ангиотензин I, который является источником воздействия для ангиотензинпревращающего фермента (АПФ). В итоге получается ангиотензин II, который служит вторым звеном и является мощным вазоконстриктором артериальной системы (суживает сосуды).

Эффекты ангиотензина II

Цель: повысить артериальное давление.

  1. Способствует синтезу альдостерона в клубочковой зоне коры надпочечников.
  2. Воздействует на центр голода и жажды в головном мозге, вызывая "солевой" аппетит. Поведение человека становится мотивированным на поиск воды и соленой пищи.
  3. Влияет на симпатические нервы, способствуя высвобождению норадреналина, который тоже является вазоконстриктором, но менее слабым по действию.
  4. Воздействует на сосуды, вызывая их спазм.
  5. Участвует в развитии хронической сердечной недостаточности: способствует пролиферации, фиброзу сосудов и миокарда.
  6. Снижает
  7. Тормозит выработку брадикинина.

Альдостерон - третий компонент, который действует на конечные канальцы почек и способствует выделению из организма ионов калия, магния и обратному всасыванию (реабсорбции) натрия, хлора, воды. Благодаря этому возрастает объем циркулирующей жидкости, поднимаются цифры артериального давления, и усиливается почечный кровоток. Рецепторы к альдостерону имеются не только в почках, но и в сердце, сосудах.

Когда организм достигает гомеостаза, начинают вырабатываться вазодилататоры (вещества, расширяющие сосуды) - брадикинин и каллидин. А компоненты РААС разрушаются в печени.

Схема ренин-ангиотензин-альдостероновой системы

Как любая система, РААС может давать сбой. Патофизиология ренин-ангиотензин-альдостероновой системы проявляет при следующих состояниях:

  1. Поражение коры надпочечников (инфекция, кровоизлияние и травма). Развивается состояние нехватки альдостерона, и организм начинает терять натрий, хлор и воду, что приводит к уменьшению объема циркулирующей жидкости и снижению артериального давления. Состояние компенсируют введением солевых растворов и стимуляторов рецепторов к альдостерону.
  2. Опухоль коры надпочечников приводит к избытку альдостерона, который реализует свои эффекты и повышает давление. Также активизируются процессы деления клеток, возникает гипертрофия и фиброз миокарда, и развивается сердечная недостаточность.
  3. Патология печени, когда нарушается разрушение альдостерона и происходит его накопление. Патология лечится блокаторами рецепторов к альдостерону.
  4. Воспалительные заболевания почек.

Значение РААС для жизни и медицины

Ренин-ангиотензин-альдостероновая система и ее роль в организме:

  • принимает активное участие в поддержании нормального показателя артериального давления;
  • обеспечивает равновесие воды и солей в организме;
  • поддерживает кислотно-основной баланс крови.

Система может давать сбой. Воздействуя на ее компоненты, можно бороться с гипертонической болезнью. Механизм возникновения почечной гипертензии также тесно связан с РААС.

Высокоэффективные группы препаратов, которые синтезированы благодаря изучению РААС

  1. "Прилы". АПФ. Ангиотензин I не переходит в ангиотензин II. Нет вазоконстрикции - нет повышения артериального давления. Препараты: Амприлан, Эналаприл, Каптоприл и др. Ингибиторы АПФ значительно улучшают качество жизни больных сахарным диабетом, обеспечивая профилактику почечной недостаточности. Препараты принимают в минимальной дозировке, которая не вызывает снижения давления, а лишь улучшает местный кровоток и клубочковую фильтрацию. Медикаменты незаменимы при почечной недостаточности, хронической болезни сердца и служат одним из средств лечения гипертонической болезни (если нет противопоказаний).
  2. "Сартаны". Блокаторы рецепторов к ангиотензину II. Сосуды не реагируют на него и не сокращаются. Препараты: Лозартан, Эпросартан и др.

Противоположной ренин-ангиотензин-альдостероновой системе является кининовая. Поэтому блокирование РААС приводит к повышению в крови компонентов кининовой системы (брадикинин и др.), что благоприятно влияет на ткани сердца и стенки сосудов. Миокард не испытывает голодания, потому как брадикинин усиливает местный кровоток, стимулирует выработку естественных вазодилататоров в клетках мозгового вещества почек и микроцитах собирательных трубочек - простагландинов Е и И2. Они нейтрализуют прессорное действие ангиотензина II. Сосуды не спазмированы, что обеспечивает адекватное кровоснабжение органов и тканей организма, кровь не задерживается и снижается формирование атеросклеротических бляшек и тромбов. Кинины благоприятно воздействуют на почки, увеличивают диурез (суточное выделение мочи).


Для цитирования: Леонова М.В. Новые и перспективные лекарственные препараты, блокирующие ренин-ангиотензин-альдостероновую систему // РМЖ. Медицинское обозрение. 2013. №17. С. 886

Роль ренин-ангиотензин-альдостероновой системы (РААС) в развитии артериальной гипертонии (АГ) и других сердечно-сосудистых заболеваний в настоящее время считается главенствующей. В кардиоваскулярном континууме АГ находится среди факторов риска, а главным патофизиологическим механизмом поражения сердечно-сосудистой системы является ангиотензин II (АТII). АТII является ключевым компонентом РААС - эффектором, который реализует вазоконстрикцию, задержку натрия, активацию симпатической нервной системы, клеточную пролиферацию и гипертрофию, развитие оксидативного стресса и процессов воспаления сосудистой стенки.

В настоящее время уже получили развитие и широкое клиническое применение два класса препаратов, блокирующих РААС, - ингибиторы АПФ и блокаторы рецепторов АТII. Фармакологические и клинические эффекты этих классов имеют отличия. АПФ является пептидазой из группы цинк-металлопротеиназ, которая метаболизирует АТI, АТ1-7, брадикинин, субстанцию Р и многие другие пептиды . Механизм действия ингибиторов АПФ главным образом связан с предотвращением образования АТII, что способствует вазодилатации, натрийурезу и устраняет провоспалительный, пролиферативный и другие эффекты АТII. Кроме того, ингибиторы АПФ препятствуют деградации брадикинина и повышают его уровень. Брадикинин - мощный вазодилататор, он потенцирует натрийурез, а главное - обладает кардиопротективным (предотвращает гипертрофию, уменьшает ишемическое повреждение миокарда, улучшает коронарное кровоснабжение) и вазопротективным действием, улучшая эндотелиальную функцию. Вместе с тем, высокий уровень брадикинина - причина развития ангионевротического отека, что является одним из серьезных недостатков ингибиторов АПФ, которые значительно повышают уровень кининов.
Ингибиторам АПФ не всегда удается полностью блокировать образование АТII в тканях. В настоящее время установлено, что в его превращении в тканях могут участвовать и другие ферменты, не связанные с АПФ, прежде всего эндопептидазы, на которые действие ингибиторов АПФ не распространяется. В результате ингибиторы АПФ не могут полностью устранить эффекты АТII, что может быть причиной их недостаточной эффективности.
Решению этой проблемы способствовало открытие рецепторов АТII и первого класса препаратов, селективно блокирующих АТ1-рецепторы. Через АТ1-рецепторы реализуются неблагоприятные эффекты АТII: вазоконстрикция, секреция альдостерона, вазопрессина, норадреналина, задержка жидкости, пролиферация гладкомышечных клеток и кардиомиоцитов, активация САС, а также механизм отрицательной «обратной связи» - образование ренина. АТ2-рецепторы выполняют «полезные» функции, такие как вазодилатация, процессы репарации и регенерации, антипролиферативное действие, дифференцировка и развитие эмбриональных тканей. Клинические эффекты блокаторов рецепторов АТII опосредованы через устранение «вредных» эффектов АТII на уровне АТ1-рецепторов, что обеспечивает более полное блокирование неблагоприятных эффектов АТII и усиление влияния АТII на АТ2-рецепторы, что дополняет вазодилатирующий и антипролиферативный эффекты. Блокаторы рецепторов АТII обладают специфичным действием на РААС, не вмешиваясь в кининовую систему. Отсутствие влияния на активность кининовой системы, с одной стороны, уменьшает выраженность нежелательных эффектов (кашель, ангионевротический отек), но, с другой, лишает блокаторы рецепторов АТII важного антиишемического и вазопротективного действия, что отличает их от ингибиторов АПФ. По этой причине показания к применению блокаторов рецепторов АТII в большинстве повторяют показания к назначению ингибиторов АПФ, делают их альтернативными препаратами.
Несмотря на внедрение блокаторов РААС в широкую практику лечения АГ, проблемы улучшения исходов и прогноза остаются. К ним относятся: возможность улучшения контроля АД в популяции, эффективность лечения резистентной АГ, возможности дальнейшего снижения риска сердечно-сосудистых заболеваний.
Поиск новых путей воздействия на РААС активно продолжается; изучаются другие тесно взаимодействующие системы и создаются препараты с множественным механизмом действия, такие как ингибиторы АПФ и нейтральной эндопептидазы (НЭП), ингибиторы эндотелин-превращающего фермента (ЭПФ) и НЭП, ингибиторы АПФ/НЭП/ЭПФ .
Ингибиторы вазопептидаз
К вазопептидазам кроме известного АПФ относятся еще 2 других цинк-металлопротеиназы - неприлизин (нейтральная эндопептидаза, НЭП) и эндотелин-превращающий фермент, которые также могут быть мишенями для фармакологического воздействия.
Неприлизин - фермент, вырабатываемый эндотелием сосудов и участвующий в деградации натрийуретического пептида, а также брадикинина.
Система натрийуретического пептида представлена тремя разными изоформами: предсердным натрий-уретическим пептидом (А-тип), мозговым натрийуретическим пептидом (В-тип), которые синтезируются в предсердии и миокарде, и эндотелиальным С-пептидом, которые по своим биологическим функциям являются эндогенными ингибиторами РААС и эндотелина-1 (табл. 1) . Кардиоваскулярные и ренальные эффекты натрийуретического пептида заключаются в снижении АД через влияние на сосудистый тонус и водноэлектролитный баланс, а также в антипролиферативном и антифибротическом действии на органы-мишени. По самым последним данным, система натрийуретического пептида участвует в метаболической регуляции: окислении липидов, образовании и дифференцировке адипоцитов, активации адипонектина, секреции инсулина и толерантности к углеводам, что может обеспечивать защиту от развития метаболического синдрома .
К настоящему времени стало известно, что развитие сердечно-сосудистых заболеваний ассоциируется с дизрегуляцией системы натрийуретического пептида. Так, при АГ наблюдается дефицит натрийуретического пептида, приводящий к солечувствительности и нарушению натрийуреза; при хронической сердечной недостаточности (ХСН) на фоне дефицита наблюдается аномалия функционирования гормонов системы натрийуретического пептида .
Поэтому для потенцирования системы натрийуретического пептида с целью достижения дополнительного гипотензивного и протективных кардиоренальных эффектов возможно применение ингибиторов НЭП. Ингибирование неприлизина приводит к потенцированию натрийуретического, диуретического и вазодилатирующего эффектов эндогенного натрийуретического пептида и в результате - к снижению АД. Однако НЭП участвует в деградации и других вазоактивных пептидов, в частности АТI, АТII и эндотелина-1. Поэтому баланс эффектов воздействия на сосудистый тонус ингибиторов НЭП вариабельный и зависит от преобладания констрикторных и дилатирующих влияний. При длительном применении антигипертензивное действие ингибиторов неприлизина выражено слабо вследствие компенсаторной активации образования АТII и эндотелина-1 .
В этой связи сочетание эффектов ингибиторов АПФ и ингибиторов НЭП может существенно потенцировать гемодинамические и антипролиферативные эффекты в результате комплементарного механизма действия, что привело к созданию препаратов с двойным механизмом действия, объединенных названием - ингибиторы вазопептидаз (табл. 2, рис. 1) .
Известные ингибиторы вазопептидаз характеризуются разной степенью селективности к НЭП/АПФ: омапатрилат - 8,9:0,5; фазидоприлат - 5,1:9,8; сампатрилат - 8,0:1,2 . В результате ингибиторы вазопептидаз получили гораздо большие возможности в достижении гипотензивного эффекта вне зависимости от активности РААС и уровня задержки натрия и в органопротекции (регресс гипертрофии, альбуминурии, жесткости сосудов). Наиболее изученным в клинических исследованиях был омапатрилат, который показал более высокую гипотензивную эффективность в сравнении с ингибиторами АПФ, а у пациентов с ХСН приводил к увеличению фракции выброса и улучшению клинических исходов (исследования IMPRESS, OVERTURE), но без преимуществ перед ингибиторами АПФ .
Однако в крупных клинических исследованиях с применением омапатрилата была установлена более высокая частота развития ангионевротического отека в сравнении с ингибиторами АПФ. Известно, что частота развития ангионевротического отека при использовании ингибиторов АПФ составляет от 0,1 до 0,5% в популяции, из них 20% случаев являются жизнеугрожающими, что связано с многократным повышением концентраций брадикинина и его метаболитов . Результаты крупного многоцентрового исследования OCTAVE (n=25 302), которое было специально спланировано для изучения частоты развития ангионевротического отека, показало, что частота развития этого побочного эффекта на фоне лечения омапатрилатом превышает таковую в группе эналаприла - 2,17% против 0,68% (относительный риск 3,4) . Это объяснялось усилением влияния на уровень кининов при синергичном ингибировании АПФ и НЭП, связанным с ингибированием аминопептидазы Р, участвующей в деградации брадикинина .
Новый двойной ингибитор вазопептидаз, блокирующий АПФ/НЭП, - илепатрил, который имеет более высокую аффинность к АПФ в сравнении с НЭП . При изучении фармакодинамических эффектов илепатрила по влиянию на активность РААС и натрийуретического пептида у здоровых добровольцев было установлено, что препарат дозозависимо (в дозах 5 и 25 мг) и значимо (более 88%) подавляет АПФ в плазме крови продолжительностью более 48 ч вне зависимости от солечувствительности. Одновременно препарат значимо повышал активность ренина плазмы в течение 48 ч и уменьшал уровень альдостерона . Эти результаты показали выраженное и более продолжительное подавление РААС в отличие от ингибитора АПФ рамиприла в дозе 10 мг, что объяснялось более значимым тканевым действием илепатрила на АПФ и большей аффинностью к АПФ, и сопоставимую степень блокады РААС в сравнении с комбинацией 150 мг ирбесартана + 10 мг рамиприла. В отличие от действия на РААС, эффект илепатрила на натрийуретический пептид проявлялся кратковременным увеличением уровня его экскреции в период 4-8 ч после приема дозы 25 мг, что свидетельствует о меньшей и слабой аффинности к НЭП и отличает его от омапатрилата. Причем по уровню экскреции электролитов дополнительного натрийуретического действия в сравнении с рамиприлом или ирбесартаном у препарата нет, как впрочем, и у других ингибиторов вазопептидаз. Максимальное гипотензивное действие развивается через 6-12 ч после приема препарата, и снижение среднего АД составляет 5±5 и 10±4 мм рт.ст. при низкой и высокой солечувствительности соответственно . По фармакокинетическим характеристикам илепатрил представляет собой пролекарство с активным метаболитом, который быстро образуется с достижением максимальной концентрации через 1-1,5 ч и медленно элиминирует. В настоящее время проводятся клинические исследования III фазы.
Альтернативный путь к двойному подавлению РААС и НЭП представлен сочетанием блокады рецепторов АТII и НЭП (рис. 2) . Блокаторы рецепторов АТII не влияют на метаболизм кининов в отличие от ингибиторов АПФ, поэтому потенциально имеют меньший риск развития ангионевротических осложнений. В настоящее время проходит фазу III клинических исследований первый препарат - блокатор рецепторов АТII с эффектом ингибирования НЭП в соотношении 1:1 - LCZ696. Объединенная молекула препарата содержит валсартан и ингибитор НЭП (AHU377) в форме пролекарства . В крупном исследовании у больных с АГ (n=1328) препарат LCZ696 в дозах 200-400 мг показал преимущество в гипотензивном эффекте перед валсартаном в дозах 160-320 мг в виде дополнительного снижения АД на 5/3 и 6/3 мм рт.ст. . Гипотензивный эффект LCZ696 сопровождался более выраженным снижением пульсового АД: на 2,25 и 3,32 мм рт.ст. соответственно в дозах 200 и 400 мг, что в настоящее время рассматривается как положительный прогностический фактор по влиянию на жесткость сосудистой стенки и сердечно-сосудистые исходы. При этом изучение нейрогуморальных биомаркеров на фоне лечения LCZ696 показало увеличение уровня натрийуретического пептида при сопоставимой степени увеличения уровня ренина и альдостерона в сравнении с валсартаном. Переносимость у больных с АГ была хорошей, и случаев ангионевротического отека не было отмечено. В настоящее время завершено исследование PARAMOUMT у 685 пациентов с ХСН и ненарушенной ФВ . Результаты исследования показали, что LCZ696 быстрее и выраженнее снижает уровень NT-proBNP (первичная конечная точка - маркер повышения активности натрий-уретического пептида и неблагоприятного прогноза при ХСН) в сравнении с валсартаном, а также уменьшает размеры левого предсердия, что свидетельствует о регрессе его ремоделирования . Исследование у пациентов с ХСН и сниженной ФВ продолжается в настоящее время (исследование PARADIGM-HF).
Ингибиторы системы эндотелина
Система эндотелина играет важную роль в регуляции сосудистого тонуса и регионального кровотока. Среди трех известных изоформ эндотелин-1 является наиболее активным. Кроме известных вазоконстрикторных эффектов эндотелин стимулирует пролиферацию и синтез межклеточного матрикса, а также вследствие прямого воздействия на тонус почечных сосудов участвует в регуляции водно-электролитного гомеостаза. Эффекты эндотелина реализуются через взаимодействие со специфическими рецепторами А-типа и В-типа, функции которых взаимопротивоположны: через А-тип рецепторов происходит вазоконстрикция, а через В-тип - вазодилатация . В последние годы установлено, что рецепторы В-типа играют большую роль в клиренсе эндотелина-1, т.е. при блокаде этих рецепторов нарушается рецепторзависимый клиренс эндотелина-1 и увеличивается его концентрация . Кроме того, рецепторы В-типа участвуют в регуляции почечных эффектов эндотелина-1 и поддержании водно-электролитного гомеостаза, что имеет важное значение.
В настоящее время роль эндотелина доказана в развитии ряда заболеваний, в т.ч. АГ, ХСН, легочной гипертензии, хронических заболеваний почек; показана тесная связь между уровнем эндотелина и метаболическим синдромом, дисфункцией эндотелия и атерогенезом. С 1990-х гг. ведется поиск антагонистов рецепторов эндотелина, пригодных для клинического использования; уже известно 10 препаратов («сентаны») с разной степенью селективности к А/B-типу рецепторов . Первый неселективный антагонист рецепторов эндотелина - бозентан - в клиническом исследовании у больных с АГ показал гипотензивную эффективность, сопоставимую с таковой ингибитора АПФ эналаприла . Дальнейшие исследования эффективности применения антагонистов эндотелина при АГ показали их клиническую значимость в лечении резистентной АГ и при высоком сердечно-сосудистом риске. Эти данные были получены в двух крупных клинических исследованиях DORADO (n=379) и DORADO-АС (n=849), в которых пациентам с резистентной АГ добавлялся дарусентан к тройной комбинированной терапии . В исследовании DORADO у пациентов резистентная АГ сочеталась с хронической болезнью почек и протеинурией, в результате добавления дарусентана наблюдалось не только значительное снижение АД, но и уменьшение экскреции белка. Антипротеинурический эффект антагонистов рецепторов эндотелина был в последующем подтвержден в исследовании у пациентов с диабетической нефропатией при использовании авосентана . Однако в исследовании DORADO-АС преимуществ в дополнительном снижении АД перед препаратами сравнения и плацебо не было выявлено, что послужило поводом к прекращению дальнейших исследований. Кроме того, в 4 крупных исследованиях антагонистов эндотелина (бозентана, дарусентана, энрасентана) у пациентов с ХСН были получены противоречивые результаты, что объяснялось увеличением концентрации эндотелина-1 . Дальнейшее изучение антагонистов рецепторов эндотелина было приостановлено ввиду нежелательных эффектов, связанных с задержкой жидкости (периферические отеки, перегрузка объемом). Развитие этих эффектов связывают с воздействием антагонистов эндотелина на В-тип рецепторов, что изменило поиск препаратов, влияющих на систему эндотелина через другие пути; а антагонисты рецепторов эндотелина в настоящее время имеют только одно показание - лечение легочной гипертензии.
С учетом высокой значимости системы эндотелина в регуляции сосудистого тонуса ведется поиск другого механизма воздействия через вазопептидазу - ЭПФ, участвующий в образовании активного эндотелина-1 (рис. 3) . Блокирование ЭПФ и сочетание с ингибированием НЭП позволяют эффективно подавлять образование эндотелина-1 и потенцировать эффекты натрий-уретического пептида. Преимущества двойного механизма действия заключаются, с одной стороны, в предупреждении недостатков ингибиторов НЭП, связанных с возможной вазоконстрикцией, опосредованной активацией эндотелина, с другой, натрийуретическая активность ингибиторов НЭП позволяет компенсировать задержку жидкости, связанную с неселективной блокадой эндотелиновых рецепторов. Даглутрил является двойным ингибитором НЭП и ЭПФ, который находится во II фазе клинических исследований . В исследованиях показаны выраженные кардиопротективные эффекты препарата благодаря уменьшению ремоделирования сердца и сосудов, регрессу гипертрофии и фиброза.
Прямые ингибиторы ренина
Известно, что ингибиторы АПФ и блокаторы рецепторов АТII по механизму обратной связи повышают активность ренина, что является причиной ускользания эффективности блокаторов РААС. Ренин представляет собой самый первый этап каскада РААС; он вырабатывается юкстагломерулярными клетками почек. Ренин через ангиотензиноген способствует образованию АТII, вазоконстрикции и секреции альдостерона, а также регулирует механизмы обратной связи. Поэтому ингибирование ренина позволяет достичь более полной блокады системы РААС. Поиск ингибиторов ренина ведется с 1970-х гг.; долгое время не удавалось получить пер-оральную форму ингибиторов ренина ввиду их низкой биодоступности в ЖКТ (менее 2%). Первый прямой ингибитор ренина, пригодный для перорального применения, - алискирен - был зарегистрирован в 2007 г. Алискирен имеет низкую биодоступность (2,6%), большой период полувыведения (24-40 ч), внепочечный путь элиминации . Фармакодинамика алискирена связана с 80% уменьшением уровня АТII. В клинических исследованиях у пациентов с АГ алискирен в дозах 150-300 мг/сут приводил к снижению САД на 8,7-13 и 14,1-15,8 мм рт.ст. соответственно и ДАД - на 7,8-10,3 и 10,3-12,3 мм рт.ст. . Гипотензивный эффект алискирена наблюдался в разных подгруппах пациентов, включая больных с метаболическим синдромом, ожирением; по выраженности он был сопоставим с эффектом ингибиторов АПФ, блокаторов рецепторов АТII, а также отмечен аддитивный эффект в комбинации с валсартаном, гидрохлоротиазидом и амлодипином. В ряде клинических исследований были показаны органопротективные эффекты препарата: антипротеинурический эффект у пациентов с диабетической нефропатией (исследование AVOID, n=599) , регресс гипертрофии левого желудочка у пациентов с АГ (исследование ALLAY, n=465) . Так, в исследовании AVOID после 3-месячного лечения лозартаном в дозе 100 мг/сут и достижения целевого уровня АД (<130/80 мм рт.ст.) при компенсированном уровне гликемии (гликированный гемоглобин 8%) больных рандомизировали к приему алискирена в дозах 150-300 мг/сут или плацебо. Отмечено достоверное снижение индекса альбумин/креатинин в моче (первичная конечная точка) на 11% через 3 мес. и на 20% - через 6 мес. в сравнении с группой плацебо. В ночное время экскреция альбумина на фоне приема алискирена снизилась на 18%, а доля пациентов со снижением экскреции альбумина на 50% и более была вдвое большей (24,7% пациентов в группе алискирена против 12,5% в группе плацебо) . Причем нефропротективный эффект алискирена не был связан со снижением АД. Одним из объяснений выявленного нефропротективного эффекта у алискирена авторы считают полученные ранее в экспериментальных исследованиях на моделях диабета данные о способности препарата снижать количество рениновых и прорениновых рецепторов в почках, а также уменьшать профибротические процессы и апоптоз подоцитов, что обеспечивает более выраженный эффект в сравнении с эффектом ингибиторов АПФ . В исследовании ALLAY у пациентов с АГ и увеличением толщины миокарда ЛЖ (более 1,3 см по данным ЭхоКГ) применение алискирена ассоциировалось с одинаковой степенью регресса ИММЛЖ в сравнении с лозартаном и комбинацией алискирена с лозартаном: −5,7±10,6 , −5,4±10,8, −7,9±9,6 г/м2 соответственно. У части пациентов (n=136) проводилось изучение динамики нейрогормонов РААС, и было выявлено достоверное и значительное снижение уровня альдостерона и активности ренина плазмы на фоне применения алискирена или комбинации алискирена с лозартаном, тогда как на фоне применения монотерапии лозартаном эффект влияния на альдостерон отсутствовал, а на активность ренина - был противоположным, что объясняет значимость подавления альдостерона в достижении регресса ГЛЖ.
Кроме того, проводится серия клинических исследований алискирена при лечении других сердечно-сосудистых заболеваний с оценкой влияния на прогноз больных: исследования ALOFT (n=320), ASTRONAUT (n=1639), ATMOSPHERE (n=7000) у пациентов с ХСН, исследование ALTITUDE у пациентов с сахарным диабетом и высоким сердечно-сосудистым риском, исследование ASPIRE у пациентов с постинфарктным ремоделированием.
Заключение
Для решения проблем предупреждения сердечно-сосудистых заболеваний продолжается создание новых лекарственных препаратов со сложным множественным механизмом действия, позволяющих обеспечивать более полную блокаду РААС через каскад механизмов гемодинамической и нейрогуморальной регуляции. Потенциальные эффекты таких препаратов позволяют не только обеспечивать дополнительный гипотензивный эффект, но и достигать контроля уровня АД у пациентов высокого риска, включая резистентную форму АГ. Лекарственные препараты с множественным механизмом действия демонстрируют преимущества в более выраженном органопротективном действии, что позволит предупреждать дальнейшее поражение сердечно-сосудистой системы. Изучение преимуществ новых препаратов, блокирующих РААС, требует дальнейших исследований и оценки их влияния на прогноз больных с АГ и другими сердечно-сосудистыми заболеваниями.




Литература
1. Campbell D.J. Vasopeptidase inhibition: a doubleedged sword? // Hypertension. 2003. Vol. 41. P. 383-389.
2. Laurent S., Schlaich M., Esler M. New drugs, procedures, and devices for hypertension // Lancet. 2012. Vol. 380. P. 591-600.
3. Corti R., Burnett J.C., Rouleau J.L. et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? // Circulation. 2001. Vol. 104. P. 1856-1862.
4. Mangiafico S., Costello-Boerrigter L.C., Andersen I.A. et al. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics // Eur. Heart J. 2012, doi:10.1093/eurheartj/ehs262.
5. Rouleau J.L., Pfeffer M.A., Stewart D.J. et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial // Lancet. 2000. Vol. 356. P. 615-620.
6. Packer M., Califf R.M., Konstam M.A. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) // Circulation. 2002. Vol. 106. P. 920-926.
7. Warner K.K., Visconti J.A., Tschampel M.M. Angiotensin II receptor blockers in patients with ACE inhibitor-induced angioedema // Ann. Pharmacother. 2000. Vol. 34. P. 526-528.
8. Kostis J.B., Packer M., Black H.R. et al. Omapatrilat and enalapril in patients with hypertension:the Omapatrilat Cardiovascular Treatment vs Enalapril (OCTAVE) trial // Am. J. Hypertens. 2004. Vol. 17. P. 103-111.
9. Azizi M., Bissery A., Peyrard S. et al. Pharmacokinetics and pharmacodynamics of the vasopeptidase inhibitor AVE7688 in humans // Clin. Pharmacol. Ther. 2006. Vol. 79. P. 49-61.
10. Gu J., Noe A., Chandra P. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dualacting angiotensin receptorneprilysin inhibitor (ARNi) // J. Clin. Pharmacol. 2010. Vol. 50. P. 401-414.
11. Ruilope L.M., Dukat A., Buhm M. et al. Bloodpressure reduction with LCZ696, a novel dualacting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study // Lancet. 2010. Vol. 375. P. 1255-1266.
12. Solomon S.D., Zile M., Pieske B. et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial // Lancet. 2012. Vol. 380(9851). P. 1387-1395.
13. Levin E.R. Endothelins // N. Engl. J. Med. 1995. Vol. 333. P. 356-363.
14. Dhaun N., Goddard J., Kohan D.E. et al. Role of endothelin-1 in clinical hypertension: 20 years on // Hypertension. 2008. Vol. 52. P. 452-459.
15. Burnier M., Forni V. Endothelin receptor antagonists: a place in the management of essential hypertension? // Nephrol. Dial. Transplant. 2011. 0: 1-4. doi: 10.1093/ndt/gfr704.
16. Krum H., Viskoper R.J., Lacourciere Y. et al. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators // N. Engl. J. Med. 1998. Vol. 338. P. 784-790.
17. Weber M.A., Black H., Bakris G. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial // Lancet. 2009. Vol. 374. P. 1423-1431.
18. Bakris G.L., Lindholm L.H., Black H.R. et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial // Hypertension. 2010. Vol. 56. P. 824-830.
19. Mann J.F., Green D., Jamerson K. et al. Avosentan for overt diabetic nephropathy // J. Am. Soc. Nephrol. 2010. Vol. 21. P. 527-535.
20. Kalk P., Sharkovska Y., Kashina E. et al. Endothelinconverting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner // Hypertension. 2011. Vol. 57. P. 755-763.
21. Nussberger J., Wuerzner G., Jensen C. et al. Angiotensin II suppression in humans by theorally active renin inhibitor Aliskiren (SPP100): comparison with enalapril // Hypertension. 2002. Vol. 39(1). P. E1-8.
22. Alreja G., Joseph J. Renin and cardiovascular disease: Wornout path, or new direction? // World J. Cardiol. 2011. Vol. 3(3). P. 72-83.
23. Ingelfinger J.R. Aliskiren and dual therapy in type 2 diabetes mellitus // N. Engl. J. Med. 2008. Vol. 358(23). P. 2503-2505.
24. Pouleur A.С., Uno H., Prescott M.F., Desai A. (for the ALLAY Investigators). Suppression of aldosterone mediates regression of left ventricular hypertrophy in patients with hypertension // J. Renin-Angiotensin-Aldosterone System. 2011. Vol. 12. P. 483-490.
25. Kelly D.J., Zhang Y., Moe G. et al. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats // Diabetol. 2007. Vol. 50. P. 2398-2404.


Ренин-ангиотензин-альдостероновая система (РААС.)

В регуляции объема и давления крови участвует юкстагломерулярный аппарат (ЮГА). Образующийся в гранулах клеток ЮГА протеолитический фермент ренин катализирует превращение ангиотензиногена (одного из белков плазмы) в декапептид ангиотензин I, который не обладает прессорной активностью. Под действием ангиотензин-превращающего фермента (АПФ) он расщепляется (главным образом в легких, почках, головном мозге) до октапептида ангиотензина II, который действует как мощный вазоконстриктор, а также стимулирует выработку альдостерона корой надпочечников. Альдостерон усиливает реабсорбцию Nа+ в канальцах почек и стимулирует выработку антидиуретического гормона. В результате чего происходит задержка Nа+ и воды, что приводит к повышению АД. Кроме того, в плазме крови имеется ангиотензин III (гептапептид, не содержащий аспарагиновой кислоты), который также активно стимулирует высвобождение альдостерона, но обладает менее выраженным прессорным действием, чем ангиотензин II. Следует отметить, что чем больше образуется ангиотензина II, тем сильнее выражена вазоконстрикция и, следовательно, тем более выражено повышение АД.

Секреция ренина регулируется следующими механизмами, не являющимися взаимоисключающими:

  • 1) барорецепторами почечных сосудов, которые, очевидно, реагируют на изменение напряжения стенки приносящих артериол,
  • 2) рецепторами macula densa, которые, по-видимому, чувствительны к изменению скорости поступления или концентрации NaCl в дистальных канальцах,
  • 3) отрицательной обратной связью между концентрацией в крови ангиотензина и секрецией ренина
  • 4) симпатической нервной системой, стимулирующей секрецию ренина в результате активации в-адренорецепторов почечного нерва.

Система поддержания гомеостаза натрия. Она включает в себя скорость клубочковой фильтрации (СКФ) и факторы натрийуреза (выведения ионов натрия с мочой). При снижении ОЦК, снижается и СКФ, что приводит, в свою очередь, к повышению реабсорбции натрия в проксмальном отделе нефрона. К факторам натрийуреза относится группа пептидов со схожими свойствами и общим названием - натрийуретический пептид (или атриопептид), вырабатываемых миокардом предсердий в ответ на их расширение. Эффект атриопептида заключается в уменьшении реабсорбции натрия в дистальных канальцах и вазодилятации.

Система почечных вазодепрессорных субстанций включает: простагландины, калликреин-кининовая система, NO, фактор активации тромбоцитов, которые своим действием уравновешивают вазопрессорный эффект ангиотензина.

Кроме того, определенную роль в манифестации АГ играют такие факторы внешней среды (рис.1 пункт 6), как гиподинамия, курение, хронические стрессы, избыточное потребление с пищей поваренной соли.

Этиология артериальной гипертензии:

Этиология первичной, или эссенциальной, гипертензии не известна. И вряд ли одна причина смогла бы объяснить такое разнообразие гемодинамических и патофизиологических расстройств, которые наблюдаются при данном заболевании. В настоящее время многие авторы придерживаются мозаичной теории развития АГ, согласно которой поддержание высокого АД обусловлено участием многих факторов, даже если первоначально доминировал какой-либо один из них (например, взаимодействие симпатической нервной системы и ренин-ангиотензин-альдостероновой системы).

Не вызывает сомнения, что существует генетическая предрасположенность к гипертензии, однако точный механизм ее до сих пор не ясен. Возможно, что факторы внешней среды (такие как количество натрия в пище, характер питания и образ жизни, способствующие ожирению, хронический стресс) оказывают свое действие только на генетически предрасположенных лиц.

Основные причины развития эссенциальной гипертензии (или гипертонической болезни) на долю которой приходится 85-90% случаев всех АГ следующие:

  • - активация ренин-ангиотензин-альдостероновой системы при изменениях в генах, кодирующих ангиотензиноген или другие белки РААС,
  • - активация симпатической нервной системы, что приводит к повышению АД преимущественно путем вазоконстрикции,
  • - нарушение транспорта Na+ через клеточные мембраны гладкомышечных клеток кровеносных сосудов (в результате торможения Na+-K+-насоса или повышения проницаемости мембран для Na+ с повышением содержания внутриклеточного Са2+),
  • - дефицит вазодилятаторов (таких, как NO, компоненты калликреин-кининовой системы, простагландины, предсердный натрийуретический фактор и др.).

Среди основных причин симптоматических гипертензий можно выделить:

  • - первичное двустороннее поражение почек (которое может сопровождаться АГ вследствие как повышения секреции ренина и активации РААС с задержкой натрия и жидкости, так и снижения секреции вазодилятаторов) при таких заболеваниях, как острый и хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, амилоидоз, опухоли почек, обструктивная уропатия, коллагенозы и др.
  • - эндокринные (потенциально излечимые) заболевания, такие как первичный и вторичный гиперальдостеронизм, болезнь и синдром Иценко-Кушинга, диффузный тиреотоксический зоб (Базедова болезнь или болезнь Грейвса), феохромоцитома, ренин-продуцирующие опухоли почек.
  • - нейрогенные заболевания, в том числе сопровождающимися повышением внутричерепного давления (травма, опухоль, абсцесс, кровоизлияния), поражением гипоталамуса и ствола мозга, связанные с психогенными факторами.
  • - сосудистые заболевания (васкулиты, коарктация аорты и другие аномалии сосудов), полицитемия, увеличение ОЦК ятрогенного характера (при избыточном переливании препаратов крови и растворов).

Морфология артериальной гипертензии:

Доброкачественная форма АГ:

На ранних стадиях АГ не удается обнаружить никаких структурных изменений. В конечном же итоге развивается генерализованный артериолярный склероз.

Учитывая длительное течение болезни, выделяют три стадии, имеющие определенные морфологические различия и согласующиеся со стадиями, предложенными экспертами ВОЗ (указанными в скобках):

  • 1) доклиническая (легкое течение),
  • 2) распространенных изменений артерий (средней тяжести),
  • 3) изменений органов в связи изменением артерий и нарушением органного кровотока (тяжелое течение) доклиническая стадия.

Клинически проявляется транзиторной гипертензией (эпизодами повышения АД). На ранней, лабильной, стадии болезни СВ увеличен, ОПСС некоторое время остается в пределах нормы, но неадекватно для данного уровня СВ. Затем, вероятно в результате процессов ауторегуляции, ОПСС начинает увеличиваться, а СВ возвращается к нормальному уровню.

В артериолах и мелких артериях выявляется гипертрофия мышечного слоя и эластических структур > постепенное ^ толщины стенки сосуда с уменьшением его просвета, что клинически проявляется в ^ ОПСС. Спустя некоторое время на фоне катехолемии, ^ гематокрита, гипоксии (элементов стенки артерий и артериол) повышается сосудистая проницаемость, что приводит к плазматическому пропитыванию стенки сосудов > уменьшению ее эластичности и еще большему ^ ОПСС. Морфологические изменения на данной стадии полностью обратимы и при своевременном начале антигипертензивной терапии возможно предотвратить развитие поражений органов-мишеней.

В сердце, вследствие транзиторного ^ постнагрузки, возникает умеренная компенсаторная гипертрофия левого желудочка при которой размеры сердца и толщина стенки левого желудочка ^, а размер полости левого желудочка не изменяется либо может несколько уменьшаться - концентрическая гипертрофия (характеризует стадию компенсации сердечной деятельности).

Стадия распространенных изменений артерий. Клинически проявляется стойким повышением АД.

В артериолах и мелких артериях мышечного типа выявляется распространенный гиалиноз, развившийся в исходе плазматического пропитывания (простой тип сосудистого гиалина), или артериолосклероз средней оболочки и интимы артериол в ответ на выход плазмы и белков. Артериологиалиноз отмечается в почках, головном мозге, сетчатке глаза, поджелудочной железе, кишечнике, капсуле надпочечников. Макроскопически гиалинизированные сосуды выглядят в виде стекловидных трубочек с толстыми стенками и точечным просветом, плотной консистенции. Микроскопически в стенке артериол выявляются гомогенные эозинофильные массы, слои стенки могут быть практически не различимы.

В артериях эластического, мышечно-эластического и мышечного типов развиваются: - эластофиброз - гиперплазия и расщепление внутренней эластической мембраны, склероз - атеросклероз, имеющий ряд особенностей:

  • а) носит более распространенный характер, захватывает артерии мышечного типа,
  • б) фиброзные бляшки имеют циркулярный характер (а не сегментарный), что приводит к более значительному сужению просвета сосуда.

В сердце нарастает степень гипертрофии миокарда, масса сердца может достигать 900-1000 г, а толщина стенки левого желудочка - 2-3 см (cor bovinum). Однако, в связи с относительной недостаточностью кровоснабжения (увеличение размеров кардиомиоцитов, гиалиноз артериол и артерий) и нарастающей гипоксией развивается жировая дистрофия миокарда и миогенное расширение полостей - эксцентрическая гипертрофия миокарда, диффузный мелкоочаговый кардиосклероз, появляются признаки сердечной декомпенсации.

3) Стадия изменений органов в связи изменением артерий и нарушением органного кровотока.

Вторичные изменения органов при неосложенном артериологиалинозе и атеросклерозе могут развиваться медленно, что приводит к атрофии паренхимы и склерозу стромы.

При присоединении тромбоза, спазма, фибриноидного некроза во время криза возникают острые нарушения кровообращения - кровоизлияния, инфаркты.

Изменения в головном мозге:

Множественные мелкоочаговые кровоизлияния (hemorragia per diapedesin).

Гематомы - кровоизлияния с разрушением ткани мозга (hemorragia per rhexin микроанавризм, которые возникают чаще на фоне гиалиноза с фибриноидным некрозом стенки мелких перфорирующих артерий головного мозга преимущественно подкорковых ядер и субкортикального слоя). В исходе кровоизлияний в ткани головного мозга формируются ржавые кисты (окраска обусловлена гемосидерином).

В почках развивается артериолосклеротический нефросклероз или первичное сморщивание почек, в основе которого лежит артериологиалиноз >запустевание со склерозом и гиалинозом капилляров клубочков > склероз стромы вследствие длительной гипоксии > атрофия эпителия канальцев почек.

Макроскопическая картина: почки значительно уменьшены в размерах (вид местной атрофии от недостатка кровоснабжения), поверхность мелкозернистая, плотные, на разрезе отмечается истончение коркового и мозгового слоев, разрастание жировой клетчатки вокруг лоханки. Участки западения на поверхности почек соответствуют атрофированным нефронам, а очаги выбухания - функционирующим нефронам в состоянии компенсаторной гипертрофии.

Микроскопическая картина: стенки артериол значительно утолщены за счет накопления в интиме и средней оболочке гомогенных слабооксифильных бесструктурных масс гиалина (в некоторых случаях структурные компоненты стенки артериол, за исключением эндотелия, не дифференцируются), просвет сужен (вплоть до полной облитерации). Клубочки коллабированы (спавшиеся), многие замещены соединительной тканью или массами гиалина (в виде слабооксифильных гомогенных «медальончиков»). Канальцы атрофированы. Количество интерстициальной ткани увеличено. Сохранившиеся нефроны компенсаторно гипертрофированы.

Артериолосклеротический нефросклероз может закончиться развитием хронической почечной недостаточности.

Злокачественная форма АГ:

В настоящее время встречается редко.

Возникает первично или осложняет доброкачественную гипертензию (гипертонический криз).

Клинически: уровень Рдиаст.? 110-120 мм рт. ст., зрительные расстройства (из-за двустороннего отека диска зрительного нерва), резкие головные боли и гематурия (реже - анурия).

Уровень ренина и ангиотензина II в сыворотке крови высокий, значительный вторичный гиперальдстеронизм (сопровождающийся гипокалиемией).

Возникает чаще у мужчин среднего возраста (35-50 лет, редко до 30-ти лет).

Быстро прогрессирует, без лечения приводит к развитию хронической почечной недостаточности (ХПН) и летальному исходу в течение 1-2 лет.

Морфологическая картина:

Вслед за короткой стадией плазматического пропитывания следует фибриноидный некроз стенки артериол >повреждение эндотелия > присоединение тромбоза > органные изменения: ишемическая дистрофия и инфаркты, кровоизлияния.

Со стороны сетчатки: двусторонний отек диска зрительного нерва, сопровождающийся белковым выпотом и кровоизлияниями в сетчатку

В почках: злокачественный нефросклероз (Фара), для которого характерны фибриноидный некроз стенок артериол и капиллярных петель клубочков, отек интерстиция, геморрагии > клеточная реакция и склероз в артериолах, клубочках и строме, белковая дистрофия эпителия канальцев почек.

Макроскопическая картина: вид почек зависит от длительности предсуществующей фазы доброкачественной АГ. В связи с этим, поверхность может быть гладкой или гранулированной. Весьма характерны петехиальные кровоизлияния, которые придают почке пестрый вид. Прогрессирование дистрофических и некротических процессов быстро приводит к развитию ХПН и смерти.

В головном мозге: фибриноидный некроз стенок артериол с присоединением тромбоза и развитием ишемических и геморрагических инфарктов, кровоизлияний, отек.

Гипертонический криз - резкое повышение АД, связанное со спазмом артериол - может возникать в любой стадии гипертензии.

Морфологические изменения при гипертоническом кризе:

Спазм артериол: гофрированность и деструкция базальной мембраны эндотелия с расположением его в виде частокола.

Плазматическое пропитывание.

Фибриноидный некроз стенок артериол.

Диапедезные кровоизлияния.

Клинико-морфологические формы АГ:

В зависимости от преобладания сосудистых, дистрофических, некротических, геморрагических и склеротических процессов в том или ином органе, выделяют следующие формы:

Сердечная форма - составляет сущность ишемической болезни сердца (как и сердечная форма атеросклероза)

Мозговая форма - лежит в основе большинства цереброваскулярных заболеваний (как и атеросклероз сосудов головного мозга)

Почечная форма характеризуется как острыми (артериолонекроз - морфологическое проявление злокачественной гипертензии), так и хроническими изменениями (артериолосклеротический нефросклероз).

Рис. 1

Список сокращений к лекции «Гипертоническая болезнь»

АГ - артериальная гипертензия.

АД - артериальное давление.

ОЦК - объем циркулирующей крови.

СВ - сердечный выброс.

ОПСС - общее периферическое сопротивление сосудов.

УО - ударный объем.

ЧСС - частота сердечных сокращений.

СНС - симпатическая нервная система.

ПСНС - парасимпатическая нервная система.

РААС - ренин-ангиотензин-альдостероновая система.

ЮГА - юкстагломерулярный аппарат.

АПФ - ангиотензин-превращающий фермент.

СКФ - скорость клубочковой фильтрации.

ВОЗ - всемирная организация здравоохранения.

ХПН - хроническая почечная недостаточность.