Полная группа событий гипотез. Формула полной вероятности

1. Формула полной вероятности.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , которые образуют полную группу. Пусть известны вероятности этих событий и условные вероятности P(A/B 1), P(A/B 2), ..., P(A/B n) события А. Требуется найти вероятность события А.

Теорема: Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

– Формула полной вероятности.


Доказательство:

По условию, событие А может наступить, если наступит одно из несовместных событий B 1 , B 2 , B 3 , ..., B n . Другими словами, появление события А означает осуществление одного (безразлично какого) из несовместных событий: B 1 *A, B 2 *A , B 3 *A , ..., B n *A . Пользуясь теоремой сложения, получим:

По теореме умножения вероятностей зависимых событий имеем:

ч.т.д.

Пример: Имеется 2 набора деталей. Вероятность того, что деталь из первого набора стандартна, равна 0,8, а для второго набора- 0,9. Найдите вероятность того, что взятая наудачу деталь (из наудачу взятого набора) стандартна.

Решение: Событие А- «Извлеченная деталь стандартна». Событие -«Извлекли деталь, изготовленную 1 заводом». Событие - «Извлекли деталь, изготовленную вторым заводом». Р( B 1 )=Р(B 2)= 1/2.Р(А / B 1 )=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2 )=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Тогда, по формуле полной вероятности, имеем:

Пример: Сборщик получил 3 коробки деталей, изготовленных заводами №1 и 2 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь, изготовленная заводом №1, стандартна равна 0,8. Для завода №2 эта вероятность равна 0,9. Сборщик наудачу извлек деталь из наудачу выбранной коробки. Найдите вероятность того, что извлечена стандартная деталь.

Решение: Событие А- «Извлечена стандартная деталь». Событие B 1 - «Извлечена деталь из коробки завода №1». Событие B 2 - «Извлечена деталь из коробки завода № 2». Р( B 1)= 3/5. Р(B 2 )= 2/5.

Р(А / B 1)=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2)=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Пример: В первой коробке лежит 20 радиоламп, из них- 18 стандартных. Во второй коробке лежит 10 радиоламп, из них- 9 стандартных. Из второй коробки в первую наудачу переложена одна радиолампа. Найдите вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.

Решение: Событие А-« Из 1 коробки извлекли стандартную лампу». Событие B 1 -«Из второй в первую коробку переложили стандартную лампу». Событие B 2 -«Из второй в первую коробку переложили нестандартную лампу». Р( B 1 )= 9/10. Р(B 2)= 1/10.Р(А / B 1)= 19/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее так же стандартная.

Р(А / B 2 )= 18/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее нестандартная.

2. Формул гипотез Томаса Байеса.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности, рассмотренной ранее.

Допустим, что произведено испытание, в результате которого произошло событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности P(B 1 /A), P(B 2 /A), ..., P(B n /A)

Найдем условную вероятность P(B 1 /A) . По теореме умножения имеем:

Отсюда следует:


Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т.е. условная вероятность любой гипотезу B k (i =1, 2, …, n ) может быть вычислена по формуле:

Формулы гипотез Томаса Байеса.

Томас Байес (английский математик) опубликовал формулу в 1764 году.

Данные формулы позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример: Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадет к первому контролеру, равна 0,6, ко второму- 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, для второго контролера эта вероятность равна 0,98.Годная деталь при проверке была признана стандартной. Найдите вероятность того, что эту деталь проверил первый контролер.

Решение: Событие А- «Годная деталь признана стандартной». Событие B 1 - «Деталь проверял первый контролер». Событие B 2 - «Деталь проверил второй контролер». Р( B 1 )=0,6. Р(B 2 )=0,4.

Р(А / B 1)=0,94- вероятность, что деталь, проверенная первым контролером, признана стандартной.

Р(А / B 2)=0,98 - вероятность, что деталь, проверенная вторым контролером, признана стандартной.

Тогда:

Пример: Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса-4 человека, из второй- 6 человек, из третьей- 5 человек. Вероятность того, что студент первой группы попадет в сборную, равна 0,9, для студентов второй и третьей групп эти вероятности соответственно равны 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную К какой из групп, вероятнее всего, он принадлежит?

Решение: Событие А- «Наудачу выбранный студент, попал в сборную института». Событие B 1 - «Наудачу выбран студент из первой группы». Событие B 2 - «Наудачу выбран студент из второй группы». Событие B 3 - «Наудачу выбран студент из третьей группы». Р( B 1)= 4/15 . Р(B 2)= 6/15. Р(B 3)= 5/15 .

Р(А / B 1)=0,9- вероятность, что студент из первой группы попадет в сборную.

Р(А / B 2)=0,7- вероятность, что студент из второй группы попадет в сборную.

Р(А / B 3 )=0,8- вероятность, что студент из третьей группы попадет в сборную.

Тогда:

Вероятность, что в сборную попал студент из первой группы.


Вероятность, что в сборную попал студент из второй группы.


Вероятность, что в сборную попал студент из третьей группы.


Вероятнее всего в сборную попадет студент из второй группы.

Пример: При отклонении от нормального режима работы автомата сработает сигнализатор С 1 с вероятностью 0,8, а сигнализатор С 2 сработает с вероятностью 1. Вероятность того, что автомат снабжен сигнализатором С 1 или С 2 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С 1 или С 2 ?

Решение: Событие А-«Получен сигнал о разделке автомата». Событие B 1 -« Автомат снабжен сигнализатором С1. Событие B 2 - «Автомат снабжен сигнализатором С2. Р( B 1 )= 0,6. Р(B 2)= 0,8.

Р(А / B 1)=0,8- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С1.

Р(А / B 2 )=1- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С2.

Тогда:

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С1.

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С2.


Т.е. вероятнее, что при разделке автомата будет получен сигнал от сигнализатора С1.

События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

Отсюда следует, что

Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
– лампа изготовлена третьим заводом.

Искомую вероятность находим по формуле полной вероятности:

Формула Байеса. Пусть – полная группа попарно несовместных событий (гипотезы). А – случайное событие. Тогда,

Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .

Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .


Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

По формуле полной вероятности получаем:

По формуле Байеса .

Пример 19. Пусть в урне пять шаров и все предположения о количестве белых шаров равновозможные. Из урны наудачу взят шар, он оказался белым. Какое предположение о начальном составе урны наиболее вероятно?

Решение. Пусть – гипотеза, состоящая в том, что в урне белых шаров , т. е. возможно сделать шесть предположений. Тогда по условию задачи имеем .

Введем событие А – наудачу взятый шар белый. Вычислим . Так как , то по формуле Байеса имеем:

Таким образом, наиболее вероятной является гипотеза , т. к. .

Пример 20. Два из трех независимо работающих элемента вычислительного устройства отказали. Найдите вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие гипотезы:

– отказали первый и второй элементы, а третий элемент исправен. Поскольку элементы работают независимо, применима теорема умножения:

Пример №1 . Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от трех поставщиков. Первый поставляет 50 % всех комплектующих деталей, второй - 20 %, третий - 30 % деталей.
Известно, что качество поставляемых деталей разное, и в продукции первого поставщика процент брака составляет 4 %, второго - 5 %, третьего - 2 %. Определить вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной.

Решение . Обозначим события: A - «выбранная деталь бракована», H i - «выбранная деталь получена от i-го поставщика», i =1, 2, 3 Гипотезы H 1 , H 2 , H 3 образуют полную группу несовместных событий. По условию
P(H 1) = 0.5; P(H 2) = 0.2; P(H 3) = 0.3
P(A|H 1) = 0.04; P(A|H 2) = 0.05; P(A|H 3) = 0.02

По формуле полной вероятности (1.11) вероятность события A равна
P(A) = P(H 1) · P(A|H 1) + P(H 2) · P(A|H 2) + P(H 3) · P(A|H 3) = 0.5 · 0.04 + 0.2 · 0.05 + 0.3 · 0.02=0.036
Вероятность того, что выбранная наудачу деталь окажется бракованной, равна 0.036.

Пусть в условиях предыдущего примера событие A уже произошло: выбранная деталь оказалась бракованной. Какова вероятность того, что она была получена от первого поставщика? Ответ на этот вопрос дает формула Байеса .
Мы начинали анализ вероятностей, имея лишь предварительные, априорные значения вероятностей событий. Затем был произведен опыт (выбрана деталь), и мы получили дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить значения априорных вероятностей. Новые значения вероятностей тех же событий будут уже апостериорными (послеопытными) вероятностями гипотез (рис. 1.5).

Схема переоценки гипотез
Пусть событие A может осуществиться лишь вместе с одной из гипотез H 1 , H 2 , …, H n (полная группа несовместных событий). Априорные вероятности гипотез мы обозначали P(H i) условные вероятности события A - P(A|H i), i = 1, 2,…, n. Если опыт уже произведен и в результате него наступило событие A, то апостериорными вероятностями гипотез будут условные вероятности P(H i |A), i = 1, 2,…, n. В обозначениях предыдущего примера P(H 1 |A) - вероятность того, что выбранная деталь, оказавшаяся бракованной, была получена от первого поставщика.
Нас интересует вероятность события H k |A Рассмотрим совместное наступление событий H k и A то есть событие AH k . Его вероятность можно найти двумя способами, используя формулы умножения (1.5) и (1.6):
P(AH k) = P(H k)P(A|H k);
P(AH k) = P(A)P(H k |A).

Приравняем правые части этих формул
P(H k) · P(A|H k) = P(A) · P(H k |A),

отсюда апостериорная вероятность гипотезы H k равна

В знаменателе стоит полная вероятность события A. Подставив вместо P(A) ее значение по формуле полной вероятности (1.11), получим:
(1.12)
Формула (1.12) называется формулой Байеса и применяется для переоценки вероятностей гипотез.
В условиях предыдущего примера найдем вероятность того, что бракованная деталь была получена от первого поставщика. Сведем в одну таблицу известные нам по условию априорные вероятности гипотез P(H i) условные вероятности P(A|H i) рассчитанные в процессе решения совместные вероятности P(AH i) = P(H i) · P(A|H i) и рассчитанные по формуле (1.12) апостериорные вероятности P(H k |A), i,k = 1, 2,…, n (табл. 1.3).

Таблица 1.3 - Переоценка гипотез

Гипотезы H i Вероятности
Априорные P(H i) Условные P(A|H i) Совместные P(AH i) Апостериорные P(H i |A)
1 2 3 4 5

H 1 - деталь получена от первого поставщика

0.5 0.04 0.02

H 2 - деталь получена от второго поставщика

0.2 0.05 0.01

H 3 - деталь получена от третьего поставщика

0.3 0.02 0.006
Сумма 1.0 - 0.036 1
Рассмотрим последнюю строку этой таблицы. Во второй колонке стоит сумма вероятностей несовместных событий H 1 , H 2 , H 3 , образующих полную группу:
P(Ω) = P(H 1 + H 2 + H 3) = P(H 1) + P(H 2) + P(H 3) = 0.5 + 0.2 + 0.3 = 1
В четвертой колонке значение в каждой строке (совместные вероятности) получено по правилу умножения вероятностей перемножением соответствующих значений во второй и третьей колонках, а в последней строке 0.036 - есть полная вероятность события A (по формуле полной вероятности).
В колонке 5 вычислены апостериорные вероятности гипотез по формуле Байеса (1.12):

Аналогично рассчитываются апостериорные вероятности P(H 2 |A) и P(H 3 |A), причем числитель дроби - совместные вероятности, записанные в соответствующих строках колонки 4, а знаменатель - полная вероятность события A, записанная в последней строке колонки 4.
Сумма вероятностей гипотез после опыта равна 1 и записана в последней строке пятой колонки.
Итак, вероятность того, что бракованная деталь была получена от первого поставщика, равна 0.555. Послеопытная вероятность больше априорной (за счет большого объема поставки). Послеопытная вероятность того, что бракованная деталь была получена от второго поставщика, равна 0.278 и также больше доопытной (за счет большого количества брака). Послеопытная вероятность того, что бракованная деталь была получена от третьего поставщика, равна 0.167.

Пример №3 . Имеются три одинаковые урны; в первой урне два белых и один черный шар; во второй - три белых и один черный; в третьей - два белых и два черных шара. Для опыта наугад выбрана одна урна и из нее вынут шар. Найдите вероятность того, что этот шар белый.
Решение. Рассмотрим три гипотезы: H 1 - выбрана первая урна, H 2 - выбрана вторая урна, H 3 - выбрана третья урна и событие A - вынут белый шар.
Так как гипотезы по условию задачи равновозможны, то

Условные вероятности события A при этих гипотезах соответственно равны:
По формуле полной вероятности

Пример №4 . В пирамиде стоят 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, а стреляя из винтовки без оптического прицела, - с вероятностью 0,46. Найдите вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Решение. Здесь первым испытанием является случайный выбор винтовки, вторым - стрельба по мишени. Рассмотрим следующие события: A - стрелок поразит мишень; H 1 - стрелок возьмет винтовку с оптическим прицелом; H 2 - стрелок возьмет винтовку без оптического прицела. Используем формулу полной вероятности. Имеем


Учитывая, что винтовки выбираются по одной, и используя формулу классической вероятности, получаем: P(H 1) = 3/19, P(H 2) = 16/19.
Условные вероятности заданы в условии задачи: P(A|H 1) = 0;81 и P(A|H 2) = 0;46. Следовательно,

Пример №5 . Из урны, содержащей 2 белых и 3 черных шара, наудачу извлекаются два шара и добавляется в урну 1 белый шар. Найдите вероятность того, что наудачу взятый шар окажется белым.
Решение. Событие “извлечен белый шар” обозначим через A. Событие H 1 - наудачу извлекли два белых шара; H 2 - наудачу извлекли два черных шара; H 3 - извлекли один белый шар и один черный. Тогда вероятности выдвинутых гипотез


Условные вероятности при данных гипотезах соответственно равны: P(A|H 1) = 1/4 - вероятность извлечь белый шар, если в урне в данный момент один белый и три черных ша-ра, P(A|H 2) = 3/4 - вероятность извлечь белый шар, если в урне в данный момент три белых и один черный шар, P(A|H 3) = 2/4 = 1/2 - вероятность извлечь белый шар, если в урне в данный момент два белых и два черных шара. В соответствии с формулой полной вероятности

Пример №6 . Производится два выстрела по цели. Вероятность попадания при первом выстреле 0,2, при втором - 0,6. Вероятность разрушения цели при одном попадании 0,3, при двух - 0,9. Найдите вероятность того, что цель будет разрушена.
Решение. Пусть событие A - цель разрушена. Для этого достаточно попадания с одного выстрела из двух или поражение цели подряд двумя выстрелами без промахов. Выдвинем гипотезы: H 1 - оба выстрела попали в цель. Тогда P(H 1) = 0,2 · 0,6 = 0;12. H 2 - либо первый раз, либо второй раз был совершен промах. Тогда P(H 2) = 0,2 · 0,4 + 0,8 · 0,6 = 0,56. Гипотеза H 3 - оба выстрела были промахи - не учитывается, так как вероятность разрушения цели при этом нулевая. Тогда условные вероятности соответственно равны: вероятность разрушения цели при условии обоих удачных выстрелов равна P(A|H 1) = 0,9, а вероятность разрушения цели при условии только одного удачного выстрела P(A|H 2) = 0,3. Тогда вероятность разрушения цели по формуле полной вероятности равна.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.

Следствием двух основных теорем теории вероятностей – теоремы сложения и умножения – являются формулы полной вероятности и формулы Бейеса.

На языке алгебры событий набор , , ¼, называется полной группой событий , если:

1. События попарно несовместны, т.е. , , ;.

2. В сумме составляют все вероятностное пространство .

Теорема 5 (Формула полной вероятности). Если событие А может произойти только при условии появления одного из событий (гипотез) , ,¼,, образующих полную группу, то вероятность события А равна

Доказательство. Так как гипотезы , ,¼,– единственно возможные, а событие A по условию теоремы может произойти только вместе с одной из гипотез, то . Из несовместности гипотез следует несовместность .

Применяем теорему сложения вероятностей в виде (6):

По теореме умножения . Подставляя данное представление в формулу (13), окончательно имеем: , что и требовалось доказать.

Пример 8. Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,45; в противном случае – в 0,25. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,40. Чему равна вероятность заключения контракта?

Решение. А - «фирма заключит контракт», - «конкурент выдвинет свои предложения», - «конкурент не выдвинет свои предложения». По условию задачи , . Условные вероятности по заключению контракта для фирмы , . По формуле полной вероятности

Следствием теоремы умножения и формулы полной вероятности является формула Бейеса.

Формула Байеса позволяет пересчитать вероятность каждой из гипотез, при условии, что событие произошло. (Она применяется, когда событие А , которое может появиться только с одной из гипотез, образующих полную группу событий, произошло и необходимо провести количественную переоценку априорных вероятностей этих гипотез известных до испытания, т.е. надо найти апостериорные (получаемые после проведения испытания) условные вероятности гипотез) , ,…, .

Теорема 6 (Формула Бейеса). Если событие А произошло, то условные вероятности гипотез вычисляются по формуле, которая носит название формулы Бейеса:

Доказательство. Для получения искомой формулы запишем теорему умножения вероятностей событий А и в двух формах:

откуда что и требовалось доказать.

Значение формулы Бейеса состоит в том, что при наступлении события А, т.е. по мере получения новой информации, мы можем проверять и корректировать выдвинутые до испытания гипотезы. Такой подход, называемый бейесовским, дает возможность корректировать управленческие решения в экономике, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и т.п.



Задача 9. Группа состоит из 6 отличников, 12 хорошо успевающих студентов и 22 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4, 3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение. Рассмотрим три гипотезы:

Рассматриваемое событие . Из условия задачи известно, что

, , .

Найдем вероятности гипотез. Поскольку в группе всего 40 студентов, а отличников 6, то . Аналогично, , . Применяя формулу полной вероятности, находим

Теперь применим к гипотезе формулу Байеса:

Пример 10. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,70 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,60, когда ситуация «хорошая»; с вероятностью 0,30, когда ситуация посредственная, и с вероятностью 0,10, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме?

Решение. А = «индекс экономического состояния страны возрастет», Н 1 = «экономическая ситуация в стране «хорошая»», Н 2 = «экономическая ситуация в стране «посредственная»», Н 3 = «экономическая ситуация в стране «плохая»». По условию: , , . Условные вероятности: ,, . Требуется найти вероятность . Находим ее по формуле Бейеса:

Пример 11. В торговую фирму поступили телевизоры от трех поставщиков в соотношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течение гарантийного срока соответственно в 98%, 88% и 92% случаев.