Факторы влияющие на всасывание лекарственных веществ. Особенности всасывания лекарств у детей

Механизмы всасывания лекарственных препаратов из полости желудочно-кишечного тракта различны: прежде всего это диффузия, этим способом всасывается большинство лекарственных препаратов, затем фильтрация и пиноцитоз. Некоторые лекарственные препараты всасываются путем активного транспорта. На процесс всасывания лекарств в желудке и кишечнике влияет целый ряд факторов. В первую очередь - это рН среды . Поэтому в желудке, где среда кислая, лучше всего всасываются лекарства-кислоты, а лекарства-основания - в кишечнике. Кислая среда разрушает некоторые лекарства, например бензилпенициллин. Другим субстратом, действующим на всасывание лекарств, являются ферменты желудочно-кишечного тракта, которые способны инактивировать ряд белковых и полипептидных веществ (кортикотропины, вазопрессин, инсулин и др.), а также некоторые гормоны (прогестерон, тестостерон, альдостерон). Соли желчных кислот , в свою очередь, могут ускорять всасывание лекарств или, наоборот, замедлять его при образовании нерастворимых соединений. Моторика желудочно-кишечного тракта - один из факторов, лимитирующих скорость и полноту всасывания лекарственных препаратов. Количество пищи, ее состав , интервал времени между едой и приемом лекарств влияют на всасывание лекарств. Так, всасывание тетрациклинов, ампициллина нарушается под действием молока, солей железа, при высоком содержании углеводов, белков и жира в пище. Объем жидкости , принимаемой вместе с лекарствами, может вызвать или замедление, или ускорение всасывания.

В организме лекарственное вещество распределяется между кровью, межклеточной жидкостью и клетками тканей. Распределение зависит от относительного сродства молекул лекарственного вещества к биомакромолекулам крови и тканей. Необходимое условие реализации фармакологического действия лекарственного вещества - его проникновение в ткани-мишени; напротив, попадание лекарственного вещества в индифферентные ткани снижает действующую концентрацию и может привести к нежелательным побочным эффектам (например, к канцерогенезу). Абсорбируясь, вещества попадают в кровь, а затем проникают в органы и ткани. Большинство лекарственных веществ распределяются неравномерно. Существенное влияние на характер распределения веществ оказывают биологические барьеры. Это стенка капилляров, клеточные мембраны, гематоэнцефалический и плацентарный барьеры. В капиллярах мозга почти отсутствует пиноцитоз. Определенное значение имеют и глиальные элементы (астроглия), выстилающие наружную поверхность эндотелия и играющие роль дополнительной липидной мембраны. Через гематоэнцефалический барьер плохо проходят полярные соединения. Липофильные молекулы проходят в ткань мозга легко. В основном вещества проникают через гематоэнцефалический барьер путем диффузии, а некоторые - за счет активного транспорта.Имеются отдельные небольшие участки головного мозга, в которых гематоэнцефалический барьер практически неэффективен (эпифиз, задняя доля гипофиза). При некоторых патологических состояниях (например, при воспалении мозговых оболочек) проницаемость гематоэнцефалического барьера повышается. Сложным биологическим барьером является и плацентарный барьер . Через него также проходят липофильные соединения (путем диффузии).

Депонирование. Лекарственные вещества, циркулирующие в организме, частично связываются, образуя внеклеточные и клеточные депо. Вещества могут накапливаться в соединительной и костной ткани (тетрациклины). Некоторые препараты (акрихин) в особенно больших количествах обнаруживаются в клеточных депо. Связывание их в клетках возможно за счет белков, нуклеопротеидов, фосфолипидов. Особый интерес представляют жировые депо, так как в них могут задерживаться липофильные соединения.


Похожая информация:

  1. Gt; Коэффициент увеличения объема (мл/г) (КУО) показывает прирост объема раствора (мл) при растворении 1,0 г вещества при 20 °С.
  2. I. ОБЩИЕ ПОЛОЖЕНИЯ. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
  3. I. Особенности деятельности командиров и штабов при проведении миротворческих и контртеррористических операций

Характер кинетики препарата. При кинетике первого порядка скорость пассивной диффузии пропорциональна количеству остающегося в ЖКТ ЛС (характерно для препаратов, вводимых внутримышечно, подкожно и ректально). При этом период полувыведения (время, в течение которого концентрация вещества уменьшается наполовину) не зависит от концентрации препарата в крови. При кинетике нулевого порядка скорость прохождения ЛС не зависит от концентрации лекарства в ЖКТ.

Особенности ЛФ для приёма внутрь: быстрорастворимые ЛС (например, водные растворы) абсорбируются быстрее, а растворимые (масляные растворы или твёрдые ЛФ) - медленнее.

Поверхность абсорбции и способ введения.

Присутствие в ЖКТ ряда других препаратов или пищевых продуктов, влияющих на абсорбцию ЛС.

Моторика различных отделов ЖКТ, объём и состав пищи, количество принимаемой жидкости, интервал времени между приёмом пищи и препаратов.

Распределение лекарственных средств

После абсорбции или парентерального введения происходит распределение ЛС в интерстициальной, клеточной и межклеточной жидкости. Скорость, величина и характер начального распределения зависят от физико-химических свойств препарата, функционального состояния сердца и регионарного кровотока. На распределение веществ существенно влияют биологические барьеры:

Стенка капилляра;

Клеточные мембраны;

Гематоэнцефалический барьер;

Плацентарный барьер.

Через гематоэнцефалический барьер плохо проходят полярные соединения, липофильные - хорошо. Через плацентарный барьер хорошо проходят липофильные соединения, полярные - плохо.

Первый барьер для ЛС - стенка капилляра, представляющая собой липидную мембрану. Растворимые в липидах препараты проникают через неё посредством диффузии, а нерастворимые - путём фильтрации через поры мембраны. ЛС очень быстро проникают в сердце, мозг, печень, почки и другие хорошо перфузируемые ткани, медленнее - в мышцы, и очень медленно - в жировую ткань.

ЛС могут накапливаться в тканях в более высоких концентрациях, чем в плазме, благодаря градиенту рН, связыванию, активному транспорту и высокой растворимости в жирах. Такие ткани служат резервуаром для препарата, обеспечивая его более продолжительное действие. Большая часть ЛС в первые минуты после всасывания попадает в органы и ткани с самым богатым кровоснабжением (скорость перфузии в почках, лёгких, мозге, надпочечниках, щитовидной железе - более 1 мл/мин; печени, сердце, селезёнке - 0,1-1 мл/мин), а затем - в менее интенсивно кровоснабжаемые органы (скорость перфузии в мышцах, слизистых оболочках, коже и жировой ткани, костях - менее 0,1 мл/мин).

Для достижения терапевтических концентраций ЛС в тканях с низкой (менее 0,1 мл/мин) скоростью перфузии требуется от нескольких минут до нескольких часов.

Важным фактором, определяющим распределение ЛС, служит скорость его диффузии в различных тканях. Легче и быстрее она протекает в интерстициальной ткани. Капилляры хорошо проницаемы и для гидрофильных, и для липофильных веществ, поэтому водорастворимые препараты (например, стрептомицин), которые плохо всасываются из кишечника, вводят парентерально.

Гидрофильные ЛС имеют малый объём распределения (менее 0,2 л/кг), липофильные - большой (более 0,2 л/кг).

Организм можно условно рассматривать как группу компартментов (камер, отделений), различных по доступности для ЛС: плазма - центральный компартмент, различные ткани - периферические.

Основные факторы, определяющие неравномерное распределение препарата в организме: связывание с белками плазмы, различными компонентами тканей, жировой тканью, а также проникновение через гематоэнцефалический барьер (ГЭБ).

Связывание ЛС с белками плазмы, во-первых, способствует созданию более высокой концентрации лекарственного препарата в крови по сравнению с таковой во внеклеточной жидкости. Во-вторых, образуется депо ЛС, так как его часть, связанная с

белком, находится в динамическом равновесии со свободной фракцией: вследствие метаболизма и экскреции не связанного с белком препарата, из связанной фракции освобождается его дополнительное количество, так как связь с белком слабая. В-третьих, увеличивается период полувыведения ЛС, так как препарат, связанный с белком, не может фильтроваться через почечные клубочки и не подвергается биологической трансформации (метабо- лизму). Связанное с белком ЛС неактивно до тех пор, пока оно не перейдёт в свободную фракцию. Препараты связываются главным образом с альбуминами, хотя некоторые гормональные и другие средства могут соединяться с одной из фракций глобулинов.

Способность белков к связыванию с ЛС может быть ограничена, и при насыщении связей или гипопротеинемии дальнейшее поступление препарата может привести к интоксикации, вызванной увеличением фракции лекарственного вещества, не связанной с белком (т.е. фармакологически активной). Выраженное уменьшение способности белков плазмы к связыванию ЛС может наступить при уремии, гипоальбуминемии (менее 30 г/л), гипербилирубинемии и печё- ночной недостаточности. Связывание препаратов с белками может усиливаться (например, для β-адреноблокаторов пропранолола и окспренолола) при остром воспалении, в начальной стадии инфекционного заболевания, а также при увеличении СОЭ (более 20 мм/ч).

Связывание ЛС с белком могут угнетать свободные жирные кислоты, например пальмитиновая кислота - в большей степени, чем олеиновая (две основные свободные жирные кислоты в плазме). Некоторые препараты при совместном применении способны влиять на связывание с белками.

Доказано, что концентрация ЛС в слюне приближается к содержанию в крови его фракции, не связанной с белком. При точном определении концентрации ЛС в плазме и слюне можно установить, что содержание препарата, связанного с белком, равно разности его концентраций в плазме и слюне. Чаще всего определение содержания препарата в слюне неточно, так как эта биологическая жидкость представляет сложную и непостоянную смесь секретов различных желёз ротовой полости, обладающих неодинаковой способностью к выделению ЛС.

Связывание ЛС с тканями. Препарат может связываться с белками тканей, кислыми мукополисахаридами и нуклеиновыми кислотами. Отдельные лекарственные вещества могут селективно соединяться с некоторыми тканями (например, дигоксин и дигитоксин - с тканями сердца, печени и почек), что приводит к увеличению их концентрации в органах.

При приёме липофильных препаратов отмечают их накопление в жировой ткани, но она относительно плохо снабжается кровью, и ЛС перераспределяются в мышечную ткань.

ГЭБ даже при внутривенном введении большинства ЛС препятствует их проникновению в ЦНС вместе со спинномозговой жидкостью.

Из других факторов, влияющих на распределение ЛС, следует отметить форменные элементы крови, в частности эритроциты. С увеличением концентрации в крови некоторых препаратов может усиливаться их сродство к эритроцитам. По-видимому, на этот процесс также влияет возраст больного. ЛС либо связывается с мембраной эритроцита, либо проникает внутрь него. Это необходимо учитывать, так как лишь свободная часть препарата, нахо- дящаяся в плазме, фармакологически активна.

Биотрансформация (метаболизм) лекарственных средств

Биотрансформация - комплекс физико-химических и биохимических превращений ЛС, в процессе которых образуются полярные водорастворимые вещества (метаболиты), способные элиминироваться из организма.

Выделяют два основных вида превращения ЛС:

Метаболическую трансформацию;

Коньюгацию.

Метаболическая трансформация - это превращение веществ в результате окисления, восстановления, гидролиза.

Коньюгация - это бисинтетический процесс, сопровождающий присоединением к ЛВ, или его метоболитам ряда химических групп или молекул эндогенных соединений.

Метаболизм ЛС включает комплекс химических превращений в организме, подготавливающих выведение препарата и осущест- вляемый в двух направлениях:

Уменьшение растворимости ЛС в липидах;

Уменьшение биологической активности лекарственного препарата.

Метаболизм ЛС может происходить во всех тканях и жидких средах организма. Наиболее выраженные процессы разрушения веществ происходят в полостях и слизистых оболочках желудка и кишечника.

Печень - основной орган, в котором происходит метаболизм ЛС. Кроме того, отдельные вещества могут подвергаться биотран- сформации в почках (например, имипенем), плазме крови и других тканях (например, в стенке кишечника).

Большинство ЛС в неизменном виде растворимы в липидах и, будучи слабыми органическими кислотами либо основаниями, не способны элиминироваться из организма. Например, при прохождении через почки (после фильтрации в почечных клубочках) они снова реабсорбируются клетками почечных канальцев. Метаболиты препаратов хуже растворимы в липидах, более растворимы в воде и менее ионизированы при физиологических значениях рН. Они в меньшей степени способны к связыванию с белками и фильтрации через клеточные мембраны, в меньшем количестве накапливаются в жировой ткани. Следовательно, метаболические превращения ЛС в большинстве случаев абсолютно необходимы. Их основная часть происходит в печени, где препарат превращается в фармакологически неактивные или активные метаболиты.

Химические изменения ЛС могут быть несинтетическими и синтетическими. При несинтетических превращениях молекулы препарата изменяются посредством окисления преимущественно в микросомах печени, а также путём восстановления и гидролиза. В результате исходная фармакологическая активность ЛС может изменяться в сторону уменьшения, увеличения или полной утраты. При синтетических химических изменениях молекулы препаратов соединяются с другими веществами, в частности, с глюкуроновой (образование глюкуронидов), уксусной (ацетилирование), серной (с образованием эфиров) кислотами, глицином, аденозилметионином, глутатионом и др.

Микросомальные ферменты, участвующие в метаболизме ЛС, представлены оксидазами и монооксидазами со смешанными функциями, т.е. они могут принимать участие в различных реакциях. Индукцию ферментов, метаболизирующих препараты, может вызывать приём жирной пищи, кофе, чая (некоторые сосудорасширяющие средства), некоторых других препаратов, принимаемых одновременно (фенобарбитал, резерпин и др.), алкоголь и курение (теофиллин и др.). Низкобелковая пища, напротив, задерживает метаболизм ряда ЛС. Длительный приём одного и того же препарата иногда приводит к индукции ферментов, влияющих на него, при этом метаболизм ЛС может усилиться в 2-4 раза.

Ингибирование ферментов приводит к ещё более серьёзным последствиям, чем их индукция. Это избирательный процесс, происходящий при взаимодействии препаратов: ингибирование циметидином метаболизма пропранолола приводит к большей выраженности брадикардии при приёме последнего.

Экскреция лекарственных средств

Экскреция - выведение ЛС из организма.

ЛС экскретируются из организма после частичного или полного превращения в водорастворимые метаболиты; некоторые препараты выводятся в неизменном виде. Наиболее частый путь экскреции препаратов - с мочой. Другие пути элиминации лекарств - с жёлчью, выдыхаемым воздухом, слюной, потом, молоком, слезой и фекалиями.

Выведение веществ в значительной степени зависит от процесса их реабсорбции (обратное всасывание) в почечных канальцах.

Почечная экскреция зависит от величины почечного клиренса, концентрации препарата в крови, а также от степени его связывания с белком.

Почечный клиренс ЛС - объём плазмы, который полностью очищается почками от препарата за единицу времени. Клиренс не может превышать величину скорости клубочковой фильтрации (у взрослых мужчин - около 127 мл/мин). Если клиренс превышает её, то это означает, что часть ЛС дополнительно секретируется почечными канальцами (например, для бензилпенициллина почечный клиренс составляет 480 мл/мин). Если почечный клиренс постоянен, то скорость элиминации препарата прямо пропорциональна его концентрации в плазме крови.

Зависимость почечного клиренса от рН мочи подчиняется следующему правилу: у ЛС со свойствами оснований он тем выше, чем более кислая моча; у препаратов со свойствами кислот связь обратная. При заболеваниях почек, сопровождающихся нарушением их функций, некоторые ЛС и их метаболиты накапливаются (кумулируются) в крови, вызывая токсические симптомы.

Экскреция ЛС через кишечник. Через кишечник экскретируются два вида ЛС.

Нерастворимые в липидах или ионизированные при рН кишечника молекулы, которые не абсорбируются через его слизистую оболочку и выделяются в неизменном виде либо перед выделением образуют комплексы с жёлчью, присутствующей в просвете кишечника (например, анионобменные смолы колестерамин, колестипол).

Неионизированные молекулы (например, дигоксин), полярные вещества с молекулярной массой более 300 (например, гормоны, антидепрессанты, эритромицин), растворимые в воде. Многие ЛС и их метаболиты, попадая с жёлчью в ЖКТ, затем реабсорбируются и позже выделяются с мочой, что приводит к более длительному поддержанию их концентрации в крови. Препарат может попасть с жёлчью в жёлчный пузырь и задержаться в нём.

Экскреция со слюной. ЛС, экскретируемые со слюной, попадают в ротовую полость и обычно проглатываются, как и препараты, принятые внутрь. Слюна представляет смесь секретов околоушных, подчелюстных, подъязычных и других желёз, несколько различающихся по составу белков.

В отдельных случаях существует корреляция между концентрациями препарата, не связанного с белком, в крови и слюне. При быстром внутривенном введении прокаинамида его содержание в слюне сначала выше, чем в плазме, а затем постепенно изменяется. Концентрация препарата в слюне обычно не отражает таковую в плазме крови.

Экскреция через лёгкие касается не только летучих анестетиков, но в других случаях (например, в отношении сердечно-сосудистых препаратов) её значение невелико.

Экскреция с грудным молоком. Лекарственные вещества, содержащиеся в плазме крови кормящей матери, могут в небольших количествах экскретироваться с молоком и оказывать нежелательное влияние на грудного ребёнка. Грудное молоко отличается большей кислотностью, чем плазма крови. ЛС со свойствами оснований в большей степени ионизируются и накапливаются в нём, так же как и препараты с хорошей растворимостью в липидах. Количество средства, связанного с белками грудного молока, обычно в два раза меньше такового, связанного с белками плазмы. Необходимо учитывать, что новорождённого иногда докармливают коровьим моло- ком, в котором могут присутствовать антибиотики (бензилпенициллин и др.), способные вызвать аллергические реакции у ребёнка.

Кормящей матери противопоказан приём следующих сердечно-сосудистых препаратов: антикоагулянта непрямого действия фениндиона, антиаритмического средства амиодарона, ацетилсалициловой кислоты (при длительном приёме), β-адреноблокатора соталола (большинство других β-адреноблокаторов безопасны), мочегонных средств (некоторые подавляют лактацию) и глюкокортикоидов (например, при приёме преднизолона в дозе 10 мг/сут и более возможно развитие надпочечниковой недостаточности, но заместительная терапия безопасна).

На концентрацию ЛС в крови влияют многие факторы. Их особенно трудно определить в клинических условиях при наличии сопутствующих заболеваний, патологии печени и почек, нарушении всасывания препаратов, их низкой биодоступности, проведении комбинированной ФТ и др. Чаще всего терапевтический мониторинг проводят для ЛС с узким диапазоном терапевтических концентраций, способных вызывать опасные побочные эффекты (в результате передозировки) и назначаемых длительно. К ним относят препараты дигиталиса, противоаритмические и противосудорожные средства, антибиотики и др.

Факторы, количественно и качественно изменяющие эффект лекарственных средств

Физиологические факторы:

Возраст - дети часто более чувствительны к изменениям водного, электролитного обмена и кислотно-щелочного баланса, вызываемым ЛС; пожилые больные могут необычно реагировать из-за нарушений распределения, инактивации и выведения препарата вследствие возрастных анатомических и физиологических изменений в организме, а также из-за сопутствующих заболеваний;

Пол - женщины (особенно во время беременности) могут быть более чувствительны к ЛС;

Хронестезия - циклические изменения чувствительности биологических систем организма к ЛС (циркадианные изменения - в течение суток; циркатригентантные - в течение месяца; цирканнуальные - в течение года);

Хронергия - изменения биологических системных эффектов (например, эффективности препаратов), подчиняющиеся определённому ритму; учёт хронергии позволяет определить время достижения оптимального эффекта (например, гормональных препаратов) при минимальном риске возникновения побочных явлений.

Особенности индивидуальной ФК ЛС.

Время введения ЛС в зависимости от приёма и характера пищи, влияния факторов внешней среды.

Генетические факторы, влияющие на биологическую усвояемость и эффективность ЛС.

Лекарственное взаимодействие при приёме нескольких препаратов.

Сопутствующие патологические изменения в органах (печень, почки, ЖКТ).

Чувствительность больного к ЛС.

Приверженность больного лечению.

Факторы, влияющие на абсорбцию лекарств из желудочно-кишечного тракта

  • 1. Характер кинетики препарата. При кинетике первого порядка - скорость пассивной диффузии пропорциональна количеству остающегося в желудочно-кишечном тракте лекарства. Такая кинетика характерна для препаратов при внутримышечном, подкожном и ректальном введении. Период полувыведеиия (время, за которое концентрация вещества уменьшается наполовину) при такой кинетике не зависит от концентрации лекарства в крови. При кинетике нулевого порядка - скорость прохождения лекарства независима от концентрации лекарства в желудочно-кишечном тракте.
  • 2. Особенности лекарственной формы для приёма внутрь. Быстрорастворимые лекарства, например в виде водных растворов, абсорбируются быстрее, а растворимые в масляных растворах или твердые абсорбируются медленнее.
  • 3. Поверхность абсорбции и способ введения.
  • 4. Присутствие в желудочно-кишечном тракте ряда других препаратов или пищевых продуктов, влияющих на абсорбцию лекарства.
  • 5. Моторика различных отделов желудочно-кишечного тракта.

Абсорбция и способы введения лекарства

Внутривенный (в/в) способ, а также редко внутриартериальный применяют при введении препаратов, не всасывающихся в кишечнике или обладающих сильным раздражающим свойством на его слизистую; препараты, быстро разрушающиеся (с периодом полувыведения в несколько минут), которые можно вводить длительно путем инфузии, обеспечивая тем самым их стабильную концентрацию в крови. Таким способом достигается немедленный эффект; причем 100% введенного лекарства, попадая в системное кровообращение, достигает тканей и рецепторов. Этот способ позволяет дозировать поступление лекарства, облегчает введение больших объёмов и раздражающих слизистую веществ, если они растворимы в воде и не оказывают повреждающего действия на эндотелий сосудов. Однако при таком способе введения лекарств увеличен риск побочных эффектов. Лекарства вводят либо болюсом, либо с помощью медленной инфузии. Такой способ введения непригоден для масляных или нерастворимых в воде лекарств. лекарственный абсорбция биотрансформация медицинский

Подкожный (п/к) способ обеспечивает быструю абсорбцию из водных растворов немедленную из некоторых, в основном, масляных растворов. Иногда п/к вводят нерастворимые суспензии или имплантируют твердые таблетки. Нельзя вводить п/к большие объёмы лекарств, а также раздражающие вещества. Абсорбция снижается при недостаточности периферического кровообращения. Повторные инъекции в одно и то же место могут привести к липоатрофии и неравномерной абсорбции (например, при п/к инъекции инсулина).

Внутримышечный (в/м) способ обеспечивает абсорбцию почти так же, как и при п/к введении. Способ пригоден для введения умеренных объёмов масляных растворов и некоторых раздражающих веществ.

Приём внутрь приводит к колебаниям величины абсорбции в зависимости от многих факторов: приём пищи; одновременный приём других препаратов, усиливающих перистальтику; разрушение препарата в кишечнике; задержка препарата в пищеводе при приёме его в положении лежа с небольшим количеством воды, тогда как надо принимать лекарства внутрь только в положении сидя и запивать 3-4 глотками воды. В результате этого даже в портальную систему, а затем и в системное кровообращение поступает лишь какая-то часть лекарства, принятого внутрь.

Важное значение имеет при этом механизм "кишечно-печеночной циркуляции" лекарства (повторная реабсорбция того же лекарства из кишечника). Лекарственное вещество, попадая в печень, образует конъюгаты, например с глюкуроновой кислотой, и в таком виде экскретируется с желчью в просвет кишечника. Будучи ионизированным соединением, этот конъюгат в просвете кишечника подвергается действию ферментов и бактерий, которые разрушают конъюгат и тем самым высвобождают из него свободное лекарство. После этого лекарственное вещество вновь всасывается через слизистую кишечника, после чего повторно абсорбируется (рсабсорбцпя) через слизистую кишечника и опять попадает в печень, где цикл повторяется с образования конъюгатов с глюкуроновой кислотой и т. д. При таких повторных циркуляциях лекарственное вещество каждый раз частично мстаболизируется и постепенно в виде метаболитов выводится с фекалиями. И все же такой механизм "кишечно-печеночной циркуляции" способен более длительно поддерживать эффект ряда препаратов (индометацин и др.).

Способ приёма лекарства внутрь наиболее удобный, относительно безопасный и экономичный. Однако при таком способе требуется активное участие больного в соблюдении режима частоты приёма назначенной дозы лекарства, притом часто нескольких лекарств одновременно. Абсорбция лекарства бывает неполной и нестабильной, если лекарство плохо растворимо и медленно абсорбируется. Она также зависит от времени прохождения через желудочно-кишечный тракт.

Приём пищи может повлиять:

на растворимость и абсорбцию препаратов, что приводит к повышению биоусвояемости ряда препаратов (пропранолол, метопролол, гидралазин, фенитоин, спиронолактон и др.) или к задержке абсорбции других препаратов (дигоксин, фуросемид, ацетилсалициловая кислота и др.);

на "эффект первого прохождения лекарства через печень";

на скорость элиминации (выведения из организма) лекарства. Например, богатая белком пища повышает, а богатая углеводами понижает скорость элиминации эуфиллина.

Сублингвальный (с/л) метод приёма может привести к более высокой абсорбции лекарства через слизистую рта и к более высокой концентрации препарата в крови, по сравнению с этими параметрами при приёме внутрь по следующим причинам:

большая часть лекарства при с/л приёме не проходит через печень и не метаболизируется в ней; не разрушается секретами желудочно-кишечного тракта; не связывается в нем составом пищи. Однако таким способом нельзя принимать лекарства неприятного вкуса или запаха, а также раздражающие слизистую оболочку или быстро разрушающиеся в полости рта. С/л приём в принципе возможен для нитроглицерина, нифедипина (предварительно разжевывая обычную таблетку; при этом абсорбция, по-видимому, осуществляется дистальнее, а не в полости рта), морфина, атропина, стрихнина, строфантина, а также, возможно, стероидных препаратов, гепарина и некоторых ферментов. Однако некоторые из указанных лекарств, к сожалению, либо обладают нежелательными органолептическими свойствами, либо быстро разрушаются в полости рта.

Буккальный метод приёма, или аппликация лекарства на слизистую оболочку полости рта, отличается от с/л приёма тем, что специальную лекарственную форму, например полимерную пленку (пластинку) с нитроглицерином (тринитролонг) или с изосорбида динитратом (динитросорбилонг) наносят на определенные участки слизистой рта (см. подробно в гл. II), где благодаря адгезивным свойствам она фиксируется на участке слизистой. При последующем медленном "рассасывании" лекарственной пленки быстро начинается абсорбция лекарства через слизистую полости рта непосредственно в системное кровообращение, минуя печень и неизбежный в этом органе метаболизм при первом прохождении. Положительные стороны способа, а также его ограничения подобны таковым для способа с/л приёма лекарств. Однако в отличие от с/л приёма этот способ может быть использован для пролонгирования действия лекарств, например нитроглицерина и изосорбида динитрата, а также, возможно для замены парентерального введения некоторых лекарств, в частности нитратов.

Ингаляционный способ позволяет некоторым сердечно-сосудистым средствам, например нитроглицерину, значительно быстрее абсорбироваться через слизистую полости рта, чем при с/л приёме. Этот способ больше всего пригоден для введения аэрозолей и порошков в бронхи при бронхолегочных заболеваниях для достижения в них высоких концентраций препарата. Однако сердечно-сосудистые препараты в виде аэрозолей, напротив, не должны попадать в бронхи из-за угрозы нежелательной резкой гипотонии при таком введении, например нитратов. Поэтому при их применении следует задержать дыхание, а струю лекарства направлять в сторону щеки или под язык. С экологической точки зрения неприемлемы аэрозоли с фреоном. Ингаляционный способ введения лекарств намного дороже с/л способа приёма, например нитроглицерина или изосорбида динитрата. При этом способе не исключена опасность передозировки препарата при быстрых повторных нажатиях клапана, а также попадания аэрозоля или порошка в помещение, где могут находиться люди, которым противопоказаны препараты подобного рода.

Трансдермальный (накожный) способ введения через неповрежденную кожу приемлем для небольшого числа лекарств. Абсорбция при таком способе пропорциональна растворимости лекарства в липидах, так как эпидермис представляет собой липоидный барьер. Она также зависит от площади аппликации трансдермальной формы в виде пластыря, диска или менее современной формы в виде мази. Этот способ применения нитроглицерина в настоящее время не столь популярен, как в 80-х годах, из-за нестабильности абсорбции, а также местного раздражающего действия и повышенной частоты развития толерантности (и даже тахифилаксии) к нитратам.

Ректальный способ применяют у больных с рвотой, в бессознательном состоянии, при застойных явлениях в области желудочно-кишечного тракта. После абсорбции в прямой кишке лекарство поступает в системное кровообращение, минуя печень.

Однако при таком приёме абсорбция лекарств нерегулярная и неполная, а многие препараты вызывают раздражение слизистой прямой кишки.

Связывание лекарственных веществ с белками крови и тканей.

Многие лекарственные вещества обладают выраженным физико-химическим сродством к различным белкам плазмы крови, прежде всего к альбумину. Связывание лекарственных веществ с белками плазмы приводит к снижению их концентрации в тканях и месте действия, так как только свободный (несвязанный) препарат проходит через мембраны.

Вещество, находящееся в комплексе с белком, лишено специфической активности. Свободная и связанная части лекарственного средства находятся в состоянии динамического равновесия. Иногда лекарственные вещества накапливаются в тканях в больших концентрациях, чем можно было бы ожидать, исходя из диффузионного равновесия. Этот эффект зависит от градиента рН, связывания лекарственного средства с внутриклеточными элементами и его распределения в жировой ткани. Клиническое значение имеют случаи, когда с белками крови связывается более 90% лекарственного вещества.

Нарушение связывания лекарственных веществ наблюдается при снижении концентрации альбуминов в крови (гипоальбуминемия) и связывающей способности белков крови при некоторых заболеваниях печени и почек. Даже снижение уровня альбуминов в крови до 30 г/л (в норме 33-55 г/л) может привести к значительному повышению содержания свободной фракции фенитоина. Клинически значимое увеличение уровня свободной фракции фуросемида происходит при снижении количества альбумина до 20 г/л.

ГЛАВА 3 ВСАСЫВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

ГЛАВА 3 ВСАСЫВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

М.И. Савельева

3.1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ВСАСЫВАНИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Абсорбция, распределение, метаболизм и выделение - биологические процессы, важные в оценке фармакокинетики ЛС. На эти процессы влияют физико-химическая природа ЛС и пути их введения в организм, что определяет начало действия, его продолжительность и интенсивность фармакологического ответа ЛС. Например, парентеральный (внутрисосудистый) путь введения ЛС лишён стадии абсорбции, что обеспечивает непосредственное начало его действия при введении в организм человека. Для внесосудистых (энтеральных, аппликационных и специализированных) путей введения ЛС, когда ЛС перед достижением системного кровотока диффундируют через барьер, характерна задержка начала действия, величина которой зависит от сложности барьера, физико-химических особенностей препарата и его лекарственной формы. Многочисленность путей введения обусловлена стремлением врача либо быстрее воздействовать на патологический процесс, либо осуществлять постоянное на него воздействие при длительной терапии, минуя пути разрушения ЛС в организме. Немаловажный фактор при выборе пути введения препарата - его доступность, возможность обойтись без посто-

янного наблюдения медперсонала, избежать развития нежелательных лекарственных реакций. Следующие разделы в этой главе систематизируют абсорбционный процесс и его особенности, в зависимости от путей введения ЛС в организм человека.

3.2. ПУТИ ВВЕДЕНИЯ ПРЕПАРАТОВ

Эти ЛС необходимо вводить непосредственно в системный кровоток, поэтому эти пути введения называют «парентеральные» или «внутрисосудистые».

Инъекционный путь введения непосредственно в сосудистую систему:

Внутривенный;

Внутриартериальный.

Основное достоинство внутривенного способа введения - непосредственное поступление препарата в кровь - обеспечивает быстроту наступления эффекта, а также точность дозировки. Внутривенный путь введения незаменим в экстренных ситуациях. ЛС можно вводить быстро (болюсно), относительно медленно (в течение нескольких минут), медленно и длительно (капельно). Последний способ нередко применяют в комбинации с болюсным внутривенным введением с целью быстрого достижения в крови терапевтической концентрации ЛС и последующего длительного его поддержания (например, введение лидокаина у больных с острым инфарктом миокарда, осложненным желудочковой экстрасистолией). Как внутривенный, так и внутриартериальный путь введения позволяет избежать быстрой биотрансформации препарата в печени, характерной для многих ЛС, применяемых перорально (пропранолол, верапамил, лидокаин и т.д.). Поэтому при внутриартериальном и внутривенном введении доза их в несколько раз меньше пероральной. Внутриартериальный путь введения используют значительно реже, чем внутривенный, и только по особым показаниям.

К этой категории относят ЛС, которые перед достижением системного кровотока должны пройти через тканевой барьер. Цель использования этих внесосудистых путей введения - достижение системного, а не местного эффекта.

Пероральные пути введения:

Пероральный;

Сублингвальный;

Буккальный.

Ингаляционный путь.

Инъекция в тело, но не в сосудистую систему:

Подкожная;

Внутримышечная;

Внутрикожная.

Назальный;

Ректальный;

Влагалищный.

К этой категории относят местные, или аппликационные внесосудистые пути введения ЛС, цель которых - достижение системного эффекта посредством нанесения ЛС на кожу. Абсорбция через кожу, которая представлена наиболее удалённым от сосудов роговым слоем (stratum corneum), - это более сложный путь, чем пути введения первой категории. В дополнение к физико-химическим особенностям препарата и его лекарственной форме, такие экологические факторы, как влажность, температура и физиологические условия кожи играют важную роль в абсорбционном процессе. Абсорбция ЛС, даже очень липофильных, происходит не сразу, так как концентрация препарата в плазме постепенно повышается после преодоления порога наименьшей концентрации.

Местные пути введения:

Трансдермальный;

К этой категории относят ЛС, имеющие специализированные пути введения, которые предназначены для местной и целевой терапии. В частности, эти внесосудистые пути введения используют врачи хирургических специальностей (нейрохирурги, торакальные и абдоминальные хирурги, офтальмологи, нефрологи, гинекологи и урологи). Несмотря на то, что цель их использования - достижение местного и целевого эффекта, часть препарата может достигать системного кровотока и соответственно вызывать системный эффект.

Вид инъекции:

Непосредственно в поражённый орган или в ткань;

Эпидуральный (также используют термины «перидуральный» и «экстрадуральный»);

Интрацекальный;

Интрацистернальный;

Интракардиальный;

Интравентрикулярный;

Интраокулярный;

Интраартикулярный;

Интраперитонеальный.

Пути введения через естественные отверстия:

Интрааурикулярный;

Внутриматочный;

Интрауретральный;

Конъюнктивальный.

Конъюнктивальное введение ЛС применяют для местной терапии заболеваний глаз. Конъюнктива хорошо абсорбирует препараты. Примером этого может служить местное использование различных ЛС для лечения глаукомы или офтальмологических инфекций.

В следующих разделах рассмотрим только те пути введения, где препараты должны пересечь барьер перед тем, как попасть в системный кровоток для общего распределения. Пути введения, которые обходят абсорбционный процесс и вызывают только местный эффект, в этой главе не рассмотрены.

3.2.1. Абсорбция ЛС в желудочно-кишечном тракте

Попадание ЛС в системный кровоток после всасывания из пищеварительного тракта определяется как последовательность проникновения препарата из просвета тонкой кишки через её стенку и последующей диффузией через капилляры в кровь.

3.2.1.1. Факторы, влияющие на абсорбцию в желудочно-кишечном тракте

Среди факторов, которые влияют на абсорбцию ЛС, введённых пероральным путём, важными считаются следующие.

Влияние различной региональной рН пищеварительного тракта на фармакокинетику (рКа) препарата.

Процесс эвакуации содержимого из желудка в кишечник, или желудочное опорожнение.

Кишечная подвижность, определяемая как наименьшее время транзита через тонкий кишечник (SITT).

Первичное прохождение:

Печёночное;

Желудочно-кишечная микрофлора;

Кишечные метаболические ферменты, типа цитохрома Р450 3А4 (СУР3А4);

Гликопротеин-Р.

Заболевания.

Другие факторы.

3.2.1.2. Влияние различного рН в пищеварительном тракте на абсорбцию препаратов

ЛС, введённые перорально, проходят через две различные среды: желудочную и тонкого кишечника. Кроме анатомических различий, существуют различия в рН, что влияет на абсорбцию слабокислых и основных веществ. Желудочный рН натощак очень низкий и сопоставим c pH 0,15 М HCl. Однако во время еды, из-за буферной роли пищи, желудочная рН повышается и таким образом она изменяется в течение всего дня. Щелочная среда тонкого кишечника остаётся более стабильной и мало меняется в течение жизни; рН тонкого кишечника возрастает от 5,5-6,0 - в двенадцатиперстной кишке до 9-11 - в подвздошной кишке (приблизительно).

Поскольку способность к всасыванию многих ксенобиотиков, которые являются либо слабыми кислотами или слабыми основаниями, зависит от константы диссоциации, то только неионизированные формы молекул способны к проникновению через мембрану барьера. Поэтому низкий рН желудка увеличивает концентрацию неионизированных слабокислых препаратов, а высокий рН кишечника формирует неионизированные слабоосновные препараты. Таким образом, слабоосновные препараты в желудке и слабокислые препараты в кишечнике находятся в ионизированной форме. Уравнение Гендерсона-Хассельбаха может быть использовано к взаимоотношениям между фармакокинетикой (рКа) препарата и рН пищеварительного тракта как отношение между ионизированными и неионизированными разновидностями молекул.

Поэтому при рН=2 для каждых 10 неионизированных молекул препарата А с рКа=3 только одна молекула будет ионизирована. Отношение меняется значительно для препарата В с рКа=8, где для каждой неионизированной молекулы 10 6 молекул будут ионизированы. При рН=7 отношения для препаратов А и В будут выглядеть как 10 -4 и 10 -1 соответственно. Таким образом, чем выше рН для слабоосновных препаратов, тем больше неионизированных молекул, а для кислых препаратов - больше ионизированных молекул и наоборот - при низком рН.

Было замечено, что, хотя слабокислые препараты находятся в основном в неионизированной форме в желудке, они абсорбируются главным образом в кишечнике. Причины этого: ограниченная поверхность желудка, непроницаемость желудочной стенки для малых гидрофильных молекул и короткий по времени промежуток нахождения ЛС в желудке. Таким образом, разумно предположить, что большинство слабокислых ЛС также абсорбируется в тонком кишечнике. Однако начало действия для кислых препаратов более раннее (непосредственно при попадании в тонкий кишечник), чем для основных препаратов.

3.2.1.3. Опорожнение желудка, или желудочная эвакуация

Опорожнение желудка и прохождение пищи в кишечник регулируется гуморальной и нервной системами. Сокращения желудка и тонкой кишки скоординированы между собой. Этот процесс можно представить в виде следующей схемы. Проглоченная пища, предварительно измельчённая в ротовой полости и смешанная со слюной, поступает в кардиальный отдел желудка. За счёт постоянных перистальтических движений пищевой комок перемещается в дистальный отдел. Дистальная часть желудка растирает пищу до мелких частиц и выполняет функцию ворот, пропуская в двенадцатиперстную кишку только жидкость и малые частицы, и не допуская обратного заброса пищи. Перистальтические сокращения проксимального и дистального отде-

лов желудка находятся под контролем блуждающего нерва, основным нейромедиатором которого выступает ацетилхолин. Ацетилхолин взаимодействует с рецепторами гладкомышечных клеток желудка, тем самым стимулируя их сокращение и расслабление во время акта глотания. Помимо этого, ряд гормонов также оказывает влияние на сокращения желудка, усиливая или ослабляя их. Например, холецистокинин снижает перистальтику проксимального отдела желудка, в то же время стимулируя сокращения дистального отдела, а секретин и соматостатин ослабляют сокращения обоих отделов.

Желудочная эвакуация занимает то время, за которое желудок освобождается от своего содержимого, которое дальше попадает в двенадцатиперстную кишку. Отклонение от нормального времени желудочной эвакуации в сторону увеличения способствует развитию задержки начала действия определённых ксенобиотиков и/или различных лекарственных форм препаратов. Согласно теории зависимости способности всасывания от константы диссоциации, слабоосновные препараты, ожидающие перехода в ионизированную форму в желудке, при медленной скорости желудочной эвакуации могли бы отсрочить начало действия основных ЛС. На скорость желудочной эвакуации влияют следующие факторы.

Препараты, которые блокируют ацетилхолиновые рецепторы гладкомышечных клеток желудка, задерживая эвакуацию желудочного содержимого (например, пропантелин ¤).

Высокая кислотность желудочного химуса также задерживает эвакуацию содержимого желудка.

Химический состав химуса в пределах желудка определяет время желудочной эвакуации. У людей жидкости выводятся приблизительно за 12 мин, а твёрдые частицы - приблизительно за 2 ч, в зависимости от химического состава химуса. Углеводы эвакуируются быстрее, чем белки, а белки быстрее, чем жиры.

Желудочная эвакуация соответствует калорийности содержимого желудка так, что число калорий, переданных тонкому кишечнику, остается постоянным для различных питательных веществ в течение долгого времени, но эвакуация содержимого из желудка идёт тем медленнее, чем более богата пища калориями.

Скорость желудочной эвакуации зависит от количества потребленной пищи. Например, изменение количества твёрдой пищи с 300 до 1692 г увеличивает время эвакуации из желудка с 77 до 277 мин. Размер частиц пищи также имеет значение, так как

крупные частицы пищи оказывают давление на стенки желудка, тем самым стимулируя эвакуацию содержимого желудка.

Моделирование рецепторов тонкого кишечника (например, дуоденальных рецепторов, чувствительных к осмотическому давлению) гипертоническим или гипотоническим раствором замедляет желудочную эвакуацию.

Температура твёрдой или жидкой пищи может влиять на скорость желудочной эвакуации. Температура выше или ниже физиологической нормы (37 °С) может пропорционально уменьшить эвакуацию содержимого желудка.

Другие факторы, такие, как гнев или ажитация могут увеличить скорость эвакуации из желудка, тогда как депрессии или травмы, предположительно, уменьшают её. Положение тела также имеет значение. Например, стоя или лёжа на правом боку, можно облегчить прохождение содержимого в тонкую кишку за счёт увеличения давления в проксимальной части желудка.

3.2.1.4. Кишечная подвижность, определяемая как наименьшее время транзита через тонкий кишечник

Тонкая кишка имеет длину приблизительно 300-400 см со щелочной средой. Тонкая кишка начинается с пилорического сфинктера, продолжается двенадцатиперстной кишкой, затем переходит в тощую кишку, далее - в проксимальный и дистальный отделы подвздошной кишки и заканчивается илеоцекальным клапаном, открывающимся в толстую кишку. В двенадцатиперстной кишке рН приблизительно 6,0 и постепенно увеличивается всюду по ходу тонкого кишечника. Тонкая кишка очень богата пищеварительными ферментами (липазы, протеазы, амилазы, эстеразы и нуклеазы). Кроме того, в ее просвет выделяется жёлчь, богатая мицеллами жёлчных солей и которая, в свою очередь, добавляется к содержимому тонкой кишки. Подвижность тонкого кишечника представляет собой сегментарное сокращение, состоящее из смешивающей и пропульсивной фаз. Но главный участок абсорбции в пищеварительном тракте находится в тощей кишке, так как желудок и ободочная кишка имеют небольшую всасывающую (абсорбционную) поверхность, а в просвете ободочной кишки имеется много бактерий, препятствующих абсорбционному процессу.

Кишечная подвижность имеет четко определенную цикличность и состоит из чередования пищеварительных и межпищеварительных

циклов. Один полный цикл может длиться от 90 до 120 мин у здоровых субъектов. Пищеварительный цикл, во время которого происходят основные процессы переваривания пищи, осуществляется тогда, когда перистальтическая деятельность желудка и тонкого кишечника замедляется. На 30-40 мин минимальной сократительной деятельности гладкой мускулатуры этих органов запускается межпищеварительный цикл, который представляет собой нарастающие круговые и мигрирующие по тонкой кишке сокращения, получившие название «перистальтические». За время перистальтического цикла из тонкого кишечника удаляется всё, что поступило и переварилось в тонкой кишке. Наконец, сокращения уменьшают частоту и интенсивность, и цикл повторяется снова. Прием пищи приостанавливает межпищеварительный цикл и устанавливает кишечный тип подвижности для пищеварительного цикла. Пищеварительный цикл включает в себя, главным образом, смешивающие сокращения с немногочисленными продвигающими (пропульсивными) сокращениями. Время транзита через тонкий кишечник (SITT) в течение пищеварительного цикла довольно трудно определить, и рассмотрение изменчивости среди людей и типов пищи остается вопросом открытым. Одно сообщение, однако, указывало, что SITT для 95% (SITT 95) здоровых людей составляет приблизительно 80 мин, со стандартным отклонением в 70 мин. Время транзита через пищевод, двенадцатиперстную кишку и тощую кишку для здоровых субъектов, которых кормили картофельным пюре, помеченным серой, как сообщалось, составило 378+90 мин.

Большинство факторов, которые играют важную роль в скорости желудочной эвакуации, такие, как присутствие жиров и/или увеличенный объём пищи, также влияют и на кишечную подвижность. Например, обильная пища, богатая жирами, требует более долгих и сильных кишечных сокращений.

3.2.1.5. Первичное прохождение через печень

После того, как препараты и питательные вещества были абсорбированы эпителием, они попадают в капилляры подслизистой оболочки, которые, в свою очередь, подходят к венам тонкой кишки. Вены тонкой кишки, после соединения с венами селезёнки и поджелудочной железы, транспортируют препарат и питательные вещества через систему воротной вены в печень. В печени ретикулоэндотелиальные клетки абсорбируют питательные вещества, мелкие части-

цы и капли, а гепатоциты метаболизируют свободные ЛС и питательные вещества. Ферментативная деятельность - самая важная составляющая всего цикла первичного прохождения через печень. Количество препарата, который элиминируется путём печёночного метаболизма, может быть оценен как процент удаления или как экстракционное отношение (ER), которое является отношением нормы метаболизма препарата через печень к норме поступления препарата в печень (рис. 3-1):

где Q - кровоток; С - концентрация препарата; ER - отношение извлечения.

Количество препарата, которое будет доступно для проявления системного эффекта, можно оценить в терминах фракции доступности (F оступности), которая избегает метаболизма первичного прохождения через печень:

Рис. 3-1. Схематичное представление абсорбции препарата из капилляров тонкой кишки через гепатопортальную вену в печень, где осуществляется метаболизм первичного прохождения, и то количество препарата, которое, избежав метаболизма первичного прохождения через печень, поступает в системный кровоток

Вышеприведённое уравнение основывается на метаболизме первого порядка и предполагается, что экстракционное отношение является постоянным для данного состава. В случае нелинейного метаболизма, из-за ограниченной вместимости ферментов для метаболизма, отношение извлечения будет являться дозозависимой переменной, которая уменьшается с увеличением дозы. Поэтому фракция доступности для системного эффекта (т.е. биодоступность) значительно увеличивается с увеличением дозы препарата.

3.2.1.6. Желудочно-кишечный метаболизм посредством микрофлоры

Желудочно-кишечная микрофлора представлена различными прокариотами и эукариотами, которые поселяются в пищеварительном тракте вскоре после рождения человека. Они колонизируют не только толстую кишку, но также и дистальный отдел подвздошной кишки. Все млекопитающие, включая человека, находятся в симбиозе с микробами. Примерами местной микрофлоры пищеварительного тракта у людей являются Bifidobacterium, Bacteroides fragilis и Bacteroides thetaiotaomicron. Во многих случаях они имеют важное значение для жизни хозяина. Поскольку желудочно-кишечная среда фактически существует без кислорода, то там отсутствует окисление, а для выживания в желудочно-кишечной среде бактерии выполняют биохимические реакции, и главным образом, - гидролиз. Микроорганизмы также способны разрушать коньюгированные метаболиты типа глюкуронидов, сульфатов, глутатионов и других форм коньюгатов. Другие эффекты микрофлоры пищеварительного тракта - сокращение кишечного времени транзита, гидролиз макромолекул, а также диетических полимеров в толстой кишке.

Тонкая кишка свободна от бактерий до дистального отдела подвздошной кишки, где микрофлора начинает увеличиваться в числе и разнообразии форм. В том случае, если бы активный компонент формы дозировки препарата не полностью абсорбировался перед достижением дистального отдела подвздошной кишки, то микрофлора метаболизировала бы его и переработанные продукты были бы полностью абсорбированы. Рассматривая разнообразие микрофлоры и их метаболических побочных продуктов, которые могут изменяться

от человека к человеку, следует иметь в виду, что тем самым они могут снижать биодоступность, эффективность и безопасность ЛС.

3.2.1.7. Желудочно-кишечный метаболизм посредством изоферментов цитохрома Р-450 (СУР3А4)

Среди важнейших ферментов, ответственных за метаболизм ксенобиотиков в организме человека, изозимы цитохрома Р-450 (СУР) - самая важная и исследованная группа ферментов. Их роль, классификация и функции будут обсуждены в отдельной главе. Подсемейство СУР, известное как СУР3А, наиболее изучено, поскольку СУР3А вовлечён в метаболизм более чем 50% всех ксенобиотиков. Член подсемейства СУР3А, изофермент СУР3А4 - основной цитохром Р-450 в человеческой печени. Его количество составляет в среднем около 30% от всех печёночных цитохромов Р-450 и это соотношение, возможно, возрастёт до 60% в индуцированной печени. В эпителиальном барьере тонкой кишки количество CУP3A4 составляет приблизительно 70% от общего числа цитохромов Р-450, представленных в тонкой кишке. Поэтому они играют важнейшую роль в кишечном метаболизме первичного прохождения препаратов, и эти препараты следует считать субстратами для СУР3А4. На системную доступность этих препаратов значимо влияет присутствие этого фермента не только в кишечнике, но также и в печени. Очевидно, присутствие ингибиторов или индукторов ферментативной системы увеличили бы или, наоборот, уменьшили бы соответственно доступность ЛС.

3.2.1.8. Эффект гликопротеина-Р

Гликопротеин-Р принадлежит к большой белковой группе мембранных активных транспортёров, которые существуют в различных областях организма человека, и известный как АТФ-транспортёр. В пищеварительном тракте этот белок присутствует на мембране эпителиальных клеток, обращённых в просвет тонкого кишечника, где выполняет функции транспортёра выведения или эффлюкса. Он является универсальным мембранным транспортёром, который действует в широком диапазоне эндогенных и экзогенных компонентов. Гликопротеин-Р структурирован таким образом, что играет определяющую роль в прохождении препарата сквозь мембрану клетки. Гликопротеин-Р - часть защитного механизма, который способствует вытеснению множества структурно разнообразных

ксенобиотиков из эпителиальных клеток. Таким образом, путём переноса ксенобиотиков из клеток этот белок уменьшает системную доступность ЛС, введённых в организм пероральным путём. В химиотерапии рака гликопротеин-Р является фокусом для стимулирования области множественного лекарственного сопротивления. В большом количестве исследований in vitro и in vivo было показано, что этот трансмембранный белок влияет на утечку числа структурно несвязанных ЛС, включая широко используемые противоопухолевые препараты (антрациклин р), блокаторы медленных кальциевых каналов (верапамил) и химиотерапевтических агентов (тамоксифен). Самая главная функция этого гликопротеина заключается в том, что он вызывает увеличение вытеснения химиотерапевтических агентов из опухолевых клеток. Такая точка зрения была предложена из-за близости гликопротеина-Р к СУР3А4, подобию их взаимодействию с различными веществами в тонком кишечнике и то, что их функции в кишечном барьере не только равны по значимости, но также дополняют друг друга.

3.2.1.9. Влияние пищи на абсорбцию в пищеварительном тракте

В общем виде, эффект пищевых продуктов на абсорбцию препаратов основан на их влиянии на уровень и степень всасывания. В определённых ситуациях уровень всасывания может меняться (задерживаться или ускоряться) в присутствии пищи, но степень абсорбции остаётся неизменной. Однако в некоторых случаях степень абсорбции уменьшается, а уровень всасывания остаётся неизменным. Очевидно, любое изменение в уровне всасывания затрагивает начало фармакологического ответа, тогда как изменение степени абсорбции может влиять на продолжительность действия препарата.

Взаимодействие пищи с ЛС в кишечнике - многостороннее и неоднозначное. Во-первых, пища может быть механическим барьером, препятствующим контакту ЛС с эпителием кишечника. Во-вторых, пища, стимулируя кровоток в пищеварительном тракте, способствует ускорению всасывания. В-третьих, пища может вступать с ЛС во взаимодействие, образуя хелатные комплексы (молоко, молочные продукты и другие пищевые смеси, содержащие ионы кальция, магния, железа, могут связываться с тетрациклинами, образуя нерастворимые

комплексы). Пища с высоким содержанием углеводов, жиров или белков значительно снижает всасывание ампициллина, оксациллина, изониазида. В то же время указанный состав пищи способствует лучшему всасыванию гризеофульвина. Необходимо также учитывать, что в пищевой массе лучше растворяются ЛС с большой молекулярной массой (спиронолактон, нитрофураны, гризеофульвин). Пища усиливает секрецию жёлчных кислот, в результате повышается растворимость, а следовательно, и абсорбция жирорастворимых ЛС (карбамазепина, спиронолактона, дикумарина, гризеофульвина и циклоспорина). Другой пример: увеличение степени абсорбции мидазолама, триазолама ¤ , нифедипина и циклоспорина, когда эти препараты запивают соком грейпфрута.

Не всегда замедление всасывания сопровождается уменьшением общего количества ЛС, попадающего в системное кровообращение, а приводит лишь к снижению максимальной концентрации его в крови и увеличению времени её достижения. Тем не менее, поскольку терапевтический эффект зависит от концентрации ЛС в крови, а не от поступившей в организм дозы, то замедление всасывания может привести к утрате эффекта, особенно в случае назначения препаратов с небольшим периодом полувыведения (например, фуросемид). Следовательно, если нужно быстро создать высокую концентрацию, то лучше принимать препарат до еды (если нет индивидуальных противопоказаний). При отсутствии экстренных ситуаций, когда необходимо проводить поддерживающую терапию, то целесообразнее назначать препараты после еды. Пищеварительные ферменты и витамины целесообразнее назначать во время еды, солевые препараты и большинство растительных настоек - после еды (если нет специальных показаний). В то же время следует учесть, что снижение всасывания (и биодоступности) при приёме с пищей некоторых препаратов еще не является показанием к их назначению перед едой, так как при этом ЛС может оказывать раздражающее действие, вызывать обострение гастрита, язвенной болезни или способствовать развитию диспепсических явлений.

Таким образом, влияние пищи на абсорбцию большинства ЛС неоднозначно, так как, наряду с действием пиши на кровоток, секрецию ферментов, количество сока, перистальтику, включаются и другие механизмы (исходное состояние функциональных систем, печени, характер пищи и многие другие факторы).

Таблица 3-1. Влияние пищи на всасывание препарата

Говоря о взаимодействии ЛС и пищи, следует отметить, что многие ЛС, особенно при длительном применении, могут нарушать всасывание некоторых ингредиентов пищи и в итоге вызывать различные патологические состояния. Например, гормональные пероральные контрацептивы нарушают всасывание фолиевой, аскорбиновой кислот, рибофлавина; антикоагулянты непрямого действия подавляют всасывание витамина К ♠ , слабительные средства - всасывание всех жирорастворимых витаминов и т.д.

3.2.1.10. Влияние заболеваний

Такие серьезные заболевания, как язвенный колит и болезнь Крона (воспалительные заболевания кишечника) могут значительно уменьшать степень всасывания препаратов. Кроме того, сообщалось, что освобождение желудка может быть отсрочено у пациентов с сахарным диабетом. Болевой синдром, снижение АД, кровотечение также вызывают достоверное снижение абсорбции ЛС из пищеварительного тракта.

В зависимости от типа болезни, можно ожидать различные изменения в процессе абсорбции препаратов.

3.2.1.11. Другие факторы, влияющие на абсорбцию при пероральном приеме лекарственных средств

Так называемые нефизиологические факторы, которые также могут влиять на всасывание препаратов.

ЛС могут существовать в виде рацемической смеси R и S энантиомеров. Различные энантиомеры имеют различный уровень и степень абсорбции и поэтому могут давать различные фармакологические ответы.

Составные части различных лекарственных форм препарата могут приводить к различному уровню и степени всасывания. Например, так называемая пероральная форма управляемого медленного высвобождения имеет другой профиль абсорбции, отличающийся от обычных твёрдых лекарственных форм, которые готовятся путём прямого сжатия.

Физико-химические свойства препаратов (гидрофобность и гидрофильность) влияют на абсорбцию. Препараты с более высоким коэффициентом разделения обычно всасываются быстрее и более полно. Например, гидрофобные β-адреноблокаторы пропранолол и метопролол имеют более быстрый уровень всасывания и высокую степень абсорбции, чем гидрофильньные атенолол и надолол ® . Тип соли или кристалла, входящего в препарат, может иметь различную плотность и, следовательно, может изменять абсорбционное поведение препарата.

Выбор времени приёма препаратов относительно режима питания - также важный фактор, который может повлиять на их абсорбцию. Например, прием пенициллина G или эритромицина за 1 ч до еды или спустя 2 ч после того, улучшает уровень и степень всасывания этих препаратов. Приём препаратов непосредственно во время еды вызовет снижение скорости желудочной эвакуации и увеличит время нахождения в кислой среде желудка. Уровень и степень всасывания некоторых препаратов, типа галофантрина p , улучшается при совместном приёме с жирными пищевыми продуктами.

Разрушение и растворение твёрдой формы может также ограничить степень абсорбции препаратов. Различия в характере наполнителей лекарственных форм могут быть причиной значительных отличий в концентрациях ЛС в крови у одного и того же больного. В таких случаях говорят об отсутствии биоэквивалентности разных лекарственных форм.

3.2.2. Основные механизмы абсорбции в пищеварительном тракте

Основные механизмы, вовлечённые в транспорт препаратов через всасывающий эпителий пищеварительного тракта в системное кровообращение, заключаются в следующих этапах.

Пассивная диффузия:

Транцеллюлярная (чрезклеточная) диффузия;

Парацеллюлярная (околоклеточная) диффузия.

Трансцеллюлярная диффузия, опосредованная носителем или курьером (облегчённая диффузия).

Транцеллюлярная диффузия посредством гликопротеиного-Р эффлюкса.

Активный транспорт.

Пиноцитоз.

Два других механизма могут, по возможности, быть вовлечены в абсорбцию препаратов из пищеварительного тракта:

Сопротивление растворителю;

Ион-парная абсорбция.

3.2.2.1. Пассивная диффузия: трансклеточная и параклеточная

Пассивная диффузия играет важную роль в большом количестве физиологических процессов. Большинство ЛС транспортируется через мембрану пищеварительного тракта путём пассивной диффузии. Движущая сила в этом типе проникновения через барьер - разность концентрации между средой в полости пищеварительного тракта и системным кровообращением. Это означает, что концентрация препарата больше на участке поглощения. Рассматривая большой объём системного кровотока и меньший объём жидкости в пищеварительном тракте, можно констатировать, что концентрация препарата на участке всасывания больше, чем концентрация свободного препарата в системном кровотоке.

3.2.2.2. Трансцеллюлярная диффузия посредством переносчика (облегченная диффузия)

Когда абсорбция напоминает пассивную диффузию, но при этом опосредованно использует носитель или курьера, то этот процесс называют трансцеллюлярной диффузией, опосредованной носите-

лем, или облегчённой диффузией. Крупные гидрофильные молекулы, которые не распадаются в липидной части барьера, и если их размеры больше, чем поры барьера, то они могут использовать другой тип транспорта. Мембрана содержит макромолекулы, которые действуют как переносчик и тем самым облегчают прохождение препарата через мембрану, не затрачивая при этом энергию. Скорость прохождения зависит от следующих факторов:

Градиента концентрации препарата;

Количества макромолекул, т.е. переносчиков, предоставленных для абсорбции;

Уровня взаимодействия препарата с переносчиком (т.е., и вместе - на входе в мембрану, и порознь - на выходе из мембраны);

Коэффициента прохождения комплекса переносчик-препарат через мембрану.

Очевидно, что воздействие любого из предложенных механизмов может ограничивать абсорбцию.

Хотя облёгченный транспорт - это процесс, не требующий энергетических затрат и который не противостоит градиенту концентрации, тем не менее он имеет существенные отличия от пассивной диффузии: этот процесс зависит от количества курьеров, находящихся в барьере, что, в свою очередь, может проявиться так называемым феноменом насыщения. Поэтому при высоких концентрациях препаратов абсорбционная кинетика может стать нелинейной. Важно отметить, что только несколько экзогенных составляющих используют облегчённый транспорт. Среди них - эндокринные стероиды (рецептор - опосредованная клеточная абсорбция) и витамин В 12 (гликопротеин-опосредо- ванный кишечный транспорт).

3.2.2.3. Транцеллюлярная диффузия посредством P-гликопротеинного эффлюкса

Гликопротеин-Р с молекулярной массой 170 кД - АТФ-зависимый транспортёр эффлюкса, взаимодействует с большим количеством ксенобиотиков. Этот белок распространён в большом количестве тканей, особенно в эпителиальных клетках пищеварительного тракта, печени, почках, поджелудочной железе и в капиллярах эндотелия мозга и яичек. Его главная физиологическая роль - предотвратить смерть клетки путём перекачки препарата из клетки против градиента концентрации. Этот белок известен как ответственный за так называемое множественное лекарственное сопротивление. Снижая внутрикле-

точные концентрации препаратов, он препятствует им в достижении их терапевтических целей. Роль гликопротеина-Р состоит в ограничении абсорбции в пищеварительном тракте и в биодоступности ЛС, имеет важное защитное значение для организма человека.

3.2.2.4. Активный транспорт

В активном транспорте, подобном облегчённому транспорту, переносчики используются, чтобы передать через барьер определённые молекулы. Переносчики - это белки, и как противоположность облегчённого транспорта, они требуют затрат энергии для абсорбции. Активный транспорт происходит, главным образом, против градиента концентрации и только в некоторых органах - в кишечнике, печени и почках. Поскольку процесс требует затрат энергии, а концентрация переносчиков белка ограничена, то активный транспорт способен к проявлению эффекта насыщения. Кроме того, курьеры белка подвержены конкурентному ингибированию составами подобной структуры. Пути активного транспорта в тонком кишечнике необходимы для транспорта определённых питательных веществ, типа урацила, холина, производных фолата и солей жёлчи. Молекулы препарата, структурно похожие на эти питательные вещества, используют те же самые пути абсорбции. Например, противоопухолевый препарат фторурацил использует путь урацила, а другой протиопухолевый препарат - метотрексат - использует путь производных фолата.

Точный механизм активного транспорта неизвестен. Очевидно, переносчики должны быть весьма специфичными для определён- ных составов ЛС. Например, белковый переносчик может захватить молекулу препарата, пройти через не требующее энергии конформационное изменение и, перевернувшись на 180°, выпустить его в противоположной стороне (рис. 3-2, а). Другой сценарий: белковый курьер мог бы быть очень большой молекулой со связанными между собой участками и функциональными группами через всю её поверхность, позволив тем самым перевозить молекулы препарата между связанными участками к противоположной стороне (рис. 3-2, б).

3.2.2.5. Пиноцитоз

В этом типе абсорбции ЛС с большими молекулами, типа белковых или липофильных переносчиков, таких как липосомы или капельки микроэмульсии, могут пересекать мембрану путём впитывания этой

Рис. 3-2. Гипотетические механизмы активного транспорта: а - прямая гипотеза; б - курсирующая гипотеза

мембраной молекулы препарата или комплекса (препарата вместе с переносчиком). Процесс начинается, когда мембрана охватывает молекулу или частицу, прерывается и формирует покрытую мембраной частицу. Затем покрытая молекула или частица транспортируется сквозь барьер, где препарат или частица высвобождается из мембраны.

Мы знаем очень немного о физиологическом значении пиноцитоза. Он не относится к главным механизмам абсорбции препаратов, хотя этот процесс мог бы быть ответственным за транспортировку малых количеств макромолекул.

3.2.2.6. Абсорбция, зависимая от растворителя

Предполагается, что в этом типе механизма абсорбция препарата зависит от физико-химических особенностей растворителя. Поэтому проникновение растворителя будет способствовать транспорту рас- творённых в нём молекул препарата сквозь мембрану.

3.2.2.7. Ион-парная абсорбция

Согласно теории зависимости степени абсорбции от константы диссоциации, ионизированные формы препаратов не могут непосредственно диффундировать через биологический барьер, однако много

ионизированных препаратов, типа четвертичных аммониевых соединений и серных кислот, абсорбируются после перорального приёма. Механизм абсорбции ионизированных молекул не совсем ясен. Одно из объяснений - гипотеза абсорбции ионной пары. Согласно этой гипотезе, противоположно заряженные молекулы могут взаимодействовать и формировать нейтральный комплекс. Затем нейтральный комплекс пересекает биологический барьер путём пассивной диффузии. Поскольку формирование нейтрального комплекса представляет собой простое химическое равновесие, то избыток одного иона может увеличить формирование комплекса. Таким образом, формирование и поглощение комплекса зависит от концентрации одного или обоих ионов, и эта зависимость вносит свой вклад в беспорядочное поглощение препарата. Это означает, что формирование комплекса может ограничивать абсорбционный процесс. Разрушение комплекса также базируется на химическом равновесии. При попадании нейтрального комплекса внутрь мембраны установится новое равновесие, и все три химические разновидности молекулярных частиц - положительные, отрицательные и нейтральные - будут присутствовать в мембране одновременно. Как только заряженные молекулы покидают барьер, так больше нейтральных комплексов распадается на заряженные молекулы. Эта гипотеза полностью подтверждена экспериментальными данными in vivo.

3.2.3. Абсорбция при других существующих путях введения препаратов

3.2.3.1. Сублингвальная и буккальная абсорбция

Абсорбция происходит в присутствии слюны с рН, приблизительно равной 6,0 или 7,0. Всасывание препаратов осуществляется через обильно васкуляризированную слизистую оболочку в системный кровоток только посредством пассивной диффузии или пиноцитоза и ограничено молекулярной массой препарата. Этот путь введения наиболее подходит для препаратов, которые нестабильны при низкой рН желудка, разрушаются пищеварительными ферментами или подвергаются метаболизму в печени. Однако поток собственной слюны со скоростью 0,5 мл/мин может смывать препарат с участка абсорбции в желудок. Поэтому лекарственная форма может также играть важную роль в сублингвальном/буккальном всасывании и его биодоступнос-

ти. Кроме того, известно, что с возрастом абсорбция в пищеварительном тракте постепенно уменьшается, а сублингвальное/буккальное всасывание сохраняет свое постоянство.

Известную способность нитроглицерина и изосорбида динитрата всасываться через слизистую оболочку полости рта используют в новых буккальных лекарственных формах этих препаратов, способных достаточно длительно поддерживать терапевтическую концентрацию препаратов в крови.

3.2.3.2. Ингаляционный путь

Абсорбция ингалируемых субстанций, выпускаемых в виде аэрозолей или газов, осуществляется от мембраны или слизистой оболочки носа, глотки, трахеи, бронхов, бронхиол, альвеолярных мешочков и альвеол. Этот путь введения используют для достижения местного, а также системного эффекта. Всасывание жирорастворимых и летучих газов, типа эфира и хлороформа, осуществляется очень быстро, а системный анестезирующий эффект проявляется практически мгновенно. Водорастворимые газы не проникают дальше носоглоточной области. Абсорбция препаратов в форме аэрозолей, представляющих рассеянные твёрдые частицы или капельки, зависит от депозиции этих частиц или капелек. Размер частиц и скорость воздушного потока ограничивает их перемещение через лёгочную систему. Крупные частицы (5-30 мкм) остаются в носоглоточной области. Мелкие частицы (1-5 мкм) оседают в трахее, бронхах и бронхиолах в виде осадка. Самые мелкие частицы (1 мкм) проникают глубоко в лёгочное дерево, достигают альвеолярных мешочков и растворяются в имеющейся там жидкости. Поэтому всасывание мелких частиц, которые как бы пойманы в жидкостную ловушку, происходит главным образом через пассивную диффузию. Частицы также могут проникать непосредственно через эпителиальную мембрану и абсорбироваться посредством пиноцитоза. Ингаляционный путь введения широко используют в анестезиологии для проведения ингаляционного наркоза (введение анестетиков) и в пульмонологии, где в последние годы с успехом применяют β 2 -адреномиметики, ингаляционные глюкокортикоиды и М-холиноблокаторы.

Препараты, введённые ингаляционным путём, оказывают системный эффект, избегая этапов прохождения низкого рН желудка и первичного прохождения через печень. Однако абсорбция и биодоступность препаратов, введённых путём ингаляции, может быть непосто-

янной из-за случайного удаления частиц при выдохе или кашле. Стоит отметить, что максимальная воздушная вместимость лёгких равна приблизительно 5700 см З, а общий воздушный поток, проходящий через лёгкие при вдохе и выдохе, при активном нормальном дыхании равен приблизительно 4500 см З; поэтому в лёгких сохраняется только 1200 см З воздуха. Число дыханий в минуту - около 12-20. В покое этот объём воздуха снижается до 500 см З. Скорость потока воздуха очень высока в носоглоточной области и уменьшается по мере достижения альвеол. Следовательно, если частицы не успели абсорбироваться, то при выдохе они удаляются с участка абсорбции. Для мелких частиц всегда существует большая вероятность быть удалёнными при выдохе. Само собой разумеется, что при кашле или чихании может быть удалено с участка абсорбции существенное число частиц, особенно если это происходит сразу же после ингаляции препарата.

3.2.3.3. Подкожное всасывание

Подкожное введение обычно используют для инъекции маленьких объёмов вакцин или препаратов, типа инсулина и местных анестетиков. Этот способ также используют для имплантирования препаратов с лекарственной формой по типу медленного высвобождения, в виде полимерных палочек и шариков. После введения препараты распространяются путём пассивной диффузии, чтобы достигнуть первичной мембраны капиллярной стенки. Если состав ЛС является липофильным, то он может распространиться непосредственно через капиллярную мембрану путём трансцеллюлярной пассивной диффузии. Водорастворимые препараты диффундируют через проложенные поры и везикулярные каналы мембраны путём параклеточной пассивной диффузии. Таким образом, подкожное введение способствует быстрому всасыванию водорастворимых веществ, масляные же растворы всасываются медленно, и их всасывание обычно сопровождается выраженными болевыми ощущениями. Достижение системного эффекта при подкожном введении зависит от лекарственной формы препарата и скорости кровотока в данной области. Поэтому факторы, вызывающие сужение капилляров (охлаждение, приём вазоконстрикторов), значительно уменьшают абсорбцию препаратов с этого участка.

3.2.3.4. Внутримышечное всасывание

Абсорбция при внутримышечном введении препаратов похожа на абсорбцию при подкожном введении. Липофильные составы всасы-

ваются очень быстро путём трансцеллюлярной пассивной диффузии, тогда как жиронерастворимые молекулы абсорбируются путём параклеточной пассивной диффузии через проложенные поры и везикулярные каналы. Уровень абсорбции зависит от следующих факторов:

Препараты всасываются быстрее из дельтовидной мышцы, чем из ягодичной.

Абсорбция препаратов из ягодичной мышцы у людей с более низким соотношением жировой ткани к мышечной быстрее, чем у людей с более высоким соотношением.

Местное проникновение жирорастворимых веществ выше у людей с более высоким соотношением жировой ткани к мышечной, чем у людей с более низким соотношением.

Абсорбция препаратов при внутримышечном введении зависит от кровотока. Кровоток в мышцах в покое равен приблизительно 3-4 мл/мин в 100 г мышечной массы. Он увеличивается до максимума, который составляет 80-90 мл/мин в 100 г мышечной массы. Поэтому абсорбция препаратов из мышц у активных людей происходит быстрее, чем у людей, ведущих малоподвижный образ жизни.

Препараты, введённые в мышцу или подкожную область, в отличие от попавших в пищеварительный тракт, не ограничены в сроках нахождения в данных областях, поэтому возможно использование форм медленного высвобождения.

Если препараты введены в форме раствора, эмульсии или суспензии, то максимальный объём не должен превышать 10 мл.

Внутримышечное введение может использоваться для препаратов, которые разрушаются в пищеварительном тракте или же плохо всасываются, однако неполное всасывание может также проявиться и в мышцах из-за выпадения в осадок или разложения препаратов. Кроме того, некоторые состояния (гипотония и болезни органов кровообращения) могут также уменьшать уровень и степень абсорбции.

3.2.3.5 Внутрибрюшинная абсорбция

Брюшина с её большой площадью поверхности и богатым кровоснабжением представляет собой участок абсорбции или ресорбции препаратов для внутрибрюшинного введения. Препарат, поступивший в кровь брюшинной капиллярной сети, достигает портального кровообращения и доставляется в печень, а затем и в ткани организма. Поэтому препарат может подвергаться элиминации при первичном прохождении через печень. В практической медицине внутрибрю-

шинный обмен препаратами используют при проведении перитонеального диализа. Препараты, добавленные к диализату (растворы для диализа), попадают в системное обращение посредством пассивной диффузии или могут быть удалены из системного обращения вместе с диализатом, который не содержит никакого препарата.

3.2.3.6. Внутрикожная абсорбция

Участок инъекции при внутрикожном введении ЛС расположен ниже рогового слоя (stratum corneum). Этот путь введения не используют для достижения системного эффекта. Внутрикожную инъекцию часто применяют для аллергического тестирования ЛС или для введения нескольких вакцин, которые предназначены для определения местной реакции, например, с диагностической целью.

3.2.3.7. Интраназальная абсорбция

Назальный путь введения ЛС можно рассматривать как удобный способ введения для достижения системного эффекта. Носовой проход покрыт высокоспециализированным и уникальным эпителием, в состав которого входят: обонятельный эпителий, щёточные клетки, бокаловидные клетки, ресничатые и базальные клетки. Важная особенность этого участка абсорбции - способность эпителия метаболизировать ксенобиотики. Число изоформ цитохрома Р-450, типа СУР1А1, СУР2В1 и СYР4В1 выявлено в полости носа в нескольких различных разновидностях. Поэтому носовой метаболизм может уменьшать биодоступность препаратов. Область всасывания начинается в носовых ходах и заканчивается в глотке. Абсорбция препаратов из этого участка осуществляется также посредством пассивной диффузии. Жирорастворимые газы абсорбируются или метаболизируются эпителием. Нерастворимые частицы обычно удаляются или проглатываются после их депозиции. Водорастворимые газы или частицы, растворённые в слизи, проходят через эпителий и проникают в капилляры. Другие факторы, которые могут влиять на абсорбцию препаратов с этого участка, - это кровоснабжение данной области, вязкость слизи и скорость её выработки, рН, доза ЛС, экологические факторы (влажность и температура).

3.2.3.8. Ректальная абсорбция

Прямая кишка длиной 15-20 см и площадью поверхности 200- 400 см 2 расположена в терминальной части толстой кишки. Этот

участок абсорбции имеет рН между 7,4 и 8,0 с ограниченной буферной ёмкостью и температурой 37 °С. Это - высоковаскуляризированная область. Верхняя ректальная артерия - главная артерия, а венозная сеть ректальной области включает верхнюю ректальную вену, среднюю ректальную вену и нижнюю венозную ректальную систему. Верхняя ректальная вена связана с гепатопортальной венозной системой; средняя и нижняя вены впадают в нижнюю кавальную вену. Поэтому препараты, абсорбируемые в верхней части прямой кишки, попадают в верхнюю ректальную вену и подвергаются метаболизму при первичном прохождении через печень перед распределением в тканях. Препараты, которые всасываются в среднюю и нижнюю ректальные вены, избегают печени и распределяются по телу, путем абсорбции попадая в системное кровообращение. Механизмы абсорбции на этом участке соответствуют трансцеллюлярной и параклеточной пассивной диффузии. Доказано, что в прямой кишке отсутствуют активные виды абсорбции и курьер-опосредованный транспорт. Немногие преимущества использования этого пути введения препаратов заключаются в следующем.

Это устойчивая среда для всасывания препаратов; рН, вязкость и температура постоянны, ректальная подвижность очень низкая, и время нахождения препаратов в прямой кишке зависит от акта дефекации. Данные условия подходят для препаратов с лекарственной формой по типу медленного высвобождения.

Лимфатическая циркуляция в ректальной области существенна, и поэтому препараты, действие которых направлено на лимфу, можно вводить ректально.

В прямой кишке нет ферментов, и поэтому нет метаболизма на этом участке, однако метаболическая деятельность кишечной флоры продолжает оставаться существенной проблемой.

Альтернативный путь введения препаратов, для которых характерна низкая биодоступность после перорального приёма.

Это удобный путь введения препаратов для пациентов, которые не могут принять твёрдые формы дозировки через рот, например, младенцы, пациенты в бессознательном состоянии, пожилые люди.

Ректальный путь введения препаратов имеет несколько недостатков:

Элиминация при первичном прохождении через печень препарата, абсорбированного в верхней части прямой кишки.

Непригодность введения раздражающих препаратов.

Непостоянная биодоступность.

3.2.3.9. Внутривлагалищная абсорбция

Абсорбция происходит в высоковаскуляризированной области влагалища; рН этой среды во взрослой популяции обычно кислая - между 4,0 и 5,0. Низкая рН обусловлена ферментативным процессом брожения нормально секретируемого гликогена в молочную кислоту посредством бактерий, которые обычно колонизируют этот участок. Большинство вагинальных форм дозировок предназначено для проявления местного эффекта (клотримазол, флуконазол, препараты, нормализующие микрофлору влагалища и др.); однако этот участок может быть эффективно использован для достижения системного эффекта, например, для препаратов, содержащих прогестерон. Абсорбция из этого участка происходит посредством трансцеллюлярной и парацеллюлярной пассивной диффузии.

3.2.3.10. Трансдермальная абсорбция

Механизм чрезкожной абсорбции ксенобиотиков, хотя и базируется на диффузии, но отличается от вышеупомянутых путей введения препаратов из-за сложности этого барьера. Кожа состоит из следующих слоёв.

Эпидермис, состоящий из рогового, зернистого, шиповатого и зародышевого (базального) слоя.

Дерма представлена соединительной тканью, жировой тканью, капиллярами и железистой тканью.

Придатки кожи включают: потовые железы, сальные железы и волосяные фолликулы.

Внешний роговой слой (stratum corneum) ограничивает абсорбцию. Роговой слой представлен плотно упакованным кератином, поэтому он предотвращает всасывание. Возможность прохождения через кожу ксенобиотиков обеспечивают придатки кожи, которые составляют приблизительно 1% от общей площади поверхности тела. Передача препаратов через эти открытые доступы быстра, но не представляет существенной важности, по сравнению с абсорбцией через 99% оставшейся площади поверхности. Поэтому два главных механизма, чрезкожная абсорбция и абсорбция через придатки кожи, участвуют во всасывании препаратов через кожу. Дерма или собственно кожа - слой выше подкожной области. Когда препараты достигают дермы,

то они могут свободно диффундировать в капилляры подкожной области и попасть в системное обращение. Уровень и степень трансдермальной абсорбции зависят от следующих факторов:

Факторы, связанные с кожей:

Целостность кожи и её состояние;

Частота применения (нанесения) препаратов;

Место нанесения препарата;

Площадь нанесения препарата;

Кожная биотрансформация из-за присутствия на ней ферментов.

Изоферменты цитохрома Р-450:

Ферменты II фазы метаболизма.

UDP-глюкуронозил трансфераза:

Рибизозимы трансферазы глутатиона;

Катаболические ферменты:

Протеазы;

Гликозидазы;

Фосфатазы.

Факторы, связанные с препаратом:

Коэффициент разделения (разведения) препарата;

Частица и молекулярный размер;

Вязкость;

Коэффициент диффузии препарата в лекарственной форме;

Коэффициент диффузии препарата в коже.

Экологические факторы:

Температура;

Влажность;

Скорость воздушного потока.

Дополнения, усиливающие проникновение агентов в лекарственной форме:

Алкоголь или другие органические растворители;

Сурфактанты (сульфат лаурила натрия);

Запрещенные составы, такие, как диметилсульфоксид (dmso), диметилформамид (dmf), диметилацетамид (dma).

Традиционно накожные аппликации применяли для местных воздействий, в последние годы трансдермальный путь введения при- обрёл большое значение и для системного введения ЛС. Например, в кардиологии для профилактики приступов стенокардии широко используют нитроглицериновую мазь, пластыри. Дерма проницаема как для жирорастворимых, так и для полярных водорастворимых соединений. Через эпидермис хорошо проникают только жирорастворимые соединения, а ионы, не растворимые в липидах, проникают медленно, минуя липидный барьер эпидермиса через волосяные луковицы и сальные железы.

Таким образом, знание особенностей всасывания ЛС при различных способах введения помогает врачу правильно назначать препарат, определять дозу ксенобиотика и схему его приёма.

Литература

Amlacher R., Hartl А., Neubert R. et al. Influence of ion-pair formation оп the pharmacokinetic properties of drugs: pharmacokinetic interactions of bretylium and hexasalicylic acid in rabbit // J Pharm. Pharmacol. - 1991. - Vol. 43. - P. 794.

Burks T.F., Galligan J.J., Porreca F., Barker W.D. Regulation of gastric emptying // Fed. Proc. - 1985. - Vol. 44. - P. 2897.

Christian Р.Е., More J.G., Sorenson J.A. et al. Effect of meal size and correction technique оп gastric emptying time: studies with two tracers and opposed detectors // J. Nucl. Med. - 1980. - Vol. 21. - P. 883.

Ehle F. R., Robertson J. В., Van Soest. Inf1uence of dietary fibers оп fermentation in human large intestine // J. Nutr. - 1982. - Vol. 112. - P. 156.

Finegold S.M., Sutter V.L., Mathisen G.E. Normal indigenous intestinal flora // Human Intestinal Microflora in Health and Disease / Ed. D.J. Hentges. - N.Y.: Academic Press, 1983.

Gibaldi М. Limitation of classical theories of drug absorption // Drug Absorption / Eds L.E. Prescott, W.S. Nimmo. - Lancaster: МТР Press Limited Falcon House, 1981.

Guyton А.С., Hall J.E. Textbook of Medical Physiology. - Philadelphia: W.B. Saunders, 1996. - 793 p.

Hall S.D., Thummel К. Е, Watkins Р.В. et al. Molecular and physical mechanism of first-pass extraction // Drug Metab. Dispos. - 1999. -

Vol. 27. - P. 161.

Hartl А., Amlacher R., Neubert R., Hause. С. Influence of ion-pair formation of beryllium and hexylsalicylic acid оп their blood levels in dogs //

Pharmazie. - 1990. - Vol. 45. - P. 295.

Hayton W.L. Rate-limiting barriers to intestinal drug absorption: а review // J. Pharmacokinet. Biopharm. - 1980. - Vol. 8. - P. 321.

Kim R.B., Fromm M.F., Wandel С. et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of protease inhibitors // J. Clin.

Invest. - 1998. - Vol. 101. - P. 289.

Lown K. S., Baily D. G., Fontana .R. J. et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal СУР3А4 protein expression // J. Clin. Invest. - 1997. - Vol. 99. - P. 25-45.

Lown K. S., Мауо R. R., Leichtman А. B. et al. Role of intestinal P-glycoprotein (mdr 1) in interpatient variation in the oral bioavailability of cyclosporin А // Clin. Pharmacol. Ther. - 1997. - Vol. 62. - P. 248.

Nimmo W.S. Gastric emptying and drug absorption // Drug Absorption / Eds L.E. Prescott, W.S. Nimmo. - Lancaster: МТР Press Limited Falcon

Oberle R.L., Amidon G.L. The influence of variable gastric emptying and intestinal transit rates оп the plasma level curve of cimetidine: ап explanation for double peak phenomenon // J. Pharтасоkiπеt. Biopharm. - 1987. - Vol. 15. - P. 529.

O"Reilly S, Wison C.G., Hardy J.G. The influence of food оп the gastric emptying of multiparticulate dosage forms // Int. J. Pharm. - 1987. -

Vol. 34. - P. 213.

Pond S.M., Tozer T.N. First-pass elimination: basic concepts and clinical consequences // Clin. Pharтасоkin. - 1984. - Vol. 9.

Rabinson P.H., Moran Т., McHugh P.R. Inhibition of gastric emptying and feeding by fenfluramine // J. Physiol. - 1986. - Vol. 250.

Savage D.C. Gastrointestinal microflora in mammalian nutrition // Аnnu.

Rev Nutr. - 1986. - Vol. 6. - P. 155.

Ueda K., Yoshida А., Amachi Т. Recent progress in P-glycoprotein research //

Anticancer Drug Des. - 1999. - Vol. 14. - P. 115.

van der Ohe М., Camillari М. Measurements of small bowel and colonic transit: indications and methods // Мауо Clin. Proc. - 1992. - Vol. 67. -

Welling P.G. Effect offood оп drug absorption //Аnnu. Rev. Nutr. - 1996. -

Vol. 16. - P. 383.

Yu D.K. The contribution of P-glycoprotein to pharmacokinetic drug-drug interaction // J. Clin. Pharmacol. - 1999. - Vol. 39. - P. 1203-1211.

Клиническая фармакокинетика: теоретические, прикладные и аналитические аспекты: руководство / Под ред. В.Г. Кукеса. - 2009. - 432 с

Прочитайте:
  1. F1 Психические и поведенческие расстройства вследствие употребления психоактивных веществ
  2. F19 Психические и поведенческие расстройства в результате сочетанного употребления наркотиков и использования других психоактивных веществ
  3. II. РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ В ОРГАНИЗМЕ. БИОЛОГИЧЕСКИЕ БАРЬЕРЫ. ДЕПОНИРОВАНИЕ
  4. S: Как называется на латинском языке формообразующие вещества?
  5. S: Сколько ЛС, содержащих ядовитое или наркотическое вещество можно выписать на одном рецептурном бланке?

Всасывание (абсорбция) лекарственных веществ - проникновение лекарств через биологические мембраны в сосудистое русло.

Скорость высвобождения из лекарственной формы из разных ЛВ неодинакова. Процесс высвобождения лимитирует скорость всасывания в тех случаях, когда лекарства даются в твердой форме. Например, высвобождение ЛВ из таблетки включает как процесс распада, так и процесс растворения. На скорость растворения влияют определенные характеристики состава лекарственной формы. При этом важны размер и форма частиц, форма кристаллов и такие добавки, как окрашивающие, разрыхляющие и суспендирующие вещества, а также производственные переменные: давление прессования, содержание влаги в таблетках и т.д.

Естественно, что и степень всасывания лекарств неодинакова, поскольку на нее влияют такие факторы, как моторика желудочно-кишечного тракта (ЖКТ) и скорость прохождения.

При энтеральном введении всасывание происходит главным образом в тонком кишечнике. При всасывании происходит как пассивный, так и активный энергозависимый транспорт. Для переноса веществ в ЖКТ особое значение имеют большая площадь поверхности кишечника и влияние постоянного кровотока в слизистой оболочке на градиенты концентрации между просветом кишечника и кровью. Путем диффузии и осмоса через слизистую оболочку кишечника переносятся, в частности, вода, С1 ¯, а также такие вещества, как аскорбиновая кислота, пиридоксин и рибофлавин. Поскольку клеточные мембраны содержат большое количество липидов, для диффузии через мембрану вещества должны быть в некоторой степени жирорастворимыми. Согласно теории неионной диффузии, указанным путем переносятся главным образом недиссоциированные соли слабых кислот или слабых оснований. Это необходимо учитывать при назначении лекарств, большая часть которых всасывается путем диффузии. Для переноса какого-либо вещества в соответствии с уравнением Гендерсона-Гассельбаха особое значение имеет рКа этого вещества и рН в просвете кишечника:

, , где

[А¯], [ВН + ] – молярные концентрации ионизированных,

[НА], [В] – неионизированных форм кислоты НА и основы В;

рН – кислотно-основной показатель среды;

рКа – логарифм константы диссоциации соединения, количественно равный значению рН, при котором анализируемое соединение диссоциирует наполовину.

Из уравнения видно, что с увеличением значения рН среды диссоциация кислот увеличивается, а оснований - уменьшается.

Таким образом, факторы, влияющие на процессы всасывания ЛВ, разнообразны: растворимость вещества в липидах, степень ионизации молекулы (чем меньше ионизированная молекула, тем лучше она всасывается), перистальтика кишечника, характер и количество пищевой массы, особенности регионарного кровотока, состояние соединительной ткани, агрегантное состояние веществ, сочетание лекарственных средств.

На всасывание могут влиять степень наполнения желудка, способность ЛВ в комплекс-, хелат-и ионообразоваание, а также объем, состав и вязкость секрета, степень взаимодействия с активным транспортом, проницаемость слизистой оболочки пищеварительного тракта, повреждающее действие препарата и пищевых продуктов на слизистую оболочку, воздействие на микрофлору, участвующую в метаболизме препарата. Процесс всасывания зависит также от перистальтики, местного кровообращения, наличия ферментов. Как правило, указанные факторы взаимосвязаны и обусловлены индивидуальными и возрастными особенностями больного, спецификой течения патологического процесса.

Лекарства, всосавшиеся в полости рта или в прямой кишке, проходят через примыкающие капиллярные сети непосредственно в большой круг кровообращения, что позволяет устранить пресистемный метаболизм. При сублингвальном введении препарат проникает в системный кровоток через вены головы, впадающие в яремную вену. Следовательно, такие лекарства (например, нитроглицерин) не метаболизируются под действием ферментов печени или кишечника до их поступления в общий кровоток. Лекарственный препарат, введенный перорально, подвергается интенсивному метаболизму, а при всасывании в полости рта или в прямой кишке в полном объеме поступает в системный кровоток.

Разные отделы ЖКТ отличаются друг от друга величиной рН секрета, свойствами поверхностного эпителия, ферментами и в результате - способностью абсорбировать различные ЛВ. Желудочный сок человека имеет в норме рН 1-3, содержимое двенадцатиперстной кишки достигает рН 6-8, а содержимое тонкой и толстой кишок рН около 8. Поэтому препараты-кислоты лучше всасываются в желудке, а лекарства-основания - в кишечнике. Небольшие нейтральные молекулы, например спирта и воды, хорошо всасываются в желудке.

Кислая среда желудка, кроме влияния на степень ионизации ЛВ, может вызвать их химическое разрушение (например, бензилпенициллин).

При внутримышечном введении водных растворов гидрофильных препаратов наблюдается их быстрое всасывание в кровь. Из масляных растворов липофильные препараты всасываются медленнее, образуя в мышцах депо. Быстрое всасывание наблюдается при введении препарата в мышцы бедра, чем при инъекции в мышцы ягодицы.

Всасывание через кожу используется для создания не только местного, но и системного эффектов. При подкожной инъекции лекарства, растворяясь в тканевой жидкости, всасываются в капилляры и лимфатические сосуды дерми.

Путем ингаляции могут вводиться ЛВ в виде аэрозолей, газов и порошков. В легких всасываются газообразные и летучие вещества, используемые для наркоза (эфир, хлороформ, азота закись, фторотан и др.).

Основным показателем всасывания является биодоступность - относительное количество ЛВ, которая достигает системного кровотока. Кроме свойств самого вещества, на биологическую доступность могут влиять технология изготовления лекарственной формы, взаимодействие с пищей и другие условия. Биодоступность препарата после внутривенного введения всегда равна 100%. Поэтому на практике биодоступность при одинаковых дозах лекарственного препарата определяют по формуле:

где AUC – площадь под кинетической кривой «концентрация–время» (area under the curve).

Также выделяют сравнительную биодоступность (биоэквивалентность) - показатель сравнения биодоступности двух лекарственных форм одного лекарственного средства. Например, различные лекарственные формы: таблетки, капсулы, раствор одного и того же соединения могут отличаться по биодоступности.

Дата добавления: 2015-01-12 | Просмотры: 1389 | Нарушение авторских прав


| | | 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |