Равнопеременное прямолинейное движение. Графическое представление равноускоренного прямолинейного движения

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется. Если тело движется вдоль оси О х, зависимость его скорости от времени выражается формулами
v x =v 0x +a x t и v x =at (при v 0x = 0).

Из этих формул видно, что зависимость v х от t линейная, следовательно, графиком скорости является прямая линия. Если тело движется с некоторой начальной скоростью, эта прямая пересекает ось ординат в точке v 0x . Если же начальная скорость тела равна нулю, график скорости проходит через начало координат.

Графики скорости прямолинейного равноускоренного движения изображены на рис. 9. На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось О х (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v ox . Угол наклона a графика к оси абсцисс зависит от ускорения движения тела. Как видно из рис. 10 и формулы (1.10),

tg=(v x -v 0x)/t=a x .

По графикам скорости можно определить путь, пройденный телом за промежуток времени t. Для этого определим площадь трапеции и треугольника, закрашенных на рис. 11.

В выбранном масштабе одно основание трапеции численно равно модулю проекции начальной скорости v 0x тела, а другое ее основание - модулю прокции его скорости v х в момент времени t. Высота трапеции численно равна длительности промежутка времени t. Площадь трапеции

S=(v 0x +v x)/2t.

Использовав формулу (1.11), после преобразований находим, что площадь трапеции

S=v 0x t+at 2 /2.

путь, пройденный в прямолинейном равноускоренном движении с начальной скоростью, численно равен площади трапеции, ограниченной графиком скорости, осями координат и ординатой, соответствующей значению скорости тела в момент времени t.

В выбранном масштабе высота треугольника (рис. 11,б) численно равна модулю проекции скорости v х тела в момент времени t, а основание треугольника численно равно длительности промежутка времени t. Площадь треугольника S=v x t/2.

Использовав формулу 1.12, после преобразований находим, что площадь треугольника

Правая часть последнего равенства представляет собой выражение, определяющее путь, пройденный телом. Следовательно, путь, пройденный в прямолинейном равноускоренном движении без начальной скорости, численно равен площади треугольника, ограниченного графиком скорости, осью абсцисс и ординатой, соответствующей скорости тела в момент времени t.

§ 14. ГРАФИКИ ПУТИ И СКОРОСТИ

Определение пути по графику скорости

В физике и математике используют три способа подачи информации о связи между различными величинами: а) в виде формулы, например, s =v ∙ t; б) в виде таблицы; в) в виде графика (рисунка).

Зависимость скорости от времени v(t) - график скорости изображается с помощью двух взаимно перпендикулярных осей. Вдоль горизонтальной оси будем откладывать время, а по вертикальной - скорость (рис. 14.1). Надо заблаговременно продумать масштаб, чтобы рисунок не был слишком большим или слишком малым. У конца оси указывают букву, которая является обозначением численно равна площади заштрихованного прямоугольника abcd величины, что на ней откладывается. Возле буквы указывают единицу измерения этой величины. Например, возле оси времени указывают t, с, а возле оси скорости v(t), мес. Выбирают масштаб и наносят деления на каждую ось.

Рис. 14.1. График скорости тела, равномерно движущегося со скоростью 3 м/сек. Путь, пройденный телом со 2-й по 6-ю секунды,

Изображение равномерного движения таблицей и графиками

Рассмотрим равномерное движение тела со скоростью 3 м/с, то есть числовое значение скорости будет постоянным в течение всего времени движения. Сокращенно это записывают так: v = const (константа, то есть постоянная величина). В нашем примере она равна трем: v = 3 . Вы уже знаете, что информацию о зависимости одной величины от другой можно подавать в виде таблицы (массива, как говорят в информатике):

Из таблицы видно, что во все указанные моменты времени скорость равна 3 м/сек. Пусть масштаб оси времени 2 кл. = 1 с, а оси скорости 2 кл. = 1 м/сек. График зависимости скорости от времени (сокращенно говорят: график скорости) приведены на рисунке 14.1.

С помощью графика скорости можно найти путь, который тело проходит за определенный интервал времени. Для этого нужно сопоставить два факта: с одной стороны, путь можно найти, умножив скорость на время, а с другой - произведение скорости на время, как видно из рисунка - это площадь прямоугольника со сторонами t и v.

Например, со второй до шестой секунды тело двигалось в течение четырех секунд и прошло 3 м/с ∙ 4 с = 12 м. Это площадь прямоугольника аbсd, длина которого равна 4 с (отрезок ad вдоль оси времени) и высота 3 м/с (отрезок аb вдоль вертикали). Площадь, правда, несколько необычная, поскольку измеряется не в м 2 , а в г. Следовательно, площадь под графиком скорости численно равна пройденному пути.

График пути

График пути s(t) можно изобразить, используя формулу s = v ∙ t, то есть в нашем случае, когда скорость составляет 3 м/с: s = 3 ∙ t. Построим таблицу:

Вдоль горизонтальной оси снова откладывают время (t, с), а вдоль вертикальной - путь. Возле оси пути пишем: s, м (рис. 14.2).

Определение скорости по графику пути

Изобразим теперь на одном рисунке два графика, которые будут соответствовать движениям со скоростями 3 м/с (прямая 2) и 6 м/с (прямая 1) (рис. 14.3). Видно, что чем больше скорость тела, тем круче линия точек графика.

Существует и обратная задача: имея график движения, нужно определить скорость и записать уравнение пути (рис. 14.3). Рассмотрим прямую 2. От начала движения и до момента времени t = 2 с тело прошло путь s = 6 м. Следовательно, его скорость: v = = 3 . Выбор другого интервала времени ничего не изменит, например, на момент t = 4 с путь, пройденный телом от начала движения, составляет s = 12 м. Отношение опять равна 3 м/сек. Но так и должно быть, поскольку тело движется с постоянной скоростью. Поэтому проще всего было бы выбрать интервал времени 1 с, ведь путь, пройденный телом за одну секунду, численно равна скорости. Путь, пройденный первым телом (график 1) за 1 с, равна 6 м, то есть скорость первого тела равна 6 м/сек. Соответствующие зависимости пути от времени в этих двух тел будут:

s 1 = 6 ∙ t и s 2 =3 ∙ t.

Рис. 14.2. График пути. Остальные точек, кроме шести, указанных в таблице, поставленные в задании, что движение упровдож всего времени был равномерным

Рис. 14.3. График пути в случае разных скоростей

Подведем итоги

В физике используют три способа подачи информации: графический, аналитический (по формулам) и таблицей (массивом). Третий способ более приспособлен для решения на компьютере.

Путь численно равен площади под графиком скорости.

Чем круче график s(t), тем больше скорость.

Творческие задания

14.1. Начертите графики скорости и пути, когда скорость тела равномерно увеличивается, или уменьшается.

Упражнение 14

1. Как определяют путь на графике скорости?

2. Можно ли записать формулу для зависимости пути от времени, имея график s(t)?

3. Или изменится угол наклона графика пути, если масштаб на осях уменьшить вдвое?

4. Почему график пути равномерного движения изображается прямой?

5. Какое из тел (рис. 14.4) имеет наибольшую скорость?

6. Назовите три способа представления информации о движении тела, а также (по вашему мнению) их преимущества и недостатки.

7. Как можно определить путь по графику скорости?

8. а) Чем отличаются графики пути для тел, движущихся с разными скоростями? б) Что в них общего?

9. По графику (рис. 14.1) найдите путь, пройденный телом от начала первой до конца третьей секунды.

10. Какой путь прошло тело (рис. 14.2) за: а) две секунды; б) четыре секунды? в) Укажите, где начинается третья секунда движения, и где она заканчивается.

11. Изобразите на графиках скорости и пути движение со скоростью а) 4 м/с; б) 2 м/сек.

12. Запишите формулу зависимости пути от времени для движений, изображенных на рис. 14.3.

13. а) Найдите скорости тел по графикам (рис. 14.4); б) запишите соответствующие уравнения пути и скорости. в) Постройте графики скорости этих тел.

14. Постройте графики пути и скорости для тел, движения которых заданы уравнениями: s 1 = 5 ∙ t и s 2 = 6 ∙ t. Чему равны скорости тел?

15. По графикам (рис. 14.5) определите: а) скорости тела; б) пути, пройденные ими за первые 5 сек. в) Запишите уравнение пути и постройте соответствующие графики для всех трех движений.

16. Начертите график пути для движения первого тела относительно второго (рис. 14.3).

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой - движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () - физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где - начальная скорость тела, - скорость тела в момент времени t .

В проекции на ось Ox :

где - проекция начальной скорости на ось Ox , - проекция скорости тела на ось Ox в момент времени t .

Знаки проекций зависят от направления векторов и оси Ox .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox :

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени - прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox .

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где - изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox - время - это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции: (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение Равнозамедленное движение
(3.10) (3.12)
(3.11) (3.13)
(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше - время от начала движения до пересечения с осью времени (время до остановки), - путь, который прошло тело от начала движения до пересечения с осью времени, - время, прошедшее с момента пересечения оси времени до данного момента t , - путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t , - модуль вектора перемещения за все время движения, L - путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Тогда за 1-ую секунду тело проходит путь:

За 2-ую секунду:

За 3-ю секунду:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox .

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют - «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy .

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy .

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

где A , B и то есть постоянные величины.

Интеграл:

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «"», в физике производная по времени обозначается «∙» над функцией.

Скорость:

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

Ускорение:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

то есть, скорость можно найти как интеграл по времени от ускорения.

Радиус-вектор:

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий - значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.


Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

V cp = v

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

V x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

S = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Х = x 0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Х = x 0 - vt

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

V = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Tg α = v

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

Tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

Tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Х = х 0

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t

– это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

V x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).