Шим стабилизатор напряжения. Категория – Импульсные источники питания Схема импульсного регулятора напряжения на ne555

Для работы телевизора, компьютера, радиоприемника обязательно требуется блок стабилизированного питания. Устройства, включенные в сеть круглосуточно, а также схемы, собранные начинающим радиолюбителем, требуют абсолютно надежного (БП), чтобы не было повреждения схемы или возгорания питания. А теперь несколько "страшных" историй: у одного моего друга при пробое регулирующего транзистора "вылетело" много микросхем в самодельном компьютере; у другого после замыкания ножкой стула проводов, идущих к импортному радиотелефону, расплавился блок питания; у третьего то же с питанием "советского" промышленного ТА с АОН; у начинающего радиолюбителя после КЗ блок начал дарить на выход большое напряжение; на производстве КЗ линии измерительных приборов почти обязательно приводит к прекращению работы и необходимости срочного ремонта. Схемы импульсных блоков мы затрагивать не будем вследствие их сложности и невысокой надежности, а рассмотрим компенсационного последовательного стабилизатора (рис.1). Очень мошне зарядне устройство схема ...

Для схемы "УСОВЕРШЕНСТВОВАНИЕ БЛОКА ПИТАНИЯ"

ЭлектропитаниеУСОВЕРШЕНСТВОВАНИЕ Имеющиеся в продаже блоки питания китайского производства на несколько напряжений при подключении к плейеру или приемнику дают большой фон переменного тока, так как в фильтре после диодного моста стоит лишь электролитический конденсатор 470 мкФ. Предлагаю простую доработку блока, немаловажно снижающую уровень пульсации. Дополнительные детали размещаются в корпусе самого блока. Схема усовершенствованного особых пояснений не требует. Транзистор желательно установить на небольшой радиатор из куска жести. Переключатель напряжений SB1 после доработки схемы дает "сдвинутые" на 1,5В уровни. При желании можно перепаять проводники, подходящие к SB1, и воссоздать соответствие между указанными на переключателе и выходными напряжениями, но тогда верхнего предела (12 В) не будет. О.КЛЕВЦОВ, 320129, г.Днепропетровск, ул.Шолохова, 19 - 242.(РЛ-7/96)...

Для схемы "Импульсный блок питания"

Для схемы "Сетевой блок питания для плеера"

В наше час у многих имеются плееры различных фирм. Все они питаются от батареек типа "пальчик". Эти батарейки имеют небольшую емкость и при эксплуатации плейера быстро "садятся". Поэтому лучше в стационарных условиях плееры питать от сети через блок питания, так как цена(у) батареек в наше час "кусается". В радиотехнической литературе имеются описания различных блоков питания для радиотехнических устройств, в том числе и для плееров с 3-вольтовым питанием. Описанный ниже блок обеспечивает выходное напряжение 3 В при токе нагрузки до 400 мА, что полностью довольно для питания любого плейера или радиоприемника. Для этого блока питания используют трансформатор и корпус от блока питания микрокалькулятора типа МК-62 ("Электроника Д2-10м). У трансформатора оставляют первичную (сетевую) обмотку, а вторичную перематывают. Теперь она содержит 270 витков провода ПЭЛ или ПЭВ 0,23. ...

Для схемы "Блок питания импортного кнопочного телефона с советской логикой (А"

На просторах СНГ "живут" и кнопочные ТА с логикой АОН на 155 серии микросхем. Эта "дикая" комбинация слаботочной импортной схемы с мощной (по ваттах!) логикой требует и соответствующего питания, тем более что "родной" БП легко перегорает! ...

Для схемы "Малогабаритный простой блок питания"

Для схемы "Ремонт блока питания СВЧ печи"

Около года тому назад мне пришлось ремонтировать СВЧ печь марки Bork модели MB IIEI 2623 S1, вышедшую из строя из-за значительного перенапряжения в электросети. Неисправность была совершенно обычная - вышел из строя трансформатор менеджмента. Заменить - полчаса, от силы - час работы. Но основная проблема заключалась в отсутствии нужного мне для ремонта трансформатора в продаже. Пришлось слегка переделывать схему. Работа облегчалась тем, что на трансформаторе была нанесена схема его обмоток с указанием значения их переменного напряжения. Правда, их выходной ток не был указан. На рис.1 приводится этого трансформатора с выпрямителями питания. На ней полностью сохранена заводская нумерация деталей.Как видно из схемы - она очень простая и не содержит в своем составе стабилизаторов напряжения. Дроздов схемы трансиверов Судя по всему, напряжение под нагрузкой верхнего по схеме выпрямителя составляет приблизительно 5 В, а нижнего - порядка 20...22 В. Судя по диаметру вторичных обмоток проводов трансформатора выходной ток пятивольтового выпрямителя вряд ли превышает 0,5...0,6 А, а второго - 0,1 А. В ходе дальнейшей работы все эти предположения полностью подтвердились.Схема нового блока питания показана на рис.2. Основой ее послужил до сих пор довольно просторно применяемый многими радиолюбителями в своем творчестве довольно "древний" выходной трансформатор кадровой развертки ТВК-110-ЛМ. Вывод 5 данного трансформатора не используется. Ввиду другого количества обмоток по сравнению со сгоревшим пришлось изменить схему выпрямителей и ввести стабилизатор нап...

Для схемы "ЗАПУСК ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ"

ЭлектропитаниеЗАПУСК ИМПУЛЬСНЫХ ИСТОЧНИКОВ Импульсные источники питания, работающие в неавтоколебательном режиме, имеют по сравнению с автоколебательными определенные преимущества: - более жесткую нагрузочную характеристику; - вероятность менеджмента дискретными цифровыми сигналами:- улучшенную ремонтопригодность. Запуск таких источников питания осуществляется задающим генератором (ЗГ), обычно в микросхемном, исполнении. Для работы самого ЗГ нужно обеспечить его первоначальное питание от какого-либо внешнего источника. Иногда в этих целях используют сетевое питание с последовательно включенным разделительным конденсатором, дальше - выпрямитель, сглаживающий конденсатор и стабилитрон (рис.1).Puc.1Однако при значительной мощности, потребляемой задающим генератором, такой вариант неприемлем, так как схема как бы "зависает", увеличив падение напряжения на конденсаторе С1 и не достигнув напряжения питания ЗГ, определяемого стабилитроном VD5. Регулятор мощности на тс122 25 Увеличение емкости С1 не является эффективным. Питание же ЗГ от дополнительного сетевого трансформатора снижает достоинства схемотехнического решения импульсного источника. Предлагаем для первоначального запуска использовать бестрансформаторную с накопительным конденсатором и диодно-тиристорной оптопарой (рис.2). В данном варианте, по сравнению со схемой рис. 1, отсутствует "зависание" схемы при значительном токопротреблении ЗГ. Накопительным конденсатором является емкость С2. Она заряжается через С1 и выпрямитель VD1...VD4 до величины, определяемой ст...

Для схемы "УМЗЧ ДЛЯ ПЛЕЙЕРА"

AUDIO техникаУМЗЧ ДЛЯ ПЛЕЙЕРА Бывает, хочется послушать музыку во дворе с друзьями. Но тащить большой магнитофон неудобно, а плейер предназначен для одного. Предлагаю простую схему усилителя с выходной мощностью приблизительно 3 Вт (рис.1). Главное достоинство схемы - низкое напряжение питания (как и у плейера - 3...6 В). Эту схему можно использовать в минимагнитофоне, чтобы повысить его мощность. Динамики можно использовать любые, но с мощностью не менее 3 Вт и с сопротивлением 4 Ом. Вместо КА2206 можно использовать ИМС ТА8227Р. Цоколевка микросхемы приведена на рис.2.Н.ХАЦКЕВИЧ, г. Белове Кемеровской обл....

Как подключить реостат к зарядному устройству Если падение напряжения на резисторе R2станет больше, чем на резисторе R3, напряжение на выходе микросхемы DA2уменьшится, откроется диод VD4 и выходное напряжение уменьшится дозначения, соответсвующего установленному ограничению тока. Переход врежим стабилизации тока индицируется включением светодиода HL1. Поскольку в режиме короткого замыкания выходноенапряжение ОУ должно быть меньше -1.25 В примерно на 2.4 В (падение напряжения на диоде VD4 и светодиоде HL1), напряжение отрицательногоисточника питания ОУ выбрано равным -6 В. Такое роль нужно при всехположениях переключателя SA2, поэтому пришлось переключать и входвыпрямителя VD2, VD3....

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными - ШИМ (широтно-импульсно модулируемые ) регуляторы. Схема универсальная - она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Указанная схема отлично работает, прилагается.

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 - 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума - открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю - система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.

Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда - меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.

Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел - подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость. Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630 . Почему именно этот MOSFET ? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к. ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит:)

Теперь пришло время подумать о том, чем мы будем делать ШИМ . Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.
Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать. Да еще на сверхзвуковой частоте, чтобы не пищало.


ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики. Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339 , но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом. Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555 . Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы. Сколько на этом таймере разной хрени сделали, за его более чем тридцатилетнюю историю… До сих пор эта микросхема, несмотря на почтенный возраст, штампуется миллионными тиражами и есть практически в каждом лабазе по цене в считанные рубли. У нас, например, он стоит около 5 рублей. Порылся по сусекам и нашел пару штук. О! Щас и замутим.


Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор. Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2 «, а разряд по пути: D1 -> нижнее плечо R1 -> DIS . Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые совершенно, кондеры примерно такого номинала, отклонения в пределах одного порядка не влияют особо на качество работы. На 4.7нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно, видать слух у меня уже не идеальный:(

Покопался в закромах, которая сама расчитывает параметры работы таймера NE555 и собрал схему оттуда, для астабильного режима со коэффициентом заполнения меньше 50%, да вкрутил там вместо R1 и R2 переменный резистор, которым у меня менялась скважность выходного сигнала. Надо только обратить внимание на то, что выход DIS (DISCHARGE) через внутренний ключ таймера подключен на землю, поэтому нельзя было его сажать напрямую к потенциометру , т.к. при закручивании регулятора в крайнее положение этот вывод бы сажался на Vcc. А когда транзистор откроется, то будет натуральное КЗ и таймер с красивым пшиком испустит волшебный дым, на котором, как известно, работает вся электроника. Как только дым покидает микросхему — она перестает работать. Вот так то. Посему берем и добавляем еще один резистор на один килоом. Погоды в регулировании он не сделает, а от перегорания защитит.

Сказано — сделано. Вытравил плату, впаял компоненты:

Снизу все просто.
Вот и печатку прилагаю, в родимом Sprint Layout —

А это напряжение на движке. Видно небольшой переходный процесс. Надо кондерчик поставить в параллель на пол микрофарады и его сгладит.

Как видно, частота плывет — оно и понятно, у нас ведь частота работы зависит от резисторов и конденсатора, а раз они меняются, то и частота уплывает, но это не беда. Во всем диапазоне регулирования она ни разу не влазит в слышимый диапазон. А вся конструкция обошлась в 35 рублей, не считая корпуса. Так что — Profit!

Вашему вниманию представлена схема , собранная на основе таймера NE 555 (отечественный аналог КР1006ВИ1).

Рис. 1 Схема ШИМ стабилизатора напряжения

Принципиальная схема стабилизатора приведена на рис.1. Генератор на DA1 (NE 555 ), аналогичный описанному в , работает по фазо-импульсному принципу, т.к. ширина импульса остается неизменной и равной сотням микросекунд, а изменяется только расстояние между двумя импульсами (фаза). В связи с малым потребляемым током микросхемы (5...10 мА), я почти в 5 раз увеличил сопротивление R4, что облегчило его тепловой режим. Ключевой каскад на VT2, VT1 собран по схеме “общий эмиттер - общий коллектор”, что свело до минимума падение напряжения на VT1. В усилителе мощности применено всего 2 транзистора, т.к. высокий выходной ток микросхемы (согласно равный 200 мА) позволяет непосредственно управлять мощными транзисторами без эмиттерного повторителя. Резистор R5 необходим для исключения сквозного тока через переходы эмиттер-база VT1 и коллектор-

Рис.2

эмиттер VT2, которые у открытых транзисторов включены как два диода. Из-за сравнительно малого быстродействия данной схемы пришлось понизить частоту генератора (увеличив емкость С1). Входное напряжение должно быть максимально возможным, но не превышать 40...50 В. Сопротивление резистора R8 можно вычислить по формуле

Так, если входное напряжение равно 40 В, а на выходе оно должно изменяться в пределах 0...25 В, то сопротивление R8 примерно равно 6 кОм. Наиболее существенный недостаток импульсных стабилизаторов по сравнению с линейными заключается в том, что из-за импульсного режима работы на выходе наблюдается высокий коэффициент пульсаций (“свист”), уничтожить который очень трудно. Можно посоветовать последовательно с фильтром L1-C3 включить еще один аналогичный фильтр.

Наиболее существенное преимущество данной схемы - высокий КПД, и при токе нагрузки до 200 мА радиатор на VT1 не нужен. Чертеж печатной платы стабилизатора приведен на рис.2. Плата с помощью припаянного к ней транзистора VT1 крепится к радиатору, однако ее можно прикрепить к шасси и отдельно от транзистора. Длина соединяющих проводов в этом случае не должна превышать 10...15 см. Резистор R7

Импортный, переменный, вместо него можно использовать подстроечный или переменный, который располагается вне платы. Длина проводов в этом случае не критична. Дроссель L1 намотан на кольце с внешним диаметром 10...15 мм проводом d=0,6...0,8 мм до заполнения, дроссель дополнительного фильтра - тем же проводом на катушке от трансформатора, число витков должно быть максимальным. Транзистор VT2 - любой средней мощности (КТ602, КТ817Б...Г).
Конденсатор С1 -лучше пленочный (с малой утечкой). Дроссель L1 желательно залить парафином, т.к. он довольно громко “свистит”.

А.КОЛДУНОВ

С аналоговым интегральным таймером SE555/NE555 (КР1006), выпускаемым компанией Signetics Corporation с далекого 1971 года прекрасно знакомо большинство советских и зарубежных радиолюбителей. Трудно перечислить, для каких только целей не использовалась эта недорогая, но многофункциональная микросхема за почти полувековой период своего существования. Однако, даже несмотря на быстрое развитие электронной промышленности в последние годы, она по-прежнему продолжает пользоваться популярностью и выпускается в значительных объемах.
Предлагаемая Jericho Uno простенькая схемка автомобильного ШИМ-регулятора – не профессиональная, полностью отлаженная разработка, отличающаяся своей безопасностью и надежностью. Это всего лишь небольшой дешевый эксперимент, собранный на доступных бюджетных деталях и вполне удовлетворяющий минимальным требованиям. Поэтому его разработчик не берет на себя ответственности за все то, что может произойти с вашим оборудованием при эксплуатации смоделированной схемы.

Схема ШИМ регулятор на NE555

Для создания ШИМ-устройства вам понадобится:
  • электропаяльник;
  • микросхема NE555;
  • переменный резистор на 100 кОм;
  • резисторы на 47 Ом и 1 кОм по 0,5W;
  • конденсатор на 0,1 мкФ;
  • два диода 1N4148 (КД522Б).

Пошаговая сборка аналоговой схемы

Построение цепи начинаем с установки перемычек на микросхему. Используя паяльник, замыкаем между собой следующие контакты таймера: 2 и 6, 4 и 8.


Дальше, руководствуясь направлением движения электронов, распаиваем на переменном резисторе «плечи» диодного моста (проход тока в одну сторону). Номиналы диодов подобраны из имеющихся в наличие, недорогих. Можно заменить их любыми другими – это практически не повлияет на работу схемы.


Во избежание короткого замыкания и перегорания микросхемы при выкручивании переменного резистора в крайнее положение, ставим по питанию шунтирующее сопротивление в 1 кОм (контакты 7-8).


Поскольку NE555 выступает в роли генератора пилы, для получения схемы с заданной частотой, длительностью импульса и паузой, осталось подобрать резистор и конденсатор. Неслышных 18 кГц нам даст конденсатор 4,7 нФ, но такое малое значение емкости вызовет перекос плеч при работе микросхемы. Ставим оптимальную в 0,1 мкФ (контакты 1-2).


Избежать противного «пищания» схемы и подтянуть выход к высокому уровню можно чем-то низкоомным, например резистором 47-51 Ом.


Осталось подключить питание и нагрузку. Схема рассчитана на входное напряжение бортовой сети автомобиля 12V постоянного тока, но для наглядной демонстрации вполне запустится и от 9V батареи. Подключаем ее на вход микросхемы, соблюдая полярность (плюс на 8 ножку, минус на 1 ножку).


Осталось разобраться с нагрузкой. Как видно из графика, при понижении переменным резистором выходного напряжения до 6V пила на выходе (ножки 1-3) сохранилась, то есть NE555 в данной схеме и генератор пилы и компаратор одновременно. Ваш таймер работает в а-стабильном режиме и имеет коэффициент заполнения меньше 50%.


Модуль выдерживает 6-9 А проходного постоянного тока, так что при минимальных потерях можно подключить к нему как светодиодную полосу в автомобиле, так и маломощный двигатель, который и дым развеет и лицо в жару обдует. Примерно так:



Или так:


Принцип работы ШИМ регулятора

Работа ШИМ регулятора достаточно проста. Таймер NE555 отслеживает напряжение на емкости С. При ее заряде до достижения максимума (полный заряд) происходит открывание внутреннего транзистора и появлению логического нуля на выходе. Далее емкость разряжается, что приводит к закрытию транзистора и приходу к выходу логической единицы. При полном разряде емкости происходит переключение системы и все повторяется. В момент заряда ток идет по одному плечу, а при разряде – по-другому. Переменным резистором мы меняем соотношение сопротивления плеч, автоматически понижая либо увеличивая напряжение на выходе. В схеме наблюдается частичное отклонение частоты, но в слышимый диапазон она не попадает.

Смотирте видео работы ШИМ регулятора