Физические свойства и механические характеристики металла хром и его соединений. Полезные материалы

Хром (лат. Cromium), Cr, химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996; металл голубовато-стального цвета.

Природные стабильные изотопы: 50 Cr (4,31%), 52 Cr (87,76%), 53 Cr (9,55%) и 54 Cr (2,38%). Из искусственных радиоактивных изотопов наиболее важен 51 Cr (период полураспада T ½ = 27,8 суток), который применяется как изотопный индикатор.

Историческая справка. Хром открыт в 1797 году Л. Н. Вокленом в минерале крокоите - природном хромате свинца РbCrО 4 . Название Хром получил от греческого слова chroma - цвет, краска (из-за разнообразия окраски своих соединений). Независимо от Воклена Хром был открыт в крокоите в 1798 году немецким ученым М. Г. Клапротом.

Распространение Хрома в природе. Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых - 2,5·10 -3 %, в осадочных породах (песчаниках) - 3,5·10 -3 %, глинистых сланцах - 9·10 -3 % . Хром - сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.

В целом Хром - металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).

Физические свойства Хрома. Хром - твердый, тяжелый, тугоплавкий металл. Чистый Хром пластичен. Кристаллизуется в объемноцентрированной решетке, а = 2,885Å (20 °С); при 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

Атомный радиус 1,27 Å; ионные радиусы Cr 2+ 0,83Å, Cr 3+ 0,64Å, Cr 6+ 0,52 Å. Плотность 7,19 г/см 3 ; t пл 1890 °С; t кип 2480 °С. Удельная теплоемкость 0,461 кдж/(кг·К) (25°С); термический коэффициент линейного расширения 8,24·10 -6 (при 20 °С); коэффициент теплопроводности 67 вт/(м·К) (20 °С); удельное электросопротивление 0,414 мком·м(20 °С); термический коэффициент электросопротивления в интервале 20-600 °С составляет 3,01·10 -3 . Хром антиферромагнитен, удельная магнитная восприимчивость 3,6·10 -6 . Твердость высокочистого Хрома по Бринеллю 7-9 Мн/м 2 (70-90 кгс/см 2).

Химические свойства Хрома. Внешняя электронная конфигурация атома Хрома 3d 5 4s 1 . В соединениях обычно проявляет степени окисления +2, +3, +6, среди них наиболее устойчивы Сr 3+ ; известны отдельные соединения, в которых Хром имеет степени окисления +1, +4, +5. Хром химически малоактивен. При обычных условиях устойчив к кислороду и влаге, но соединяется с фтором, образуя CrF 3 . Выше 600 °С взаимодействует с парами воды, давая Сr 2 О 3 ; азотом - Cr 2 N, CrN; углеродом - Сr 23 С 6 , Сr 7 С 3 , Сr 3 С 2 ; серой - Cr 2 S 3 . При сплавлении с бором образует борид СrВ, с кремнием - силициды Cr 3 Si, Cr 2 Si 3 , CrSi 2 . Со многими металлами Хром дает сплавы. Взаимодействие с кислородом протекает сначала довольно активно, затем резко замедляется благодаря образованию на поверхности металла оксидной пленки. При 1200 °С пленка разрушается и окисление снова идет быстро. Хром загорается в кислороде при 2000 °С с образованием темно-зеленого оксида Хрома (III) Сr 2 О 3 . Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО 3 , получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата Хрома и выделением водорода; царская водка и азотная кислота пассивируют Хром.

С увеличением степени окисления возрастают кислотные и окислительные свойства Хром Производные Сr 2+ - очень сильные восстановители. Ион Сr 2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr 3+ в кислом растворе цинком. Гидрат закиси Сr(ОН) 2 при обезвоживании переходит в Сr 2 О 3 . Соединения Сr 3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr 3+ можно восстановить в кислом растворе цинком до Сr 2+ или окислить в щелочном растворе до СrО 4 2- бромом и других окислителями. Гидрооксид Сr(ОН) 3 (вернее Сr 2 О 3 ·nН 2 О) - амфотерное соединение, образующее соли с катионом Сr 3+ или соли хромистой кислоты НСrО 2 - хромиты (например, КСrО 2 , NaCrO 2). Соединения Сr 6+ : хромовый ангидрид СrО 3 , хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители. Хром образует большое число солей с кислородсодержащими кислотами. Известны комплексные соединения Хрома; особенно многочисленны комплексные соединения Сr 3+ , в которых Хром имеет координационное число 6. Существует значительное число переоксидных соединений Хрома

Получение Хрома. В зависимости от цели использования получают Хром различной степени чистоты. Сырьем обычно служат хромшпинелиды, которые подвергают обогащению, а затем сплавляют с поташом (или содой) в присутствии кислорода воздуха. Применительно к основному компоненту руд, содержащему Сr 3 +, реакция следующая:

2FeCr 2 О 4 + 4K 2 CO 3 + 3,5О 2 = 4К 2 СrО 4 + Fе 2 О 3 + 4СО 2 .

Образующийся хромат калия К 2 СrО 4 выщелачивают горячей водой и действием H 2 SO 4 превращают его в дихромат К 2 Сr 2 О 7 . Далее действием концентрированного раствора H 2 SО 4 на К 2 Сr 2 О 7 получают хромовый ангидрид С 2 О 3 или нагреванием К 2 Сr 2 О 7 с серой - оксид Хрома (III) С 2 О 3 .

Наиболее чистый Хром в промышленного условиях получают либо электролизом концентрированных водных растворов СrО 3 или Сr 2 О 3 , содержащих H 2 SO 4 , либо электролизом сульфата Хрома Cr 2 (SO 4) 3 . При этом Хром выделяется на катоде из алюминия или нержавеющей стали. Полная очистка от примесей достигается обработкой Хрома особо чистым водородом при высокой температуре (1500-1700 °С).

Возможно также получение чистого Хрома электролизом расплавов CrF 3 или СrCl 3 в смеси с фторидами натрия, калия, кальция при температуре около 900 °С в атмосфере аргона.

В небольших количествах Хром получают восстановлением Сr 2 О 3 алюминием или кремнием. При алюминотермическом способе предварительно подогретую шихту из Сr 2 О 3 и порошка или стружек Аl с добавками окислителя загружают в тигель, где реакцию возбуждают поджиганием смеси Na 2 O 2 и Аl до тех пор, пока тигель заполнится Хромом и шлаком. Силикотермически Хром выплавляют в дуговых печах. Чистота получаемого Хрома определяется содержанием примесей в Сr 2 О 3 и в Аl или Si, используемых для восстановления.

В промышленности в больших масштабах производятся сплавы Хрома - феррохром и силикохром.

Применение Хрома. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.

Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ - примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 - как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.

Соединения Хром (особенно производные Cr 6 +) токсичны.

Хром в организме. Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. Среднее содержание Хрома в растениях - 0,0005% (92-95% Хрома накапливается в корнях), у животных - от десятитысячных до десятимиллионных долей процента. В планктонных организмах коэффициент накопления Хрома огромен - 10 000-26 000. Высшие растения не переносят концентрации Хрома выше 3-10 -4 моль/л. В листьях он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. У животных Хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Основной источник поступления Хрома в организм животных и человека - пища. Снижение содержания Хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

Отравления Хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.

ОПРЕДЕЛЕНИЕ

Хром - двадцать четвертый элемент Периодической таблицы. Обозначение - Cr от латинского «chromium». Расположен в четвертом периоде, VIB группе. Относится к металлам. Заряд ядра равен 24.

Хром содержится в земной коре в количестве 0,02% (масс.). В природе он встречается главным образом в виде хромистого железняка FeO×Cr 2 O 3 .

Хром представляет собой твердый блестящий металл (рис. 1), плавящийся при 1890 o С; плотность его 7,19 г/см 3 . При комнатной температуре хром стоек и к воде, и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Рис. 1. Хром. Внешний вид.

Атомная и молекулярная масса хрома

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cr, значения его атомной и молекулярной масс совпадают. Они равны 51,9962.

Изотопы хрома

Известно, что в природе хром может находиться в виде четырех стабильных изотопов 50 Cr, 52 Cr, 53 Cr и 54 Cr. Их массовые числа равны 50, 52, 53 и 54 соответственно. Ядро атома изотопа хрома 50 Cr содержит двадцать четыре протона и двадцать шесть нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы хрома с массовыми числами от 42-х до 67-ми, среди которых наиболее стабильным является 59 Cr с периодом полураспада равным 42,3 минуты, а также один ядерный изотоп.

Ионы хрома

На внешнем энергетическом уровне атома хрома имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

В результате химического взаимодействия хром отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cr 0 -2e → Cr 2+ ;

Cr 0 -3e → Cr 3+ ;

Cr 0 -6e → Cr 6+ .

Молекула и атом хрома

В свободном состоянии хром существует в виде одноатомных молекул Cr. Приведем некоторые свойства, характеризующие атом и молекулу хрома:

Сплавы хрома

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали обладают повышенной твердостью. Хром входит в состав нержавеющих кислотоупорных, жаропрочных сталей.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Оксид хрома (VI) массой 2 г растворили в воде массой 500 г. Рассчитайте массовую долю хромовой кислоты H 2 CrO 4 в полученном растворе.
Решение Запишем уравнение реакции получения хромовой кислоты из оксида хрома (VI):

CrO 3 + H 2 O = H 2 CrO 4 .

Найдем массу раствора:

m solution = m(CrO 3) + m (H 2 O) = 2 + 500 = 502 г.

n (CrO 3) = m (CrO 3) / M (CrO 3);

n (CrO 3) = 2 / 100 = 0,02 моль.

Согласно уравнению реакции n(CrO 3) :n(H 2 CrO 4) = 1:1, значит,

n(CrO 3) = n(H 2 CrO 4) = 0,02 моль.

Тогда масса хромовой кислоты будет равна (молярная масса - 118 г/моль):

m (H 2 CrO 4) = n (H 2 CrO 4) × M (H 2 CrO 4);

m (H 2 CrO 4) = 0,02 × 118 = 2,36 г.

Массовая доля хромовой кислоты в растворе составляет:

ω = m solute / m solution × 100%;

ω (H 2 CrO 4)=m solute (H 2 CrO 4)/ m solution × 100%;

ω (H 2 CrO 4)= 2,36 / 502 × 100% = 0,47 %.

Ответ Массовая доля хромовой кислоты равна 0,47 %.

Al, Fe, С, S, Р и Cu. В хроме марок Х99А, Х99Б и Х98,5 дополнительно регламентируется также содержание , Bi, Sb, Zn, Pb, Sn. В наиболее качественном металлическом хроме Х99А оговорены допустимые пределы содержания Со (99 %, порошок первичного алюминия (99,0-99,85 % AJ), и натриевую селитру. Химизм процесса в общем виде можно представить реакцией:
3Cr 2 O 3 + 6Al + 5СаО → 6Cr + 5СаО ЗАl 2 O 3 .
При довосстановлении хрома в шлаках алюминотермической плавки ведут в дуговых электропечях с дополнительной дачей извести и Al-порошка. Как разновидность довосстановления Cr из шлака для повышения выхода Cr процесс можно вести в реакторе с присадкой оксида хрома, Al-порошка и (NaNO 3 , окислителя). Таким способом можно получать хромоалюминиевую лигатуру и синтетические шлаки - системы Аl 2 O 3 - СаО.

Смотри также:
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "металлический хром" в других словарях:

    металлический хром - металлический хром: Легирующий материал с минимальным содержанием хрома 97,5 % по массе, полученный путем восстановления. Источник: ГОСТ 5905 2004: Хром металлический. Технические требования и условия поставки …

    хром - а; м. [от греч. chrōma цвет, краска] 1. Химический элемент (Сr), твёрдый металл серо стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий). 2. Мягкая тонкая кожа, выдубленная солями этого металла.… … Энциклопедический словарь

    Хром - Для термина «Chrome» см. другие значения. Запрос «Cr» перенаправляется сюда; см. также другие значения. 24 Ванадий ← Хром → Марганец … Википедия

    Элемент VI группы Периодической системы; атомный номер 24; атомная масса 51,996. Природные стабильные изотопы: 50Cr (4,31 %), 52Cr (87,76 %), 53Cr(9,55 %) и 54Cr (2,38 %). Открыт в 1797 г. французским химиком Л. Н. Вокланом. Содержание… … Энциклопедический словарь по металлургии

    ХРОМ - ХРОМ, Chromium (от греч. chroma краска), I симв. Сг, хим. элемент с ат. весом 52,01 (изо! топы 50, 52, 53, 54); порядковое число 24, за! нимает место в четной подгруппе VІ группы j таблицы Менделеева. Соединения X. часто i встречаются в природе … Большая медицинская энциклопедия

    ХРОМ - хим. элемент, символ Сr (лат. Chromium), ат. н. 24, ат. м. 51,99; металл серо стального цвета, очень твёрдый, тугоплавкий (tnjпл = 1890°С), химически малоактивен (стойкий при нормальных условиях к воде и кислороду воздуха). X. имеет степени… … Большая политехническая энциклопедия

    Хром - (Chrom, Chrome, Chromium; при О = 16 атомн. вес Cr = 52,1) принадлежит к числу элементарных веществ металлического характера. Однако, занимая по своему атомному весу шестое место в том большом периоде естественной системы элементов, который… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    ГОСТ 5905-2004: Хром металлический. Технические требования и условия поставки - Терминология ГОСТ 5905 2004: Хром металлический. Технические требования и условия поставки оригинал документа: металлический хром: Легирующий материал с минимальным содержанием хрома 97,5 % по массе, полученный путем восстановления. Определения… … Словарь-справочник терминов нормативно-технической документации

    Ферросплавное производство - получение ферросплавов (См. Ферросплавы) на специализированных заводах чёрной металлургии. Наиболее распространён электротермический (электропечной) способ получения ферросплавов (т. н. электроферросплавов); по виду восстановителя он… … Большая советская энциклопедия

    Сульфат хрома(II) - Общие Систематическое наименование Сульфат хрома(II) Традиционные названия Сернокислый хром Химическая формула CrSO4 Физические свойства Состояние … Википедия

Хром (Cr) — элемент с атомным номером 24 и атомной массой 51,996 побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева. Хром — твёрдый металл голубовато-белого цвета. Обладает высокой химической стойкостью. При комнатной температуре Cr стоек к воде и к воздуху. Этот элемент является одним из важнейших металлов, используемых в промышленном легировании сталей. Соединения хрома имеют яркую окраску различных цветов, за что, собственно, он и получил свое название. Ведь в переводе с греческого «хром» означает «краска».

Известно 24 изотопа хрома с 42Cr по 66Cr. Стабильные природные изотопы 50Cr (4,31 %), 52Cr (87,76 %), 53Cr (9,55 %) и 54Cr (2,38 %). Из шести искусственных радиоактивных изотопов наиболее важен 51Cr с периодом полураспада 27,8 суток. Он применяется, как изотопный индикатор.

В отличие от металлов древности (золото, серебро, медь, железо, олово и свинец) хром имеет своего «первооткрывателя». В 1766 году в окрестностях Екатеринбурга был найден минерал, который получил название «сибирский красный свинец» — PbCrO4. В 1797 году Л. Н. Вокленом в минерале крокоите — природном хромате свинца, был обнаружен элемент № 24. Примерно в то же время (1798 год) независимо от Воклена хром был открыт немецкими учеными М. Г. Клапротом и Ловицем в образце тяжелого черного минерала (это был хромит FeCr2O4), найденного на Урале. Позднее в 1799 Ф. Тассерт обнаружил новый металл в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

Металлический хром используют для хромирования, а также в качестве одного из важнейших компонентов легированных сталей (в частности нержавеющих). Кроме того, хром нашел применение в ряде других сплавов (кислотоупорных и жаропрочных сталях). Ведь введение этого металла в сталь повышает ее устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Хромистым сталям присуща повышенная твердость. Хром применяют в термохромировании — процесс, при котором защитное действие Cr обусловлено образованием на поверхности стали тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой.

Широкое применение нашли и соединения хрома, так хромиты успешно используются в огнеупорной промышленности: магнезитохромитовым кирпичом футеруют мартеновские печи и другое металлургическое оборудование.

Хром - один из биогенных элементов, которые постоянно входят в состав тканей растений и животных. Растения содержат хром в листьях, где он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. До сих пор ученые не смогли доказать необходимость этого элемента для растений. Однако у животных Cr участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Известно, что в биохимических процессах участвует исключительно трехвалентный хром. Как и большинство других важных биогенных элементов, хром проникает в организм животного или человека посредством пищи. Понижение этого микроэлемента в организме приводит к замедлению роста, резкому увеличению уровня холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

В тоже время в чистом виде хром весьма токсичен — металлическая пыль Cr раздражает ткани легких, соединения хрома (III) вызывают дерматиты. Соединения хрома (VI) приводят к разным заболеваниям человека, в том числе и онкологическим.

Биологические свойства

Хром - важный биогенный элемент, непременно входящий в состав тканей растений, животных и человека. Среднее содержание этого элемента в растениях – 0,0005 %, причем практически весь он накапливается в корнях (92-95 %), остальная доля содержится в листьях. Высшие растения не переносят концентрации этого металла выше 3∙10-4 моль/л. У животных содержание хрома составляет от десятитысячных до десятимиллионных долей процента. Зато в планктоне коэффициент накопления хрома поразителен — 10 000-26 000. Во взрослом человеческом организме содержание Cr колеблется от 6 до 12 мг. Причем достаточно точно физиологическая потребность в хроме для человека не установлена. Она во многом зависит от рациона – при употреблении пищи с высоким содержанием сахара, потребность организма в хроме возрастает. Принято считать, что человеку требуется в сутки примерно 20–300 мкг этого элемента. Как и другие биогенные элементы, хром способен накапливаться в тканях организма, особенно в волосах. Именно в них содержание хрома указывает на степень обеспеченности организма этим металлом. К сожалению, с возрастом «запасы» хрома в тканях истощаются, исключением являются легкие.

Хром участвует в обмене липидов, белков (присутствует в составе фермента трипсина), углеводов (является структурным компонентом глюкозоустойчивого фактора). Этот фактор обеспечивает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактора толерантности к глюкозе (GTF) усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Основной источник поступления хрома в организм животных и человека - пища. Ученые установили, что в растительной пище концентрация хрома значительно ниже, чем в животной. Наиболее богаты хромом пивные дрожжи, мясо, печень, бобовые и цельное необработанное зерно. Снижение содержания этого металла в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови, снижению чувствительности периферийных тканей к инсулину (диабетоподобное состояние). Кроме того, возрастает риск развития атеросклероза и нарушения высшей нервной деятельности.

Однако уже при концентрациях в доли миллиграмма на кубический метр в атмосфере все соединения хрома оказывают токсическое действие на организм. Отравления хромом и его соединениями часты при их производстве, в машиностроении, металлургии, в текстильной промышленности. Степень ядовитости хрома зависит от химической структуры его соединений - дихроматы токсичнее хроматов, соединения Cr+6 токсичнее соединений Cr+2 и Cr+3. Признаки отравления проявляются ощущением сухости и болью в носовой полости, острым першением в горле, затруднением дыхания, кашлем и подобными признаками. При небольшом избытке паров или пыли хрома признаки отравления проходят вскоре после прекращения работы в цеху. При длительном постоянном контакте с соединениями хрома появляются признаки хронического отравления - слабость, постоянные головные боли, потеря в весе, диспепсия. Начинаются нарушения в работе желудочно-кишечного тракта, поджелудочной железы, печени. Развиваются бронхит, бронхиальная астма, пневмосклероз. Появляются кожные заболевания - дерматиты, экземы. Кроме того, соединения хрома - опасные канцерогены, способные накапливаться в тканях организма, вызывая раковые заболевания.

Профилактикой отравлений являются периодические медицинские осмотры персонала, работающего с хромом и его соединениями; установка вентиляции, средств пылеподавления и пылеулавливания; использование рабочими средств индивидуальной защиты (респираторы, перчатки).

Корень «хром» в своем понятии «цвет», «краска» входит в состав многих слов, используемых в самых разнообразных областях: науке, технике и даже музыке. Так многие названия фотопленок содержат этот корень: «ортохром», «панхром», «изопанхром» и другие. Слово «хромосома» состоит из двух греческих слов: «хромо» и «сома». Дословно это можно перевести, как «окрашенное тело» или «тело, которое окрашивается». Структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате удвоения хромосом, называется «хроматида». «Хроматин» - вещество хромасом, находящееся в ядрах растительных и животных клеток, которое интенсивно окрашивается ядерными красителями. «Хроматофоры» - пигментные клетки у животных и человека. В музыке используется понятие «хроматическая гамма». «Хромка» - один из видов русской гармони. В оптике существуют понятия «хроматическая абберация» и «хроматическая поляризация». «Хроматография» - физико-химический метод разделения и анализа смесей. «Хромоскоп» - прибор для получения цветного изображения путем оптического совмещения двух или трех цветоотделенных фотографических изображений, освещаемых через специально подобранные различно окрашенные светофильтры.

Наиболее ядовитым является оксид хрома (VI) CrO3, он относится к I классу опасности. Смертельная доза для человека (перорально) 0,6 г. Этиловый спирт при соприкосновении со свежеприготовленным CrO3 воспламеняется!

Самая распространенная марка нержавеющей стали содержит 18 % Cr, 8 % Ni, около 0,1 % C. Она великолепно противостоит коррозии и окислению, сохраняют прочность при высоких температурах. Именно из такой стали изготовлены листы, использовавшиеся в строительстве скульптурной группы В.И. Мухиной «Рабочий и колхозница».

Феррохром, используемый в металлургической промышленности при производстве хромистых сталей, в конце IXX века был очень низкого качества. Это связано с низким содержанием в нем хрома — всего 7-8 %. Тогда он именовался «тасманским чугуном» в виду того, что исходная железо-хромовая руда ввозилась из Тасмании.

Ранее упоминалось, что хромовые квасцы используются при дублении кож. Благодаря этому появилось понятие «хромовые» сапоги. Кожа, дубленая соединениями хрома приобретает блеск, лоск и прочность.

Во многих лабораториях используют «хромовую смесь» - смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Она используется в обезжиривании поверхностей стеклянной и стальной лабораторной посуды. Она окисляет жир и удаляет его остатки. Только обращаться с этой смесью необходимо с осторожностью, ведь это смесь сильной кислоты и сильного окислителя!

В наше время древесина по-прежнему используется, как строительный материал, ведь она недорога и проста в обработке. Но у нее много и отрицательных свойств - подверженность пожарам, грибковым заболеваниям, разрушающим ее. Чтобы избежать всех этих неприятностей дерево пропитывают специальными составами, содержащими хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Благодаря таким составам древесина увеличивает свою стойкость к грибкам и бактериям, а также к открытому огню.

Особую нишу хром занял в полиграфии. В 1839 году было установлено, что бумага, пропитанная бихроматом натрия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а не засвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

История

История открытия элемента № 24 началась в 1761 году, когда в Березовском руднике (восточное подножье Уральских гор) близ Екатеринбурга был найден необычный красный минерал, который при растирании в пыль давал желтую окраску. Находка принадлежала профессору Петербургского университета Иоганну Готтлобу Леману. Спустя пять лет ученый доставил образцы в город Санкт-Петербург, где провел над ними ряд опытов. В частности он обработал необычные кристаллы соляной кислотой, получив при этом белый осадок, в котором обнаружился свинец. Исходя из полученных результатов, Леман назвал минерал сибирским красным свинцом. Такова история обнаружения крокоита (от греческого «krokos» — шафран) - природного хромата свинца PbCrO4.

Заинтересованный данной находкой Петер Симон Паллас - немецкий естествоиспытатель и путешественник организовал и возглавил экспедицию Петербургской Академии наук в сердце России. В 1770 году экспедиция достигла Урала и посетила Березовский рудник, где были взяты образцы изучаемого минерала. Вот как это описывает сам путешественник: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Немецкая предприимчивость преодолела все трудности добычи и доставки крокоита в Европу. Несмотря на то, что эти операции занимали не менее двух лет, вскоре экипажи знатных господ Парижа и Лондона ездили раскрашенные мелко истолченным крокоитом. Коллекции минералогических музеев многих университетов старого света обогатились лучшими образцами этого минерала из русских недр. Однако состав загадочного минерала европейские ученые разгадать никак не могли.

Длилось это на протяжении тридцати лет, пока образец сибирского красного свинца не попал в руки профессору химии Парижской минералогической школы Никола Луи Воклену в 1796 году. Проведя анализ крокоита, ученый не обнаружил в нем ничего кроме оксидов железа, свинца и алюминия. В дальнейшем Воклен обработал крокоит раствором поташа (К2CO3) и вслед за осаждением белого осадка карбоната свинца выделил желтый раствор неизвестной соли. Проведя ряд опытов по обработке минерала солями различных металлов, профессор при помощи соляной кислоты выделил раствор «кислоты красного свинца» - окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Выпарив данный раствор, он получил рубиново-красные кристаллы (хромовый ангидрид). Дальнейший нагрев кристаллов в графитовом тигле в присутствии угля дал множество сросшихся серых игольчатых кристаллов - новый до этого времени неизвестный металл. Очередной ряд опытов показал высокую тугоплавкость полученного элемента и его устойчивость к кислотам. Парижская академия наук незамедлительно засвидетельствовала открытие, ученый по настоянию друзей дал имя новому элементу - хром (от греческого «цвет», «окраска») ввиду разнообразия оттенков образуемых им соединений. В дальнейших своих работах Воклен уверенно заявил, что изумрудная окраска некоторых драгоценных камней, а также природных силикатов бериллия и алюминия объясняется примесью в них соединений хрома. Примером может послужить смарагд, который является окрашенным в зеленый цвет берилл, в котором алюминий частично замещен хромом.

Понятно, что Воклен получил не чистый металл, скорее всего его карбиды, что подтверждается игольчатой формой светло-серых кристаллов. Чистый металлический хром позднее был получен Ф. Тассертом, предположительно в 1800 году.

Также, независимо от Воклена, хром обнаружили Клапрот и Ловиц в 1798 году.

Нахождение в природе

В земных недрах хром — довольно распространенный элемент, несмотря на то, что в свободном виде он не встречается. Его кларк (среднее содержание в земной коре) составляет 8,3.10-3 % или 83 г/т. Однако его распределение по породам неравномерно. Этот элемент в основном характерен для мантии Земли, дело в том, что ультраосновные породы (перидотиты), которые, предположительно близки по составу к мантии нашей планеты, наиболее богаты хромом: 2 10-1 % или 2 кг/т. В таких породах Cr образует массивные и вкрапленные руды, с ними связано образование крупнейших месторождений данного элемента. Высоко содержание хрома и в основных породах (базальтах и др.) 2 10-2 % или 200 г/т. Гораздо меньше Cr в кислых породах: 2,5 10-3 %, осадочных (песчаники) - 3,5 10-3 %, глинистые сланцы также содержат хром - 9 10-3 %.

Можно заключить, что хром является типичным литофильным элементом и почти весь заключен в минералах глубокого залегания в недрах Земли.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. Эти минералы имеют единое название - хромовая шпинель и общую формулу (Mg, Fe)О (Сr, Al, Fе)2O3. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив. Содержание важнейших компонентов колеблется (весовые %): Cr2O3 от 10,5 до 62,0; Al2O3 от 4 до 34,0; Fe2O3 от 1,0 до 18,0; FeO от 7,0 до 24,0; MgO от 10,5 до 33,0; SiO2 от 0,4 до 27,0; примеси TiO2 до 2; V2O5 до 0,2; ZnO до 5; MnO до 1. В некоторых хромовых рудах содержится 0,1-0,2 г\т элементов группы платины и до 0,2 г\т золота.

Помимо различных хромитов, хром входит в состав ряда других минералов - хромвезувиана, хромового хлорита, хромтурмалина, хромовой слюды (фуксита), хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. Хром - относительно слабый водный мигрант. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может осаждаться в глинах. Наиболее подвижной формой являются хроматы.

Практическое значение имеет, пожалуй, только хромит FeCr2O4, относящийся к шпинелям - изоморфным минералам кубической системы с общей формулой МО Ме2О3, где М - ион двухвалентного металла, а Ме - ион трехвалентного металла. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO 2Cr2O3, вокелените 2(Pb,Cu)CrO4(Pb,Cu)3(PO4)2, тарапакаите K2CrO4, дитцеите CaIO3 CaCrO4 и других.

Хромиты обычно встречаются в виде зернистых масс черного цвета, реже - в виде октаэдрических кристаллов, имеют металлический блеск, залегают в виде сплошных массивов.

На конец XX века запасы хрома (выявленные) в почти полусотне стран мира, имеющих залежи этого металла, составляли 1674 млн. т. Лидирующую позицию занимает Южно Африканская Республика – 1050 млн. т, где основной вклад вносит Бушвелдский комплекс (около 1000 млн. т). Второе место по хромовым ресурсам принадлежит Казахстану, где в Актюбинской области (Кемпирсайский массив) добывают руду очень высокого качества. Другие страны также имеют запасы этого элемента. Турция (в Гулемане), Филлипины на острове Лусон, Финляндия (Кеми), Индия (Сукинда) и др.

Наша страна имеет свои разрабатываемые месторождения хрома – на Урале (Донское, Сарановское, Халиловское, Алапаевское и многие другие). Причем в начале XIX века именно уральские месторождения являлись основными источниками хромовых руд. Лишь в 1827 американец Исаак Тисон обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, перехватив монополию добычи на многие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы, причем вскоре (после истощения Пенсильванского месторождения) именно эта страна перехватила роль монополиста. Это продолжалось до 1906 года, пока не были обнаружены богатые залежи хромитов в ЮАР и Индии.

Применение

Общий объем потребления чистого металлического хрома на сегодняшний день составляет примерно 15 миллионов тонн. На долю производства электролитического хрома — самого чистого - приходится 5 миллионов тонн, что составляет третью часть от общего потребления.

Хром широко используется для легирования сталей и сплавов, придавая им корозионостойкость и жаростойкость. На изготовление таких «суперсплавов» расходуется более 40 % получаемого чистого металла. Наиболее известны сплавы сопротивления - нихромы с содержанием Cr 15-20 %, жаропрочные сплавы - 13-60 % Cr, нержавеющие - 18 % Cr и шарикоподшипниковые стали 1 % Cr. Добавка хрома к обычным сталям улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Металлический хром используется для хромирования - нанесения на поверхность стальных сплавов тонкого слоя хрома с целью повышения коррозионной стойкости этих сплавов. Хромированное покрытие отлично противостоит воздействию влажного атмосферного воздуха, соленого морского воздуха, воды, азотной и большинства органических кислот. Такие покрытия бывают двух назначений: защитные и декоративные. Толщина защитных покрытий составляет порядка 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, наносятся на слой другого металла (меди или никеля), который собственно выполняет защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

Соединения хрома также активно используются в различных областях.

Основная хромовая руда - хромит FeCr2O4 используется в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают резкие многократные изменения температур, поэтому их используют в конструкциях сводов мартеновских печей и рабочем пространстве других металлургических устройств и сооружений.

Твердость кристаллов оксида хрома (III) - Cr2O3 соизмерима с твердостью корунда, что обеспечило его применение в составах шлифовальных и притирочных паст, используемых в машиностроении, ювелирной, оптической и часовой промышленности. Его также применяют в качестве катализатора гидрирования и дегидрирования некоторых органических соединений. Cr2O3 используется в живописи в виде зеленого пигмента и для окраски стекла.

Хромат калия - K2CrO4 применяется при дублении кож, в качестве протравы в текстильной промышленности, в производстве красителей, при отбеливании воска.

Дихромат калия (хромпик) - K2Cr2O7 также используется при дублении кож, протраве при окрашивании тканей, является ингибитором коррозии металлов и сплавов. Используется при изготовлении спичек и в лабораторных целях.

Хлорид хрома (II) CrCl2 - очень сильный восстановитель, легко окисляется даже кислородом воздуха, что используется в газовом анализе для количественного поглощения О2. Кроме того, ограниченно используется при получении хрома электролизом расплавов солей и хроматометрии.

Хромокалиевые квасцы K2SO4.Cr2(SO4)3 24H2O используются в основном в текстильной промышленности - при дублении кожи.

Безводный хлорид хрома CrCl3 применяется для нанесения покрытий хрома на поверхность сталей химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl3 - протрава при крашении тканей.

Из хромата свинца РbCrО4 изготовляют различные красители.

Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Производство

В природе хром встречается в основном в виде хромистого железняка FeO∙Cr2O3, при его восстановлении углем получается сплав хрома с железом — феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Содержание хрома в таком составе доходит до 80 % (по массе).

Восстановление оксида хрома (III) углем предназначено для получения высокоуглеродистого хрома, необходимого для производства специальных сплавов. Процесс проводится в электродуговой печи.

Для получения чистого хрома предварительно получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. При этом предварительно смесь из порошкового или в виде стружки алюминия (Al) и шихту оксида хрома (Cr2O3) прогревают до температуры 500-600° С. Затем, возбуждают восстановление смесью перекиси бария с порошком алюминия, либо запалом части шихты с последующим добавлением оставшейся части. В этом процессе важно, чтобы образовавшейся тепловой энергии хватило на плавление хрома и его отделения от шлака.

Cr2O3 + 2Al = 2Cr + 2Al2O3

Получаемый таким способом хром содержит некое количество примесей: железа 0,25-0,40 %, серы 0,02 %, углерода 0,015–0,02 %. Содержание чистого вещества составляет 99,1–99,4 %. Такой хром хрупок и легко перемалывается в порошок.

Реальность такого метода была доказана и продемонстрирована еще в 1859 году Фридрихом Вёлером. В промышленных масштабах же алюмотермическое восстановление хрома стало возможно только после того, как стал доступным метод получения дешевого алюминия. Гольдшмидт первым разработал безопасный способ регулирования сильно экзотермического (следовательно - взрывоопасного) процесса восстановления.

При необходимости получения высокочистого хрома в промышленности используют электролитические методы. Электролизу подвергают смеси хромового ангидрида, хромоаммонийных квасцов или сульфата хрома с разбавленной серной кислотой. Оседающий в процессе электролиза на алюминиевых или нержавеющих катодах хром содержит растворенные газы в качестве примесей. Чистоты 99,90–99,995 % удается добиться с помощью высокотемпературной (1500-1700° С) очистки в потоке водорода и вакуумной дегазации. Передовые методики рафинирования электролитического хрома удаляют серу, азот, кислород и водород из «сырого» продукта.

Кроме того, возможно получение металлического Cr электролизом расплавов СrCl3 или CrF3 в смеси с фторидами калия, кальция, натрия при температуре 900° C в среде аргона.

Возможность электролитического способа получения чистого хрома доказал Бунзен в 1854 году, подвергая электролизу водный раствор хлорида хрома.

В промышленности используется и силикотермический способ получения чистого хрома. При этом хром из окиси восстанавливается кремнием:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Силикотермически хром выплавляют в дуговых печах. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция. Чистота силикотермического хрома примерно такая же, как и алюминотермического, однако, естественно, содержание в нем кремния несколько выше, а алюминия несколько ниже.

Еще Cr можно получать восстановлением Cr2O3 водородом при 1500° С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

Для получения хрома пытались применить и другие восстановители - углерод, водород, магний. Однако эти способы не получили широкого распространения.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома (III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Физические свойства

Хром — твердый, весьма тяжелый, тугоплавкий, ковкий металл серо-стального цвета. Чистый хром довольно пластичен, кристаллизуется в объемно-центрированной решетке, а = 2,885Å (при температуре 20° С). При температуре около 1830° С велика вероятность преобразования в модификацию с гранецентрированной решеткой, а = 3,69Å. Атомный радиус 1,27 Å; ионные радиусы Cr2+ 0,83Å, Cr3+ 0,64Å, Cr6+ 0,52 Å.

Температура плавления хрома напрямую зависит от его чистоты. Поэтому определение этого показателя для чистого хрома весьма сложная задача - ведь даже небольшое содержание примесей азота или кислорода могут существенно изменить значение температуры плавления. Множество исследователей на протяжении не одного десятилетия занимались этим вопросом и получали далекие друг от друга результаты: от 1513 до 1920° C. Ранее было принято считать, что этот металл плавится при температуре 1890° C, но современные исследования указывают температуру в 1907° С, хром кипит при температуре свыше 2500° C - данные также разнятся: от 2199° C до 2671° С. Плотность хрома меньше, чем у железа; она составляет 7,19 г\см3 (при температуре 200° C).

Хрому свойственны все основные характеристики металлов - он хорошо проводит теплоту, его сопротивление электрическому току очень мало, как и большинство металлов, хром имеет характерный блеск. Кроме того, этот элемент имеет одну очень интересную особенность: дело в том, что при температуре 37° C его поведение не поддается объяснению - происходит резкое изменение многих физических свойств, это изменение имеет скачкообразный характер. Хром, как заболевший человек при температуре 37° C начинает капризничать: внутреннее трение хрома достигает максимума, модуль упругости падает до минимальных значений. Скачет значение электропроводности, постоянно изменяется термоэлектродвижущая сила, коэффициент линейного расширения. Данный феномен ученые пока объяснить не могут.

Удельная теплоемкость хрома 0,461 кДж/(кг.К) или 0,11 кал/(г °С) (при температуре 25°С); коэффициент теплопроводности 67 Вт/(м К) или 0,16 кал/(см сек °С) (при температуре 20 °С). Термический коэффициент линейного расширения 8,24 10-6 (при 20 °С). Хром при температуре 20 °С имеет удельное электросопротивление 0,414 мком м, а его термический коэффициент электросопротивления в интервале 20-600° С составляет 3,01 10-3.

Известно, что хром очень чувствителен к примесям – самые малые доли других элементов (кислород, азот, углерод) способны сделать хром очень хрупким. Получить же хром без этих примесей крайне трудно. По этой причине данный металл в конструкционных целях не используется. Зато в металлургии он активно применяется, как легирующий материал, так как его добавка в сплав делает сталь твердой и износостойкой, ведь хром самый твердый из всех металлов - он подобно алмазу режет стекло! Твердость высокочистого хрома по Бринеллю 7-9 Мн/м2 (70-90 кгс/см2). Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. Добавка хрома к обычным сталям (до 5 % Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Хром антиферромагнитен, удельная магнитная восприимчивость 3,6 10-6. Удельное электрическое сопротивление 12,710-8 Ом. Температурный коэффициент линейного расширения хрома 6,210-6. Теплота парообразования этого металла составляет 344,4 кДж/Моль.

Хром устойчив к коррозии на воздухе и в воде.

Химические свойства

Химически хром довольно инертен, это объясняется наличием на его поверхности прочной тонкой пленки оксида. На воздухе Cr не окисляется, даже в присутствии влаги. При нагреве окисление протекает исключительно на поверхности металла. При 1200° C пленка разрушается, и окисление протекает гораздо быстрее. При 2000° C хром сгорает с образованием зелёного оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3 + 2NaOH = 2NaCrO2 + H2O

Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6HCl = 2CrCl3 + 3Н2О

В соединениях хром в основном проявляет степени окисления Cr+2, Cr+3, Cr+6. Наиболее устойчивыми являются Cr+3 и Cr+6. Так же существуют некоторые соединения, где хром имеет степени окисления Cr+1, Cr+4, Cr+5. Соединения хрома весьма разнообразны по цвету: белые, синие, зеленые, красные, фиолетовые, черные и многие другие.

Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата хрома и выделением водорода:

Cr + 2HCl = CrCl2 + H2

Царская водка и азотная кислота пассивируют хром. Причем пассивированный азотной кислотой хром не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в их растворах, но в какой-то момент растворение все-таки происходит, сопровождаемое бурным вспениванием от выделившегося водорода. Этот процесс объясняется тем, что хром из пассивного состояния переходит в активное, в котором металл не защищен защитной пленкой. Причем, если в процессе растворения вновь добавить азотной кислоты, то реакция прекратится, так как хром вновь пассивируется.

При обычных условиях хром взаимодействует с фтором, образуя CrF3. При температурах выше 600° C происходит взаимодействие с водяными парами, результатом такого взаимодействия является оксид хрома (III) Сr2О3:

4Cr + 3O2 = 2Cr2O3

Cr2O3, представляет собой зеленые микрокристаллы с плотностью 5220 кг/м3 и высокой температурой плавления (2437° С). Оксид хрома (III) проявляет амфотерные свойства, но весьма инертен, его трудно растворить в водных кислотах и щелочах. Оксид хрома(III) довольно токсичен. Попадая на кожу, он способен вызывать экзему и другие кожные заболевания. Поэтому, при работе с оксидом хрома (III) обязательно необходимо использовать средства индивидуальной защиты.

Помимо окиси, известны другие соединения с кислородом: CrO, CrO3, получаемые косвенным путем. Наибольшую опасность представляет вдыхаемый аэрозоль оксида, вызывающий тяжелые заболевания верхних дыхательных путей и легких.

Хром образует большое число солей с кислородосодержащими компонентами.

Хром – тугоплавкий, очень твердый металл, обладающий необыкновенной стойкостью к коррозии. Эти уникальные качества и обеспечили ему столь высокую востребованность в промышленности и строительстве.

Потребитель чаще всего знаком не с изделиями из хрома, а с предметами, покрытыми тонким слоем металла. Ослепительный зеркальный блеск такого покрытия привлекателен сам по себе, однако имеет и чисто практическое значение. Хром устойчив к коррозии и способен защитить сплавы и металлы от ржавчины.

И сегодня мы ответим на вопросы о том, хром — это металл или неметалл, и если металл, то какой: черный или цветной, тяжелый или легкий. Также мы расскажем в каком виде хром встречается в природе, и каковы отличия хрома от и других подобных металлов.

Для начала поговорим о том, как выглядит хром, каковы металлы его содержащие, и в чем особенность такого вещества. Хром — это типичный металл серебристо-голубоватого цвета, тяжелый, по плотности превосходит , к тому же относится к категории тугоплавких – температура его плавления и кипения очень велики.

Элемент хром размещается в побочной подгруппе 6 группы в 4 периоде. Близок по свойствам к молибдену и вольфраму, хотя имеет и заметные отличия. Последние чаще всего проявляют лишь высшую степень окисления, в то время как хром проявляет валентность и два, и три, и шесть. Это означает, что элемент образует множество разнообразных соединений.

Именно соединения и дали название самому элементу – от греческого краска, цвет. Дело в том, что его соли и оксиды окрашены в самые разнообразные яркие цвета.

Данное видео расскажет о том, что такое хром:

Особенности и отличия по сравнению с другими металлами

При изучении металла наибольший интерес вызывали 2 свойства вещества: твердость и тугоплавкость. Хром относится к наиболее твердым металлам – занимает пятое место и уступает урану, иридию, вольфраму и бериллию. Однако качество это оказалось невостребованным, поскольку у металла были обнаружены более важные для промышленности свойства.

Хром плавится при 1907 С. Вольфраму или молибдену по этому показателю он уступает, но все равно относится к тугоплавким веществам. Правда, на температуру его плавления сильно влияют примеси.

  • Как многие из металлов, устойчивых к коррозии, хром образует на воздухе тонкую и очень плотную оксидную пленку. Последняя прикрывает доступ кислорода, азота и влаги к веществу, что и делает его неуязвимым. Особенность в том, что это качество он передает своему сплаву с : в присутствии элемента увеличивается потенциал а-фазы железа и в итоге сталь на воздухе тоже покрывается плотной оксидной пленкой. Это и есть секрет стойкости нержавеющей .
  • Являясь тугоплавким веществом, металл повышает и температуру плавления сплава. Жаропрочные и жаростойкие стали обязательно включают долю хрома, причем порой очень большую – до 60%. Еще более сильный эффект оказывает добавка и , и хрома.
  • Хром образует сплавы и со своими собратьями по группе – молибденом и вольфрамом. Их используют для покрытия деталей, где требуется особенно высокая износостойкость в условиях высокой температуры.

Достоинства и недостатки хрома описаны ниже.

Хром как металл (фото)

Достоинства

Как и всякое другое вещество, металл обладает своими достоинствами и недостатками, а их совокупность определяет его использование.

  • Безусловный плюс вещества – коррозийная стойкость и возможность передавать это свойство своим сплавам. Хромовые нержавеющие стали имеют огромное значение, поскольку разом решили целый ряд проблем при строительстве судов, подводных лодок, каркасов зданий и так далее.
  • Устойчивость к коррозии обеспечивают другим способом – покрывают предмет тонким слоем металла. Популярность этого метода очень велика, на сегодня существует не меньше десятка способов хромирования в разных условиях и для получения разного результата.
  • Хромовый слой создает яркий зеркальный блеск, так что к хромированию прибегают не только для целей защиты сплава от коррозии, но и для получения эстетичного внешнего вида. Причем современные методы хромирования позволяют создать покрытие на любом материале – не только на металле, но и на пластике, и на керамике.
  • Получение жаропрочной стали при добавке хрома тоже стоит отнести к достоинствам вещества. Есть множество областей, где металлические детали должны работать при высоких температурах, а железо само по себе такой стойкостью к нагрузкам при температуре не обладает.
  • Из всех тугоплавких веществ он наиболее устойчив к кислотам и основаниям.
  • Плюсом вещества можно считать и его распространенность – 0,02% в земной коре, и относительно простой способ добычи и получения. Конечно, он требует энергозатрат, но не сравнить со сложной , например.

Недостатки

К недостаткам стоит отнести качества, не позволяющие в полной мере использовать все свойства хрома.

  • В первую очередь, это сильная зависимость физических, а не только химических свойств от примесей. Даже температуру плавления металла было сложно установить, так как при наличии ничтожной доли азота или углерода показатель заметно менялся.
  • Несмотря на более высокую электропроводность по сравнению с , хром гораздо меньше используется в электротехнике и стоимость его довольно высока. Изготовить из него что-либо намного труднее: высокая температура плавления и твердость заметно ограничивают применение.
  • Чистый хром является ковким металлом, содержащий примеси становится очень твердым. Чтобы получить хотя бы относительно пластичный металл, его приходится подвергать дополнительной обработке, что, конечно, увеличивает расходы на изготовление.

Структура металла

Кристалл хрома имеет объемно-центрированную кубическую решетку, а=0,28845 нм. Выше температуры в 1830 С можно получить модификацию с гранецентрированной кубической решеткой.

При температуре в +38 С фиксируется фазовый переход второго рода с увеличением объема. При этом кристаллическая решетка вещества не изменяется, а вот его магнитные свойства становятся совершенно другими. До этой температуры – точки Нееля, хром проявляет свойства антиферромагнетика, то есть, является веществом, которое намагнитить практически невозможно. Выше точки Нееля металл становится типичным парамагнетиком, то есть, проявляет магнитные свойства в присутствии магнитного поля.

Свойства и характеристики

В нормальных условиях металл довольно инертен – и благодаря оксидной пленке и просто по природе своей. Однако при повышении температуры вступает в реакцию и с простыми веществами, и с кислотами, и с основаниями. Его соединения очень разнообразны и применяются очень широко. Физические характеристики металла, как упоминалось, сильно зависят от количества примесей. На практике дело имеют с хромом с чистотой до 99,5%. таковы:

  • температура плавления – 1907 С. Эта величина служит границей между тугоплавкими и обычными веществами;
  • температура кипения – 2671 С;
  • твердость по шкале Мооса – 5;
  • электропроводность – 9 · 106 1/(Ом м). По этому показателю хром уступает только серебру, и золоту;
  • удельное сопротивление –127 (Ом мм2)/м;
  • теплопроводность вещества составляет 93,7 Вт/(м K);
  • удельная теплоемкость –45 Дж/(г K).

Теплофизические характеристики вещества несколько аномальны. В точке Нееля, где изменяется объем металла, коэффициент его теплового расширения резко увеличивается и продолжает расти с увлечением температуры. Также аномально ведет себя и теплопроводность – падает в точке Нееля и уменьшается при нагреве.

Элемент относится к числу необходимых: в человеческом организме ионы хрома являются участниками углеводного обмена и процесса регулировки выделения инсулина. Суточная доза составляет 50–200 мкг.

Хром нетоксичен, хотя в виде металлического порошка может вызвать раздражение слизистой. Трехвалентные его соединения тоже относительно безопасны и даже применяются в пищевой и спортивной промышленности. А вот шестивалентные для человека являются ядом, вызывают тяжелые поражения дыхательных путей и ЖКТ.

О производстве и цене на металл хром за кг сегодня мы поговорим далее.

В этом видеоролике будет показано, является ли покрытие хромовым:

Производство

В большом количестве разных минералов – часто сопровождает и . Однако его содержание недостаточное, чтобы иметь промышленное значение. Перспективными являются лишь породы, включающие не менее 40% элемента, поэтому пригодных для добычи минералов немного, в основном это хромовый железняк или хромит.

Добывают минерал шахтным и карьерным методом в зависимости от глубины залегания. А так как руда изначально содержит большую долю металла, то практически никогда не обогащается, что, соответственно, упрощает и удешевляет процесс производства.

Для легирования стали используется около 70% добытого металла. Причем применяют его зачастую не в чистом виде, а в виде феррохрома. Последний можно получить прямо в шахтной электропечи или доменной – так получают углеродистый феррохром. Если требуется соединение с низким содержанием углерода, прибегают к алюминотермическому методу.

  • Этим способом получают и чистый хром, и феррохром. Для этого в плавильную шахту загружают шихту, включающую хромистый железняк, оксид хрома, натриевую селитру и . Первую порцию – запальная смесь, поджигают, а остальную часть шихты загружают в расплав. В конце добавляют флюс – известь, чтоб облегчить извлечение хрома. Плавка занимает около 20 минут. После некоторого охлаждения шахту наклоняют, выпускают шлак, снова возвращают в исходное положение и вновь наклоняют, теперь уже в изложницу выводится и хром, и шлак. После охлаждения полученный блок разделяют.
  • Применяют и другой метод – металлотермической плавки. Проводится она в электропечи в поворачивающейся шахте. Шихту здесь разделяют на 3 части, каждая отличается составом. Этот метод позволяет извлечь большее количество хрома, но, главное – сокращает расход .
  • Если же требуется получить химически чистый металл, прибегают к лабораторному методу: высаживают кристаллы путем электролиза растворов хроматов.

Стоимость металла хром за 1 кг заметно колеблется, поскольку зависит от объема выпускаемого металлопроката – главного потребителя элемента. В январе 2017 года 1 тонна металла оценивалась в 7655 $.

Применение

Категории

Итак, . Основной потребитель хрома – черная металлургия. Связано это со способностью металла передавать такие свои свойства, как стойкость к коррозии и твердость своим сплавам. Причем влияние он оказывает при добавлении в очень небольших количествах.

Все сплавы хрома и железа разделяют на 2 категории:

  • низколегированные – с долей хрома до 1,6%. В этом случае хром добавляет стали прочности и твердости. Если у обычной стали предел прочности составит 400–580 МПа, то та же марка стали с добавкой 1% вещества продемонстрирует предел равный 1000 МПа;
  • высоколегированные – содержат более 12% хрома. Здесь металл обеспечивает сплаву такую же стойкость к коррозии, какой обладает сам. Все нержавеющие стали называют хромовыми, поскольку именно этот элемент обеспечивает это качество.

Низколегированные стали относятся к конструкционным: из них изготавливают многочисленные детали машин – валы, зубчатые колеса, толкатели и так далее. Сфера использования нержавеющей стали огромна: металлические части турбин, корпуса корабля и подводных лодок, камеры сгорания, крепеж любого рода, трубы, швеллеры, уголки, листовая сталь и так далее.

Кроме того, хром увеличивает стойкость сплава к температуре: при содержании вещества от 30 до 66%, изделия из жаропрочной стали может выполнять свои функции при нагреве до 1200 С. Это материал для клапанов поршневых двигателей, для крепежа, для деталей турбин и прочего.

Если 70% хрома уходит на нужды металлургии, то остальные почти 30% используются для хромирования. Суть процесса сводится к нанесению на поверхность предмета из металла тонкого слоя хрома. Используются для этого самые разные методы, многие доступны домашним мастерам.

Хромирование

Хромирование можно разделить на 2 категории:

  • функциональное – его целью является предупредить коррозию изделия. Толщина слоя здесь больше, так что процесс хромирования занимает больше времени – порой до 24 часов. Кроме того, что хромовый слой предупредит ржавление, он заметно увеличивает износостойкость детали;
  • декоративное – хром создает зеркально-блестящую поверхность. Автолюбители и мотогонщики редко когда отказываются от возможности украсить свою машину хромированными деталями. Слой декоративности покрытия намного тоньше – до 0,0005 мм.

Хромирование активно используется в современном строительстве и при изготовлении мебели. Фурнитура с зеркальным покрытием, аксессуары ванной и кухни, кухонная утварь, детали мебели – изделия с хромовым покрытием на редкость популярны. А так как благодаря современным методом хромирования, покрытие можно создать буквально на любом предмете, появились и несколько нетипичные методы применения. Так, например, хромированную сантехнику к тривиальным решениям отнести нельзя.

Хром – металл с очень необычными свойствами, причем его качества востребованы в промышленности. В большинстве своем интерес представляют его сплавы и соединения, что лишь повышает значение металла для народного хозяйства.

Про снятие хрома с металла расскажет видео ниже: