Решение уравнений с двумя переменными. Системы с нелинейными уравнениями

Глава 8. Системы уравнений

8.2. Система двух линейных уравнений с двумя неизвестными

Определение

Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений .
Система вида называется нормальной формой системы двух линейных уравнений с двумя неизвестными.
Решить такую систему - значит найти множество всех общих для обоих уравнений решений.

А как же решать такую систему?

Решать такую систему можно, например, графически. Обычно такая система графически представляется двумя прямыми линиями, и общим решением этих уравнений (решением системы) будут координаты общей точки двух прямых. Здесь возожны три случая:
1) Прямые (графики) имеют только одну общую точку (пересекаются) - система уравнений имеет единственное решение и она называетсяопределенной .
2) Прямые (графики) не имеют общих точек (параллельны) - система не имеет решения и она называется несовместной .
3) Прямые (графики) имеют бесконечно много общих точек (совпадают) - система имеет бесконечное множество решений и называется неопределенной.

Что-то я пока не понимаю. Может с примерами понятнее будет?

Конечно, сейчас приведем по примеру на каждый случай и все сразу станет понятнее.

Начнем с примера, когда система определенная (имеет единственное решение). Возьмем систему . Построим графики этих функций.

Они пересекаются только в одной точке, следовательно решением этой системы являются только координаты точки: , .

Теперь приведем пример несовместной системы (той, которая не имеет решения). Рассмотрим такую систему .

В этом случае система противоречива: левые части равные, а правые части при этом различны. Графики не имеют общих точек (параллельны), следовательно система не имеет решения.

Ну теперь остался последний случай, когда система неопределенная (имеет бесконечное множество решений). Вот пример такой системы: . Построим графики этих уравнений.

Прямые (графики) имеют бесконечно много общих точек (совпадают), значит система имеет бесконечное множество решений. В этом случае уравнения системы равносильны (умножив второе уравнение на 2 , получим первое уравнение).

Наиболее важным является первый случай. Единственное решение такой системы всегда можно найти графически - иногда точно, а чаще всего приближенно с необходимой степенью точности.

Определение

Две системы уравнений называются равносильными (эквивалентными) , если все решения каждой из них являются и решениями другой (множества решений совпадают) или если обе не имеют решений.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Наверняка многие знают, что уравнение представляет собой некое тождество с неизвестной, которую необходимо определить, чтобы решить уравнение и получить равные значения левой и правой частей. Чтобы решить данного рода уравнения необходимо перенести в левую сторону все известные значения, а в правую все неизвестные. Решить данные уравнения можно с помощью 3 методов:

1) подстановки;

2) сложения;

3) построения графиков.

Выбор метода зависит от целевого уравнения. Решить онлайн уравнение с двумя неизвестными можно на многих сайтах, однако слепо доверять полученному результату не стоит.

Ниже приведен пример решения уравнения с 2 неизвестными методом сложения.

\[-9x + 5y = -40\]

Первое, с чего стоит начать решение - сложить каждое слагаемое с учетом их знаков:

\[-5y + 5y = 0\]

В большинстве случаев, одна из сумм, включающая в себя неизвестную будет содержать величину, равную нулю. На следующем этапе решения уравнения нам необходимо составить уравнение из полученных данных:

\[-7x + 0 = 21\]

Найти неизвестное:

\[-7x = 21, x = 21 \div (-7) = -3\]

Вставить полученное значение в любое из исходных уравнений и получить 2 неизвестное с помощью решения уравнения линейного типа:

\[-6 - 5y = 61\]

\[-5y = 61 + 6\]

Конечный результат:

Где можно решить уравнение с 2 неизвестными онлайн?

Решить уравнение с двумя неизвестными онлайн решателем можно на сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Инструкция

Способ сложения.
Нужно записать два строго друг под другом:

549+45у+4у=-7, 45у+4у=549-7, 49у=542, у=542:49, у≈11.
В произвольно выбранное (из системы) уравнение вставить вместо уже найденного «игрека» число 11 и вычислить второе неизвестное:

Х=61+5*11, х=61+55, х=116.
Ответ данной системы уравнений: х=116, у=11.

Графический способ.
Заключается в практическом нахождении координаты точки, в которой прямые, математически записанные в системе уравнений. Следует начертить графики обоих прямых по отдельности в одной системе координат. Общий вид : – у=kх+b. Чтобы построить прямую, достаточно найти координаты двух точек, причем, х выбирается произвольно.
Пусть дана система: 2х – у=4

У=-3х+1.
Строится прямая по первому , для удобства его нужно записать: у=2х-4. Придумать (полегче) значения для икс, подставляя его в уравнение, решив его, найти игрек. Получаются две точки, по которым строится прямая. (см рис.)
х 0 1

у -4 -2
Строится прямая по второму уравнению: у=-3х+1.
Так же построить прямую. (см рис.)

у 1 -5
Найти координаты точки пересечения двух построенных прямых на графике (если прямые не пересекаются, то система уравнений не имеет – так ).

Видео по теме

Полезный совет

Если одну и ту же систему уравнений решить тремя разными способами, ответ получится одинаковый (если решение верно).

Источники:

  • Алгебра 8 класса
  • решить уравнение с двумя неизвестными онлайн
  • Примеры решения систем линейных уравнений с двумя

Система уравнений представляет собой совокупность математических записей, каждая из которых содержит некоторое количество переменных. Существует несколько способов их решения.

Вам понадобится

  • -линейка и карандаш;
  • -калькулятор.

Инструкция

Рассмотрим последовательность решения системы, которая состоит из линейных уравнений имеющих вид: a1x + b1y = c1 и a2x + b2y = c2. Где x и y – неизвестные переменные, а b,c – свободные члены. При применении данного способа каждое системы представляет собой координаты точек , соответствующих каждому уравнению. Для начала в каждом случае выразите одну переменную через другую. Затем задайте переменной х несколько любых значений. Достаточно два. Подставьте в уравнение и найдите y. Постройте систему координат, отметьте на ней полученные точки и проведите через них прямую. Аналогичные расчеты необходимо провести и для других частей системы.

Система имеет единственное решение, если построенные прямые пересекаются и одну общую точку. Она несовместна, если параллельны друг другу. И имеет бесконечно много решений, когда прямые сливаются друг с другом.

Данный способ считается очень наглядным. Главным недостатком то, что вычисленные неизвестные имеют приближенные значения. Более точный результат дают так называемые алгебраические методы.

Любое решение системы уравнений стоит проверить. Для этого подставьте вместо переменных полученные значения. Так же можно найти его решение несколькими методами. Если решение системы верное, то все должны получиться одинаковыми.

Часто встречаются уравнения, в которых одно из слагаемых неизвестно. Чтобы решить уравнение, нужно запомнить и проделать с данными числами определенный набор действий.

Вам понадобится

  • - лист бумаги;
  • - ручка или карандаш.

Инструкция

Представьте, что перед вами 8 кроликов, а у вас есть только 5 морковок. Подумайте, морковок вам нужно еще купить, чтобы каждому кролику досталось по морковке.

Представим эту задачу в виде уравнения: 5 + x = 8. Подставим на место x число 3. Действительно, 5 + 3 = 8.

Когда вы подставляли число на место x, вы проделывали ту же операцию, что и при вычитании 5 из 8. Таким образом, чтобы найти неизвестное слагаемое, вычтите из суммы известное слагаемое.

Допустим, у вас 20 кроликов и только 5 морковок. Составим . Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, значения которых требуется отыскать, называются . Составьте уравнение с одним неизвестным, назовите его x. При решении нашей задачи про кроликов получается следующее уравнение: 5 + x = 20.

Найдем разницу между 20 и 5. При вычитании то число, из которого вычитают, уменьшаемое. То число, которое вычитают, называется , а конечный результат называется разностью. Итак, x = 20 – 5; x = 15. Нужно купить 15 морковок для кроликов.

Сделайте проверку: 5 + 15 = 20. Уравнение решено верно. Разумеется, когда речь идет о таких простых , проверку выполнять необязательно. Однако когда приходится уравнения с трехзначными, четырехзначными и тому числами, обязательно нужно выполнять проверку, чтобы быть абсолютно уверенным в результате своей работы.

Видео по теме

Полезный совет

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

Совет 4: Как решить систему из трёх уравнений с тремя неизвестными

Система из трех уравнений с тремя неизвестными может и не иметь решений, несмотря на достаточное количество уравнений. Можно пытаться решить ее с помощью метода подстановки или с помощью метода Крамера. Метод Крамера помимо решения системы позволяет оценить, является ли система разрешимой, до того, как отыскать значения неизвестных.

Инструкция

Метод подстановки заключается в последовательном одной неизвестной через две других и подстановке полученного результата в уравнения системы. Пусть дана система из трех уравнений в общем виде:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Выразите из первого уравнения x: x = (d1 - b1y - c1z)/a1 - и подставьте во второе и третье уравнения, затем из второго уравнения выразите y и подставьте в третье. Вы получите линейное выражение для z через коэффициенты уравнений системы. Теперь идите "обратно": подставьте z во второе уравнение и найдите y, а затем z и y подставьте в первое и найдите x. Процесс в общем виде отображен на рисунке до нахождения z. Дальше запись в общем виде будет слишком громоздкой, на практике, подставив , вы довольно легко найдете все три неизвестные.

Метод Крамера заключается в составлении матрицы системы и вычислении определителя этой матрицы, а также еще трех вспомогательных матриц. Матрица системы составляется из коэффициентов при неизвестных членах уравнений. Столбец, содержащий числа, стоящие в правых частях уравнений, столбцом правых частей. В системы он не используется, но используется при решении системы.

Видео по теме

Обратите внимание

Все уравнения в системе должны поставлять дополнительную независимую от других уравнений информацию. Иначе система будет недоопределена и однозначного решения найти будет не возможно.

Полезный совет

После решения системы уравнений подставьте найденные значения в исходную систему и проверьте, что они удовлетворяют всем уравнениям.

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Приступая к решению системы уравнений, разберитесь с тем, какие это уравнения. Достаточно хорошо изучены способы решения линейных уравнений. Нелинейные уравнения чаще всего не решаются. Имеются лишь одни частные случаи, каждый из которых практически индивидуален. Поэтому изучение приемов решения следует начать с уравнений именно линейных. Такие уравнения можно решать даже чисто алгоритмически.

знаменатели при найденных неизвестных совершено одинаковы. Да и у числителей просматриваются некоторые закономерности их построения. Если размерность системы уравнений была бы большей двух, то метод исключения приводил бы к весьма громоздким выкладкам. Чтобы их избежать, разработаны чисто алгоритмические способы решения. Самый простой из них алгоритм Крамера (формулы Крамера). Для следует узнать, общая система уравнений из n уравнений.

Система n линейных алгебраических уравнений с n неизвестными имеет вид (см. рис. 1a). В ней аij – коэффициенты системы,
хj – неизвестные, bi – свободные члены (i=1, 2, ... , n; j=1, 2, ... , п). Компактно такую систему можно записывать в матричной форме АХ=B. Здесь А – матрица коэффициентов системы, Х – матрица-столбец неизвестных, B – матрица-столбец свободных членов (см. рис 1b). По методу Крамера каждое неизвестное xi =∆i/∆ (i=1,2…,n). Определитель ∆ матрицы коэффициентов называют главным, а ∆i вспомогательным. Для каждой неизвестной вспомогательный определитель находят с помощью замены i-го столбца главного определителя на столбец свободных членов. Подробно метод Крамера для случая систем второго и третьего порядка представлен на рис. 2.

Система представляет собой объединение двух или более равенств, в каждом из которых имеется по два или более неизвестных. Существуют два основных способа решения систем линейных уравнений, которые используются в рамках школьной программы. Один из них носит название метода , другой - метода сложения.

Стандартный вид системы из двух уравнений

При стандартном виде первое уравнение имеет вид a1*x+b1*y=с1, второе уравнение имеет вид a2*x+b2*y=c2 и так далее. Например, в случае с двумя частями системы в обоих приведенных a1, a2, b1, b2, c1, c2 - некоторые числовые коэффициенты, представленные в конкретных уравнениях. В свою очередь, x и у представляют собой неизвестные, значения которых нужно определить. Искомые значения обращают оба уравнения одновременно в верные равенства.

Решение системы способом сложения

Для того чтобы решить систему , то есть найти те значения x и y, которые превратят их в верные равенства, необходимо предпринять несколько несложных шагов. Первый из них заключается в преобразовании любого из уравнений таким образом, чтобы числовые коэффициенты для переменной x или y в обоих уравнениях совпадали по модулю, но различались по знаку.

Например, пусть задана система, состоящая из двух уравнений. Первое из них имеет вид 2x+4y=8, второе имеет вид 6x+2y=6. Одним из вариантов выполнения поставленной задачи является домножение второго уравнения на коэффициент -2, которое приведет его к виду -12x-4y=-12. Верный выбор коэффициента является одной из ключевых задач в процессе решения системы способом сложения, поскольку он определяет весь дальнейший ход процедуры нахождения неизвестных.

Теперь необходимо осуществить сложение двух уравнений системы. Очевидно, взаимное уничтожение переменных с равными по значению, но противоположными по знаку коэффициентами приведет его к виду -10x=-4. После этого необходимо решить это простое уравнение, из которого однозначно следует, что x=0,4.

Последним шагом в процессе решения является подстановка найденного значения одной из переменных в любое из первоначальных равенств, имеющихся в системе. Например, подставляя x=0,4 в первое уравнение, можно получить выражение 2*0,4+4y=8, откуда y=1,8. Таким образом, x=0,4 и y=1,8 являются корнями приведенной в примере системы.

Для того чтобы убедиться, что корни были найдены верно, полезно произвести проверку, подставив найденные значения во второе уравнение системы. Например, в данном случае получается равенство вида 0,4*6+1,8*2=6, которое является верным.

Видео по теме

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки . При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p - 2&1/8q)


Решить систему уравнений

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;



$$ \left\{ \begin{array}{l} 3x+y=7 \\ -5x+2y=3 \end{array} \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\{ \begin{array}{l} y = 7-3x \\ -5x+2(7-3x)=3 \end{array} \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) - решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными . Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений - способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\{ \begin{array}{l} 2x+3y=-5 \\ x-3y=38 \end{array} \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\{ \begin{array}{l} 3x=33 \\ x-3y=38 \end{array} \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \(x-3y=38 \) получим уравнение с переменной y: \(11-3y=38 \). Решим это уравнение:
\(-3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \(x=11; y=-9 \) или \((11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Большинство задач в математике ориентировано на решение стандартных уравнений, содержащих одну переменную. Иногда используется система двух и более уравнений, которые могут включать, соответственно, две и более переменные.

Однако изучим отдельное уравнение, содержащее в своем составе помимо числовых выражений два неизвестных абстрактных выражения. Например:

Любое подобное уравнение называется уравнением с двумя переменными. Решением подобного уравнения называется такая пара значений х и у, при которой все выражение преобразуется в равносильное правильное равенство. Используем такие значения для переменных:

Подставляя в наше уравнение, получим верное равенство:

(2) 2 + 2(1) = 6

Таким образом, пара чисел (2, 1) являются решением для уравнения.

х2 + 2у = 6. Отметим, что при записи решения необходимо указывать значения переменных в скобках через запятую, на первое место записывая значение х (это не строго, но утверждено).

Решая первый пример методом подбора, легко найти ещё одну пару решений - например, воспользуемся значениями (4, -5):

(4) 2 + 2(-5) = 6

Пара чисел превратила уравнение в правильное равенство, значит, она так же соответствует решению данного уравнения.

Как можно понять из видеоурока, уравнение с двумя переменными имеет множество решений, точнее, множество пар чисел, которые будут соответствовать критериям правильного ответа. Преобразуем первое уравнение следующим образом. Поделим все части равенства на 2:

0,5х 2 + у = 3

у = 3 - 0,5х 2

Полученное выражение у = 3 - 0,5х2 является ничем иным, как функцией - зависимостью одной переменной от второй. Иначе говоря:

у = 3 - 0,5х 2

f(х) = 3 - 0,5х 2

Как мы помним из видеоуроков, посвященных основам функций, любая зависимость характеризуется тремя элементами: множеством неких начальных аргументов, формулой преобразования, множеством полученных значений. В нашем уравнении множество всех реальных решений представлено парами значений х и у - то есть, парными элементами обеих множеств функции. При этом само уравнение представляет собой выражение зависимости между первой и второй переменной.
Помимо того, выражение у = 3 - 0,5х 2 имеет точно такие же пары решений, как и х 2 + 2у = 6 - поэтому, эти уравнения называются равносильными. Равносильные уравнения получаются в таких случаях:

  1. При осуществлении переноса слагаемых (с учетом инверсии знака) с одной части равенства в другую;
  2. При различных тождественных преобразованиях, не меняющих смысл равенства;
  3. При умножении или делении одновременно обеих частей уравнения на один и тот же коэффициент;

Важно понимать, что, осуществляя различные преобразования в уравнении, нельзя искажать область определения какой-либо из переменных. Большинство тождественных преобразований сохраняют неизменным множество х или у, но бывают неприятные исключения. Рассмотрим такой пример:

у = х(2/(х) + 4)

Для решения этого уравнения логичнее было бы раскрыть скобки: совершить вполне тождественное преобразование, которое почти никогда не затрагивает область определения переменных. Но в данном случае раскрытие скобок не будет тождественным явлением. В изначальном варианте представленное уравнение имеет множество решений х, исключая х = 0, так как при данном значении одночлен 2/х потеряет смысл вместе со всем уравнением. Если же мы раскроем скобки, то получим следующее:

у = х(2/(х) + 4) = 2х/х + 4х = 2 + 4х

Как легко заметить, в новом уравнении область определения х является бесконечной, включая х = 0. То есть, множество значений х изменилось, уравнение не является равносильным заданному примеру. Тем не менее, часто подобные упражнения решают обычными преобразованиями. Просто нужно совершать подстановочную проверку, что бы исключить недействительные решения уравнения.

Подавляющее большинство уравнений с двумя переменными преобразуется в аналитические зависимости, после чего совершается подстановка любых двух значений х и вычисляется, таким образом, пара решений х и у. При этом, самих решений, как правило, бесконечное множество. Но есть и небольшие исключения - когда из области определения переменной выпадает какая-либо точка. Некоторые уравнения с двумя неизвестными имеют только одно решение, например, выражение х 2 + у 2 = 0 имеет только одну пару корня - (0, 0). А уравнение вида х 2 + у 2 = -1 не имеет действительных решений вообще. То же справедливо по отношению к любым подобным уравнениям, которые равны отрицательным числам - ведь квадраты, как и их суммы, в принципе не могут дать отрицательных значений.