Физиология сосудистой системы. Физиология сердечно-сосудистой системы Сердечно сосудистая система физиология функции сердца


Основное значение сердечно-сосудистой системы состоит в снабжении кровью органов и тканей. Сердечно-сосудистая система состоит из сердца, кровеносных и лимфатических сосудов.

Сердце человека - это полый мышечный орган, разделенный вертикальной перегородкой на левую и правую половины, а горизонтальной на четыре полости: два предсердия и два желудочка. Сердце окружено как мешком соединительнотканной оболочкой - перикардом. В сердце существуют два вида клапанов: атриовентрикулярные (отделяющие предсердия от желудочков) и полулунные (между желудочками и крупными сосудами - аортой и легочной артерией). Основная роль клапанного аппарата состоит в препятствии обратному току крови.

В камерах сердца берут свое начало и заканчиваются два круга кровообращения.

Большой круг начинается аортой, которая отходит от левого желудочка. Аорта переходит в артерии, артерии в артериолы, артериолы в капилляры, капилляры в венулы, венулы в вены. Все вены большого круга собирают свою кровь в полые вены: верхнюю - от верхней части туловища, нижнюю - от нижней. Обе вены впадают в правое предсердие.

Из правого предсердия кровь поступает в правый желудочек, где начинается малый круг кровообращения. Кровь из правого желудочка поступает в легочный ствол, который несет кровь в легкие. Легочные артерии ветвятся до капилляров, затем кровь собирается в венулы, вены и поступает в левое предсердие где и заканчивается малый круг кровообращения. Основная роль большого круга - это обеспечение обмена веществ организма, основная роль малого круга - насыщение крови кислородом.

Основными физиологическими функциями сердца являются: возбудимость, способность проводить возбуждение, сократимость, автоматизм.

Под сердечным автоматизмом понимают способность сердца сокращаться под воздействием импульсов возникающих в нем самом. Эту функцию выполняет атипичная сердечная ткань которая состоит из: синоаурикулярного узла, атриовентрикулярного узла, пучка Гисса. Особенностью автоматизма сердца является то, что вышележащий участок автоматизма подавляет автоматизм нижележащего. Ведущим водителем ритма является синоаурикулярный узел.

Под сердечным циклом понимают одно полное сокращение сердца. Сердечный цикл состоит из систолы (период сокращения) и диастолы (период расслабления). Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы желудочки наполняются кровью.

Ритм сердца - это количество сердечных сокращений за одну минуту.

Аритмия - нарушение ритма сердечных сокращений, тахикардия - учащение частоты сердечных сокращений (ЧСС), возникает часто при усилении влияния симпатической нервной системы, брадикардия - урежение ЧСС, возникает часто при усилении влияния парасимпатической нервной системы.

Экстрасистолия - это внеочередное сердечное сокращение.

Сердечные блокады - нарушение функции проводимости сердца, обусловленные поражением атипичных сердечных клеток.

К показателям сердечной деятельности относят: ударный объем - количество крови, которое выбрасывается в сосуды при каждом сокращении сердца.

Минутный объем - это количество крови, которое сердце выбрасывает в легочный ствол и аорту в течение минуты. Минутный объем сердца увеличивается при физической нагрузке. При умеренной нагрузке минутный объем сердца повышается как за счет роста силы сердечных сокращений, так и за счет частоты. При нагрузках большой мощности только за счет роста ЧСС.

Регуляция сердечной деятельности осуществляется за счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования. Влияние нервной системы на деятельность сердца осуществляется за счет блуждающего нерва (парасимпатический отдел ЦНС) и за счет симпатических нервов (симпатический отдел ЦНС). Окончания этих нервов изменяют автоматизм синоаурикулярного узла, скорость проведения возбуждения по проводящей системе сердца, интенсивность сердечных сокращений. Блуждающий нерв при возбуждении уменьшает ЧСС и силу сердечных сокращений, снижает возбудимость и тонус сердечной мышцы, скорость проведения возбуждения. Симпатические нервы наоборот учащают ЧСС, увеличивают силу сердечных сокращений, повышают возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения. Гуморальные влияния на сердце реализуются гормонами, электролитами, и другими биологически активными веществами, являющимися продуктами жизнедеятельности органов и систем. Ацетилхолин (АЦХ) и норадреналин (НА) - медиаторы нервной системы - оказывают выраженное влияние на работу сердца. Действие АЦХ аналогично действию парасимпатической, а норадреналина действию симпатической нервной системы.

Кровеносные сосуды. В сосудистой системе различают: магистральные (крупные эластические артерии), резистивные (мелкие артерии, артериолы, прекапиллярные сфинктеры и посткапиллярные сфинктеры, венулы), капилляры (обменные сосуды), емкостные сосуды (вены и венулы), шунтирующие сосуды.

Под артериальным давлением (АД) понимают давление в стенках кровеносных сосудов. Величина давления в артериях ритмически колеблется, достигая наиболее высокого уровня в период систолы и снижается в момент диастолы. Это объясняется тем, что выбрасываемая при систоле кровь встречает сопротивление стенок артерий и массы крови, заполняющей артериальную систему, давление в артериях повышается и возникает некоторое растяжение их стенок. В период диастолы АД понижается и поддерживается на определенном уровне за счет эластического сокращения стенок артерий и сопротивления артериол, благодаря чему продолжается продвижение крови в артериолы, капилляры и вены. Следовательно, величина АД пропорциональна количеству крови, выбрасываемой сердцем в аорту (т.е. ударному объему) и периферическому сопротивлению. Различают систолическое (САД), диастолическое (ДАД), пульсовое и среднее АД.

Систолическое АД - это давление обусловленное систолой левого желудочка (100 - 120 мм рт.ст.). Диастолическое давление - определяется тонусом резистивных сосудов в период диастолы сердца (60-80 мм рт.ст.). Разность между САД и ДАД называется пульсовым давлением. Среднее АД равняется сумме ДАД и 1/3 пульсового давления. Среднее АД выражает энергию непрерывного движения крови и постоянно для данного организма. Повышение артериального давления называют гипертензией. Понижение АД называют гипотензией. АД выражают в миллиметрах ртутного столба. Нормальное систолическое давление колеблется в пределах 100-140 мм рт.ст., диастолическое давление 60-90 мм рт.ст.

Обычно давление измеряется в плечевой артерии. Для этого на обнаженное плечо обследуемого накладывают и закрепляют манжетку, которая должна прилегать настолько плотно, чтобы между ней и кожей проходил один палец. Край манжетки, где имеется резиновая трубка, должен быть обращен книзу и располагаться на 2-3 см выше локтевой ямки. После закрепления манжетки обследуемый удобно укладывает руку ладонью вверх, мышцы руки должны быть расслаблены. В локтевом сгибе находят по пульсации плечевую артерию, прикладывают к ней фонендоскоп, закрывают вентиль сфигмоманометра и накачивают воздух в манжету и манометр. Высота давления воздуха в манжете, сдавливающей артерию, соответствует уровню ртути на шкале прибора. Воздух нагнетается в манжету до тех пор, пока давление в ней не превысит примерно на 30 мм рт.ст. Тот уровень, при котором перестает определятся пульсация плечевой или лучевой артерии. После этого вентиль открывают и начинают медленно выпускать воздух из манжеты. Одновременно фонендоскопом выслушивают плечевую артерию и следят за показанием шкалы манометра. Когда давление в манжете станет чуть ниже систолического, над плечевой артерией начинают выслушиваться тоны, синхронные с деятельностью сердца. Показание манометра в момент первого появления тонов отмечают как величину систолического давления. Эта величина обычно указывается с точностью до 5 мм (например 135, 130, 125 мм рт.ст. и т.д.). При дальнейшем снижении давления в манжете тоны постепенно ослабевают и исчезают. Это давление диастолическое.

АД у здоровых людей подвержено значительным физиологическим колебаниям в зависимости от физической нагрузки, эмоционального напряжения, положения тела, времени приема пищи и др. факторов. Наиболее низкое давление бывает утром, натощак, в покое, т.е в тех условиях, в которых определяется основной обмен, поэтому такое давление называется основным или базальным. При первом измерении уровень АД может оказаться выше, чем в действительности, что связано с реакцией клиента на процедуру измерения. Поэтому рекомендуется не снимая манжеты и лишь выпуская из нее воздух, измерить давление несколько раз и учитывать последнюю наименьшую цифру. Кратковременное повышение АД может наблюдаться при большой физической нагрузке, особенно у нетренированных лиц, при психическом возбуждении, употреблении алкоголя, крепкого чая, кофе, при неумеренном курении и сильных болях.

Пульсом называют ритмические колебания стенки артерий, обусловленные сокращением сердца, выбросом крови в артериальную систему и изменением в ней давления в течение систолы и диастолы.

Распространение пульсовой волны связано со способностью стенок артерий к эластическому растяжению и спадению. Как правило, пульс начинают исследовать на лучевой артерии, поскольку она располагается поверхностно, непосредственно под кожей и хорошо прощупывается между шиловидным отростком лучевой кости и сухожилием внутренней лучевой мышцы. При пальпации пульса кисть исследуемого охватывают правой рукой в области лучезапястного сустава так, что бы 1 палец располагался на тыльной стороне предплечья, а остальные на передней его поверхности. Нащупав артерию, прижимают ее к подлежащей кости. Пульсовая волна под пальцами ощущается в виде расширения артерии. Пульс на лучевых артериях может быть неодинаковым, поэтому в начале исследования нужно пальпировать его на обеих лучевых артериях одновременно, двумя руками.

Исследование артериального пульса дает возможность получать важные сведения о работе сердца и состоянии кровообращения. Это исследование проводится в определенном порядке. Вначале надо убедиться что пульс одинаково прощупывается на обеих руках. Для этого пальпируют одновременно две лучевые артерии и сравнивают величину пульсовых волн на правой и левой руках (в норме она одинакова). Величина пульсовой волны на одной руке может оказаться меньше, чем на другой, и тогда говорят о различном пульсе. Он наблюдается при односторонних аномалиях строения или расположения артерии, ее сужении, сдавлении опухолью, рубцами др. Различный пульс будет возникать не только при изменении лучевой артерии, но и при аналогичных изменениях вышерасположенных артерий - плечевой, подключичной. Если выявлен различный пульс, дальнейшее его исследование проводят на той руке, где пульсовые волны лучше выражены.

Определяются следующие свойства пульса: ритм, частота, напряжение, наполнение, величина и форма. У здорового человека сокращения сердца и пульсовой волны следуют друг за другом через равные промежутки времени, т.е. пульс ритмичен. В нормальных условиях частота пульса соответствует частоте сердечных сокращений и равна 60-80 ударов в минуту. Частоту пульса подсчитывают в течении 1 мин. В положении лежа пульс в среднем на 10 ударов меньше, чем стоя. У физически развитых людей частота пульса ниже 60 уд/мин, а у тренированных спортсменов до 40-50 уд/мин, что указывает на экономичную работу сердца. В состоянии покоя частота сердечных сокращений (ЧСС) зависит от возраста, пола, позы. С возрастом она уменьшается.

Пульс у находящегося в состоянии покоя здорового человека ритмичный, без перебоев, хорошего наполнения и напряжения. Ритмичным считается такой пульс, когда количество ударов за 10 с отмечается от предыдущего подсчета за такой же период времени не более, чем на один удар. Для подсчета пользуются секундомером или обычными часами с секундной стрелкой. Чтобы получить сравниваемые данные, измеряйте пульс всегда в одном и том же положении (лежа, сидя или стоя). Например, утром измеряйте пульс сразу после сна лежа. Перед занятием и после них - сидя. Определяя величину пульса следует помнить, что сердечно- сосудистая система очень чувствительна к различным влияниям (эмоциональным, физическим нагрузкам и др.). Вот почему наиболее спокойный пульс регистрируется утром, сразу после пробуждения, в горизонтальном положении. Перед тренировкой он может существенно повышаться. Во время занятий контроль за ЧСС можно проводить путем подсчета пульса за 10 с. Учащение пульса в покое на следующий день после тренировки (особенно при плохом самочувствии, нарушении сна, нежелание тренироваться и т.д.) свидетельствует об утомлении. Для лиц, регулярно занимающихся физическими упражнениями, ЧСС в покое более 80 уд/мин расценивается как признак утомления. В дневнике самоконтроля записывается число ударов пульса и отмечается его ритмичность.

Для оценки физической работоспособности используют данные о характере и продолжительности процессов, полученных в результате выполнения различных функциональных проб с регистрацией ЧСС после нагрузки. В качестве таких проб можно использовать следующие упражнения.

Не очень физически подготовленные люди, а также дети делают 20 глубоких и равномерных приседаний за 30 с (приседая, вытянуть руки вперед, вставая - опустить), затем сразу же, сидя, подсчитывают пульс за 10с в течение 3 мин. Если пульс восстанавливается к концу первой минуты - отлично, к концу 2-й - хорошо, к концу 3-й - удовлетворительно. При этом пульс учащается не более чем на 50-70% от исходной величины. Если в течение 3 мин пульс не восстанавливается - неудовлетворительно. Бывает что учащение пульса происходит на 80% и более по сравнению с исходным, что указывает на снижение функционального состояния сердечно-сосудистой системы.

При хорошей физической подготовленности используют бег на месте в течение 3 мин в умеренном темпе (180 шагов в минуту) с высоким подниманием бедра и движениями рук, как при обычном беге. Если пульс учащается не более чем на 100% и восстанавливается на 2-3 минуте - отлично, на 4-й - хорошо, на 5-й - удовлетворительно. Если пульс возрастает более чем на 100%, а восстановление происходит более чем за 5 минут, то такое состояние оценивается как неудовлетворительное.

Пробы с приседаниями или с дозированным бегом на месте не следует проводить сразу после еды или после занятий. По ЧСС во время занятий можно судить о величине и интенсивности физической нагрузки для данного человека и режим работы (аэробный, анаэробный) в котором проводится тренировка.

Микроциркуляторное звено является центральным в сердечно-сосудистой системе. Оно обеспечивает основную функцию крови - транскапиллярный обмен. Микроциркуляторное звено представлено мелкими артериями, артериолами, капиллярами, венулами, мелкими венами. Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двухсторонней проницаемостью. Проницаемость капилляров - это активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма. Кровь из микроциркуляторного русла попадает в вены. В венах давление низкое от 10-15 мм.рт.ст в мелких до 0 мм.рт.ст. в крупных. Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.

При физической нагрузке существенно возрастают потребности организма, в частности в кислороде. Наблюдается условнорефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличивается выброс адреналина мозговым веществом надпочечников. Адреналин стимулирует работу сердца, суживает сосуды внутренних органов, что ведет к подъему АД, росту линейной скорости кровотока через сердце, мозг, легкие. Значительно во время физической активности возрастает кровоснабжение мышц. Причиной этого является интенсивный обмен веществ в мышце, что способствует скоплению в ней продуктов метаболизма (углекислого газа, молочной кислоты и др.), которые обладают выраженным сосудорасширяющим эффектом и способствуют более мощному раскрытию капилляров. Расширение диаметра сосудов мышц не сопровождается падением артериального давления в результате активации прессорных механизмов в ЦНС, а так же повышенной концентрации глюкокортикоидов и катехоламинов в крови. Работа скелетных мышц усиливает венозный кровоток, что способствует быстрому венозному возврату крови. А повышение содержания продуктов метаболизма в крови, в частности углекислоты ведет к стимуляции дыхательного центра, увеличению глубины и частоты дыхания. Это в свою очередь увеличивает отрицательное давление грудной клетки, важнейшего механизма способствующего увеличению венозного возврата к сердцу.



Масса крови перемещается по замкну­той сосудистой системе, состоящей из боль­шого и малого кругов кровообращения, в строгом соответствии с основными физи­ческими принципами, в том числе с прин­ципом неразрывности потока. Согласно этому принципу разрыв потока при вне­запных травмах и ранениях, сопровожда­ющихся нарушением целостности сосудис­того русла, приводит к потере как час­ти объема циркулирующей крови, так и большого количества кинетической энер­гии сердечного сокращения. В нормально функционирующей системе кровообраще­ния согласно принципу неразрывности потока через любое поперечное сечение замкнутой сосудистой системы в единицу времени перемещается один и тот же объем крови.

Дальнейшее изучение функций крово­обращения как в эксперименте, так и в кли­нике, привело к пониманию того, что кро­вообращение наряду с дыханием относится к числу наиболее важных жизнеобес­печивающих систем, или к так называе­мым «витальным» функциям организма, прекращение функционирования которых приводит к смерти в течение нескольких секунд или минут. Между общим состоя­нием организма больного и состоянием кровообращения существует прямая зави­симость, поэтому состояние гемодинами­ки является одним из определяющих кри­териев тяжести заболевания. Развитие любого тяжелого заболевания всегда со­провождается изменениями функции кро­вообращения, проявляющимися либо в его патологической активации (напряжение), либо в депрессии той или иной степени выраженности (недостаточность, несосто­ятельность). Первичное поражение цир­куляции характерно для шоков различ­ной этиологии.

Оценка и поддержание адекватности гемодинамики являются важнейшим ком­понентом деятельности врача при проведении анестезии, интенсивной терапии и реанимации.

Система кровообращения осуществля­ет транспортную связь между органами и тканями организма. Кровообращение вы­полняет множество взаимосвязанных функ­ций и обуславливает интенсивность сопря­женных процессов, в свою очередь, влия­ющих на кровообращение. Все реализуе­мые кровообращением функции характе­ризуются биологической и физиологичес­кой специфичностью и ориентированы на осуществление феномена переноса масс, клеток и молекул, выполняющих защит­ные, пластические, энергетические и инфор­мационные задачи. В наиболее общей фор­ме функции кровообращения сводятся к массопереносу по сосудистой системе и к массообмену с внутренней и внешней сре­дой. Это явление, наиболее четко просле­живаемое на примере газообмена, лежит в основе роста, развития и гибкого обеспе­чения различных режимов функциональ­ной активности организма, объединяя его в динамическое целое.


К основным функциям кровообращения относятся:

1. Транспорт кислорода из легких к тка­ням и углекислого газа из тканей к легким.

2. Доставка пластических и энергетичес­ких субстратов к местам их потребления.

3. Перенос продуктов метаболизма к органам, где происходит их дальнейшее превращение и экскреция.

4. Осуществление гуморальной взаимо­связи между органами и системами.

Кроме этого, кровь играет роль буфера между внешней и внутренней средой и является наиболее активным звеном в гид­рообмене организма.

Система кровообращения образована сердцем и сосудами. Оттекающая от тка­ней венозная кровь поступает в правое предсердие, а оттуда - в правый желудо­чек сердца. При сокращении последнего кровь нагнетается в легочную артерию. Протекая через легкие, кровь подвергает­ся полной или частичной эквилибрации с альвеолярным газом, в результате чего она отдает избыток углекислого газа и насы­щается кислородом. Система легочных сосудов (легочные артерии, капилляры и вены) образует малый (легочный) круг кровообращения . Артериализированная кровь из легких по легочным венам по­ступает в левое предсердие, а оттуда - в левый желудочек. При его сокращении кровь нагнетается в аорту и далее - в артерии, артериолы и капилляры всех ор­ганов и тканей, откуда по венулам и ве­нам оттекает в правое предсердие. Систе­ма перечисленных сосудов образует боль­шой круг кровообращения. Любой элемен­тарный объем циркулирующей крови пос­ледовательно проходит все перечисленные отделы системы кровообращения (за ис­ключением порций крови, подвергающих­ся физиологическому либо патологичес­кому шунтированию).

Исходя из целей клинической физио­логии, кровообращение целесообразно рас­сматривать как систему, состоящую из сле­дующих функциональных отделов:

1. Сердце (сердечный насос) - глав­ный двигатель циркуляции.

2. Сосуды-буферы, или артерии, выпол­няющие преимущественно пассивную транспортную функцию между насосом и системой микроциркуляции.

3. Сосуды-емкости, или вены, выполня­ющие транспортную функцию возврата крови к сердцу. Это более активная, чем артерии, часть системы кровообращения, поскольку вены способны изменять свой объем в 200 раз, активно участвуя в регу­ляции венозного возврата и циркулирую­щего объема крови.

4. Сосуды распределения (сопротивле­ния) - артериолы, регулирующие кро­воток через капилляры и являющиеся глав­ным физиологическим средством регио­нарного распределения сердечного выбро­са, а также венулы.

5. Сосуды обмена - капилляры, интег­рирующие систему кровообращения в об­щее движение жидкости и химических ве­ществ в организме.

6. Сосуды-шунты - артерио-венозные анастомозы, регулирующие периферичес­кое сопротивление при спазме артериол, сокращающем кровоток через капилляры.

Три первых отдела кровообращения (сердце, сосуды-буферы и сосуды-емко­сти) представляют собой систему макроциркуляции, остальные - образуют сис­тему микроциркуляции.

В зависимости от уровня давления кро­ви выделяют следующие анатомо-функциональные фрагменты системы крово­обращения:

1. Система высокого давления (от ле­вого желудочка до капилляров большого круга) кровообращения.

2. Система низкого давления (от капил­ляров большого круга до левого предсер­дия включительно).

Хотя сердечно-сосудистая система яв­ляется целостным морфофункциональным образованием, для понимания процессов циркуляции целесообразно рассматривать основные аспекты деятельности сердца, сосудистого аппарата и регуляторных ме­ханизмов по отдельности.

Сердце

Этот орган массой около 300 г снабжа­ет кровью «идеального человека» массой 70 кг в течение примерно 70 лет. В покое каждый желудочек сердца взрослого че­ловека выбрасывает 5 -5,5 л крови в ми­нуту; следовательно, за 70 лет производи­тельность обоих желудочков составляет приблизительно 400 млн. л, даже если че­ловек находится в состоянии покоя.

Обменные потребности организма зави­сят от его функционального состояния (покой, физическая активность, тяжелые заболевания, сопровождающиеся гипер­метаболическим синдромом). Во время тяжелой нагрузки минутный объем может возрастать до 25 л и более в результате увеличения силы и частоты сердечных со­кращений. Некоторые из этих изменений обусловлены нервными и гуморальными воздействиями на миокард и рецепторный аппарат сердца, другие являются физичес­ким следствием воздействия «растяги­вающей силы» венозного возврата на со­кратительную силу волокон сердечной мышцы.

Процессы, происходящие в сердце, ус­ловно разделяют на электрохимические (автоматия, возбудимость, проводимость) и механические, обеспечивающие сократи­тельную активность миокарда.

Электрохимическая деятельность серд­ца. Сокращения сердца происходят вслед­ствие периодически возникающих в сер­дечной мышце процессов возбуждения. Сердечная мышца - миокард - обладает рядом свойств, обеспечивающих его непре­рывную ритмическую деятельность, - автоматией, возбудимостью, проводимостью и сократимостью.

Возбуждение в сердце возникает перио­дически под влиянием процессов, проте­кающих в нем. Это явление получило на­звание автоматии. Способностью к автоматии обладают определенные участки сердца, состоящие из особой мышечной тка­ни. Эта специфическая мускулатура об­разует в сердце проводящую систему, со­стоящую из синусового (синусно-предсердного, синоатриального) узла - главного водителя ритма сердца, расположенного в стенке предсердия около устьев полых вен, и предсердно-желудочкового (атриовентрикулярного) узла, находящегося в ниж­ней трети правого предсердия и межже­лудочковой перегородки. От атриовентрикулярного узла берет начало предсердно-желудочковый пучок (пучок Гиса), про­бодающий предсердно-желудочковую пе­регородку и разделяющийся на левую и правую ножки, следующие в межжелудоч­ковую перегородку. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волок­на Пуркинье), погруженных в сократи­тельный миокард желудочков. В физио­логических условиях клетки миокарда на­ходятся в состоянии ритмической актив­ности (возбуждения), что обеспечивается эффективной работой ионных насосов этих клеток.

Особенностью проводящей системы серд­ца является способность каждой клетки самостоятельно генерировать возбужде­ние. В обычных условиях автоматия всех расположенных ниже участков проводя­щей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения этого узла (генерирующего импульсы с час­тотой 60 - 80 ударов в минуту) водителем ритма может стать предсердно-желудочковый узел, обеспечивающий частоту 40 - 50 ударов в минуту, а если оказывается выключенным и этот узел - волокна пуч­ка Гиса (частота 30 - 40 ударов в мину­ту). При выходе из строя и этого водите­ля ритма процесс возбуждения может воз­никнуть в волокнах Пуркинье с очень ред­ким ритмом - примерно 20/мин.

Возникнув в синусовом узле, возбуж­дение распространяется на предсердие, до­стигая атриовентрикулярного узла, где бла­годаря небольшой толщине его мышечных волокон и особому способу их соедине­ния возникает некоторая задержка про­ведения возбуждения. Вследствие этого возбуждение достигает предсердно-желу-дочкового пучка и волокон Пуркинье лишь после того, как мускулатура предсер­дий успевает сократиться и перекачать кровь из предсердий в желудочки. Таким образом, атриовентрикулярная задержка обеспечивает необходимую последова­тельность сокращений предсердий и же­лудочков.

Наличие проводящей системы обеспечи­вает ряд важных физиологических функ­ций сердца: 1) ритмическую генерацию им­пульсов; 2) необходимую последователь­ность (координацию) сокращений предсер­дий и желудочков; 3) синхронное вовле­чение в процесс сокращения клеток мио­карда желудочков.

Как экстракардиальные влияния, так и факторы, непосредственно поражающие структуры сердца, могут нарушать эти со­пряженные процессы и приводить к раз­витию различных патологий сердечного ритма.

Механическая деятельность сердца. Сердце нагнетает кровь в сосудистую сис­тему благодаря периодическому сокра­щению мышечных клеток, составляющих миокард предсердий и желудочков. Со­кращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердий и обоих желудочков возбуждение одновременно достигает их клеток и сокращение обоих предсердий, а затем и обоих желудоч­ков осуществляется практически син­хронно. Сокращение предсердий начинается в области устьев полых вен, в результате чего устья сжимаются. Поэтому кровь может двигаться через предсердно-желудочковые клапаны только в одном направ­лении - в желудочки. В момент диасто­лы желудочков клапаны раскрываются и пропускают кровь из предсердий в желу­дочки. В левом желудочке находится дву­створчатый, или митральный, клапан, в правом - трехстворчатый клапан. Объем желудочков постепенно возрастает до тех пор, пока давление в них не превысит дав­ление в предсердии и клапан не закроет­ся. В этот момент объем в желудочке пред­ставляет собой конечный диастолический объем. В устьях аорты и легочной арте­рии имеются полулунные клапаны, состо­ящие из трех лепестков. При сокращении желудочков кровь устремляется в сторо­ну предсердий и створки предсердно-желудочковых клапанов захлопываются, в это время полулунные клапаны тоже пока остаются закрытыми. Начало сокращения желудочка при полностью закрытых кла­панах, превращающих желудочек во вре­менно изолированную камеру, соответству­ет фазе изометрического сокращения.

Повышение давления в желудочках при их изометрическом сокращении происхо­дит до тех пор, пока оно не превысит дав­ление в крупных сосудах. Следствием этого является изгнание крови из правого желудочка в легочную артерию и из лево­го желудочка в аорту. При систоле желу­дочков лепестки клапана под давлением крови прижимаются к стенкам сосудов, и она беспрепятственно изгоняется из же­лудочков. Во время диастолы давление в желудочках становится ниже, чем в круп­ных сосудах, кровь устремляется из аорты и легочной артерии в направлении желу­дочков и захлопывает полулунные клапа­ны. Вследствие падения давления в каме­рах сердца во время диастолы, давление в венозной (приносящей) системе начинает превышать давление в предсердиях, куда кровь притекает из вен.

Наполнение сердца кровью обусловле­но рядом причин. Первая - наличие ос­татка движущей силы, вызванной сокра­щением сердца. Среднее давление крови в венах большого круга - 7 мм рт. ст., а в полостях сердца во время диастолы стре­мится к нулю. Таким образом, градиент давления составляет всего около 7 мм рт. ст. Это надо учитывать во время хирургичес­ких вмешательств - любое случайное сдавливание полых вен может полностью прекратить доступ крови к сердцу.

Вторая причина притока крови к серд­цу - сокращение скелетных мышц и на­блюдающееся при этом сдавливание вен конечностей и туловища. В венах имеют­ся клапаны, пропускающие кровь только в одном направлении - к сердцу. Эта так называемая венозная помпа обеспечивает значительное увеличение притока веноз­ной крови к сердцу и сердечного выброса при физической работе.

Третья причина увеличения венозного возврата - присасывающий эффект кро­ви грудной клеткой, которая представляет собой герметически закрытую полость с отрицательным давлением. В момент вдо­ха эта полость увеличивается, органы, рас­положенные в ней (в частности, полые ве­ны), растягиваются, и давление в полых венах и предсердиях становится отрица­тельным. Определенное значение имеет также присасывающая сила расслабляю­щихся подобно резиновой груше желудоч­ков.

Под сердечным циклом понимают пе­риод, состоящий из одного сокращения (систола) и одного расслабления (диас­тола).

Сокращение сердца начинается с сис­толы предсердий, длящейся 0,1 с. При этом давление в предсердиях повышается до 5 - 8 мм рт. ст. Систола желудочков про­должается около 0,33 с и состоит из не­скольких фаз. Фаза асинхронного сокра­щения миокарда длится от начала сокра­щения до закрытия атриовентрикулярных клапанов (0,05 с). Фаза изометрического сокращения миокарда начинается с захло­пывания атриовентрикулярных клапанов и заканчивается открытием полулунных (0,05 с).

Период изгнания составляет около 0,25 с. За это время часть крови, содержащейся в желудочках, изгоняется в крупные сосу­ды. Остаточный систолический объем зависит от величины сопротивления работы сердца и от силы его сокращения.

Во время диастолы давление в желу­дочках падает, кровь из аорты и легочной артерии устремляется обратно и захлопы­вает полулунные клапаны, затем кровь притекает в предсердия.

Особенностью кровоснабжения миокар­да является то, что кровоток в нем осуще­ствляется в фазу диастолы. В миокарде имеются две системы сосудов. Снабжение левого желудочка происходит по сосудам, отходящим от коронарных артерий под острым углом и проходящим по поверх­ности миокарда, их ветви снабжают кровью 2/3 наружной поверхности миокарда. Другая система сосудов проходит под ту­пым углом, прободает всю толщу миокар­да и осуществляет кровоснабжение 1/3 внутренней поверхности миокарда, развет­вляясь эндокардиально. В период диа­столы кровоснабжение этих сосудов зави­сит от величины внутрисердечного давле­ния и давления извне на сосуды. На суб-эндокардиальную сеть влияет среднее дифференциальное диастолическое давле­ние. Чем оно выше, тем хуже наполнение сосудов, т. е. нарушается коронарный кро­воток. У больных с дилатацией чаще воз­никают очаги некроза в субэндокардиальном слое, чем интрамурально.

Правый желудочек тоже имеет две сис­темы сосудов: первая проходит через всю толщу миокарда; вторая образует субэндокардиальное сплетение (1/3). Сосуды перекрывают друг друга в субэндокардиальном слое, поэтому инфарктов в об­ласти правого желудочка практически не бывает. Дилатированное сердце всегда имеет плохой коронарный кровоток, но потребляет кислорода больше, чем нор­мальное.

Система кровообращения состоит из четырех компонентов: сердца, кровеносных сосудов, органов – депо крови, механизмов регуляции.

Система кровообращения является составляющим компонентом сердечно-сосудистой системы, который, помимо системы кровообращения, включает в себя и систему лимфообразования. Благодаря ее наличию обеспечивается постоянное непрерывное движение крови по сосудам, на что влияет ряд факторов:

1) работа сердца как насоса;

2) разность давления в сердечно-сосудистой системе;

3) замкнутость;

4) клапанный аппарат сердца и вен, что препятствует обратному току крови;

5) эластичность сосудистой стенки, особенно крупных артерий, за счет чего происходит превращение пульсирующего выброса крови из сердца в непрерывный ток;

6) отрицательное внутриплевральное давление (присасывает кровь и облегчает ее венозный возврат к сердцу);

7) сила тяжести крови;

8) мышечная активность (сокращение скелетных мышц обеспечивает проталкивание крови, при этом увеличиваются частота и глубина дыхания, что приводит к понижению давления в плевральной полости, повышению активности проприорецепторов, вызывая возбуждение в ЦНС и увеличение силы и частоты сердечных сокращений).

В организме человека кровь циркулирует по двум кругам кровообращения – большому и малому, которые вместе с сердцем образуют замкнутую систему.

Малый круг кровообращения был впервые описан М. Серветом в 1553 г. Он начинается в правом желудочке и продолжается в легочный ствол, переходит в легкие, где осуществляется газообмен, затем по легочным венам кровь поступает в левое предсердие. Кровь обогащается кислородом. Из левого предсердия артериальная кровь, насыщенная кислородом, поступает в левый желудочек, откуда начинается большой круг . Он был открыт в 1685 г. У. Гарвеем. Кровь, содержащая кислород, по аорте направляется по менее крупным сосудам к тканям и органам, где осуществляется газообмен. В результате по системе полых вен (верхней и нижней), которые впадают в правое предсердие, течет венозная кровь с низким содержанием кислорода.

Особенностью является тот факт, что в большом круге артериальная кровь движется по артериям, а венозная – по венам. В малом круге, наоборот, по артериям течет венозная кровь, а по венам – артериальная.

2. Морфофункциональные особенности сердца

Сердце является четырехкамерным органом, состоящим из двух предсердий, двух желудочков и двух ушек предсердий. Именно с сокращения предсердий и начинается работа сердца. Масса сердца у взрослого человека составляет 0,04 % от веса тела. Его стенка образована тремя слоями – эндокардом, миокардом и эпикардом. Эндокард состоит из соединительной ткани и обеспечивает органу несмачиваемость стенки, что облегчает гемодинамику. Миокард образован поперечно-полосатым мышечным волокном, наибольшая толщина которого в области левого желудочка, а наименьшая – в предсердии. Эпикард является висцеральным листком серозного перикарда, под которым располагаются кровеносные сосуды и нервные волокна. Снаружи сердца располагается перикард – околосердечная сумка. Он состоит из двух слоев – серозного и фиброзного. Серозный слой образован висцеральным и париетальным листками. Париетальный слой соединяется с фиброзным слоем и образует околосердечную сумку. Между эпикардом и париетальным листком имеется полость, которая в норме должна быть заполнена серозной жидкостью для уменьшения трения. Функции перикарда:

1) защита от механических воздействий;

2) предотвращение перерастяжения;

3) основа для крупных кровеносных сосудов.

Сердце вертикальной перегородкой делится на правую и левую половины, которые у взрослого человека в норме не сообщаются между собой. Горизонтальная перегородка образована фиброзными волокнами и делит сердце на предсердие и желудочки, которые соединяются за счет атриовентрикулярной пластинки. В сердце находится два вида клапанов – створчатые и полулунные. Клапан – дубликатура эндокарда, в слоях которого находятся соединительная ткань, мышечные элементы, кровеносные сосуды и нервные волокна.

Створчатые клапаны располагаются между предсердием и желудочком, причем в левой половине – три створки, а в правой – две. Полулунные клапаны находятся в месте выхода из желудочков кровеносных сосудов – аорты и легочного ствола. Они снабжены кармашками, которые при заполнении кровью закрываются. Работа клапанов пассивная, находится под влиянием разности давления.

Цикл сердечной деятельности состоит из систолы и диастолы. Систола – сокращение, которое длится 0,1–0,16 с в предсердии и 0,3–0,36 с в желудочке. Систола предсердий слабее, чем систола желудочков. Диастола – расслабление, у предсердий занимает 0,7–0,76 с, у желудочков – 0,47-0,56 с. Продолжительность сердечного цикла составляет 0,8–0,86 с и зависит от частоты сокращений. Время, в течение которого предсердия и желудочки находятся в состоянии покоя, называется общей паузой в деятельности сердца. Она длится примерно 0,4 с. В течение этого времени сердце отдыхает, а его камеры частично наполняются кровью. Систола и диастола – сложные фазы и состоят из нескольких периодов. В систоле различают два периода – напряжения и изгнания крови, включающие в себя:

1) фазу асинхронного сокращения – 0,05 с;

2) фазу изометрического сокращения – 0,03 с;

3) фазу быстрого изгнания крови – 0,12 с;

4) фазу медленного изгнания крови – 0,13 с.

Диастола продолжается около 0,47 с и состоит из трех периодов:

1) протодиастолического – 0,04 с;

2) изометрического – 0,08 с;

3) периода наполнения, в котором выделяют фазу быстрого изгнания крови – 0,08 с, фазу медленного изгнания крови – 0,17 с, время пресистолы – наполнение желудочков кровью – 0,1 с.

На продолжительность сердечного цикла влияют частота сердечных сокращений, возраст и пол.

3. Физиология миокарда. Проводящая система миокарда. Свойства атипического миокарда

Миокард представлен поперечно-полосатой мышечной тканью, состоящей из отдельных клеток – кардиомиоцитов, соединенных между собой с помощью нексусов, и образующих мышечное волокно миокарда. Таким образом, оно не имеет анатомической целостности, но функционирует как синцитий. Это связано с наличием нексусов, обеспечивающих быстрое проведение возбуждения с одной клетки на остальные. По особенностям функционирования выделяют два вида мышц: рабочий миокард и атипическую мускулатуру.

Рабочий миокард образован мышечными волокнами с хорошо развитой поперечно-полосатой исчерченностью. Рабочий миокард обладает рядом физиологических свойств:

1) возбудимостью;

2) проводимостью;

3) низкой лабильностью;

4) сократимостью;

5) рефрактерностью.

Возбудимость – это способность поперечно-полосатой мышцы отвечать на действие нервных импульсов. Она меньше, чем у поперечно-полосатых скелетных мышц. Клетки рабочего миокарда имеют большую величину мембранного потенциала и за счет этого реагируют только на сильное раздражение.

За счет низкой скорости проведения возбуждения обеспечивается попеременное сокращение предсердий и желудочков.

Рефрактерный период довольно длинный и связан с периодом действия. Сокращаться сердце может по типу одиночного мышечного сокращения (из-за длительного рефрактерного периода) и по закону «все или ничего».

Атипические мышечные волокна обладают слабовыраженными свойствами сокращения и имеют достаточно высокий уровень обменных процессов. Это связано с наличием митохондрий, выполняющих функцию, близкую к функции нервной ткани, т. е. обеспечивает генерацию и проведение нервных импульсов. Атипический миокард образует проводящую систему сердца. Физиологические свойства атипического миокарда:

1) возбудимость ниже, чем у скелетных мышц, но выше, чем у клеток сократительного миокарда, поэтому именно здесь происходит генерация нервных импульсов;

2) проводимость меньше, чем у скелетных мышц, но выше, чем у сократительного миокарда;

3) рефрактерный период довольно длинный и связан с возникновением потенциала действия и ионами кальция;

4) низкая лабильность;

5) низкая способность к сократимости;

6) автоматия (способность клеток самостоятельно генерировать нервный импульс).

Атипические мышцы образуют в сердце узлы и пучки, которые объединены в проводящую систему . Она включает в себя:

1) синоатриальный узел или Киса-Флека (расположен на задней правой стенке, на границе между верхней и нижней полыми венами);

2) атриовентрикулярный узел (лежит в нижней части межпредсердной перегородки под эндокардом правого предсердия, он посылает импульсы к желудочкам);

3) пучок Гиса (идет через пердсердно-желудочную перегородку и продолжается в желудочке в виде двух ножек – правой и левой);

4) волокна Пуркинье (являются разветвлениями ножек пучка Гиса, которые отдают свои ветви к кардиомиоцитам).

Также имеются дополнительные структуры:

1) пучки Кента (начинаются от предсердных трактов и идут по латеральному краю сердца, соединяя предсердие и желудочки и минуя атриовентрикулярные пути);

2) пучок Мейгайля (располагается ниже атриовентрикулярного узла и передает информацию в желудочки в обход пуков Гиса).

Эти дополнительные тракты обеспечивают передачу импульсов при выключении атриовентрикулярного узла, т. е. являются причиной излишней информации при патологии и могут вызвать внеочередное сокращение сердца – экстрасистолу.

Таким образом, за счет наличия двух видов тканей сердце обладает двумя главными физиологическими особенностями – длительным рефрактерным периодом и автоматией.

4. Автоматия сердца

Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей базальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca. Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.

Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам N a, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.

Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ± 120–130 мВ.

В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в атриовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.

Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла.

5. Энергетическое обеспечение миокарда

Для работы сердца как насоса необходимо достаточное количество энергии. Процесс обеспечения энергией складывается из трех этапов:

1) образования;

2) транспорта;

3) потребления.

Образование энергии происходит в митохондриях в виде аденозинтрифосфата (АТФ) в ходе аэробной реакции при окислении жирный кислот (в основном олеиновой и пальмитиновой). В ходе этого процесса образуется 140 молекул АТФ. Поступление энергии может происходить и за счет окисления глюкозы. Но это энергетически менее выгодно, так как при разложении 1 молекулы глюкозы образуется 30–35 молекул АТФ. При нарушении кровоснабжения сердца аэробные процессы становятся невозможными из-за отсутствия кислорода, и активируются анаэробные реакции. В этом случае из 1 молекулы глюкозы поступает 2 молекулы АТФ. Это приводит к появлению сердечной недостаточности.

Образовавшаяся энергия транспортируется из митохондрий по миофибриллам и имеет ряд особенностей:

1) осуществляется в виде креатинфосфотрансферазы;

2) для ее транспорта необходимо наличие двух ферментов -

АТФ-АДФ-трансферазы и креатинфосфокиназы

АТФ путем активного транспорта при участии фермента АТФ-АДФ-трансферазы переносится на наружную поверхность мембраны митохондрий и с помощью активного центра креатинфосфокиназы и ионов Mg доставляются на креатин с образованием АДФ и креатинфосфата. АДФ поступает на активный центр транслоказы и закачивается внутрь митохондрий, где подвергается рефосфорилированию. Креатинфосфат направляется к мышечным белкам с током цитоплазмы. Здесь также имеется фермент креатинфосфооксидаза, который обеспечивает образование АТФ и креатина. Креатин с током цитоплазмы подходит к мембране митохондрий и стимулирует процесс синтеза АТФ.

В итоге 70 % образовавшейся энергии расходуется на сокращении и расслабление мышц, 15 % – на работы кальциевого насоса, 10 % поступает на работу натрий-калиевого насоса, 5 % идет на синтетические реакции.

6. Коронарный кровоток, его особенности

Для полноценной работы миокарда необходимо достаточное поступление кислорода, которое обеспечивают коронарные артерии. Они начинаются у основания дуги аорты. Правая коронарная артерия кровоснабжает большую часть правого желудочка, межжелудочковую перегородку, заднюю стенку левого желудочка, остальные отделы снабжает левая коронарная артерия. Коронарные артерии располагаются в борозде между предсердием и желудочком и образуют многочисленные ответвления. Артерии сопровождаются коронарными венами, впадающими в венозный синус.

Особенности коронарного кровотока:

1) высокая интенсивность;

2) способность к экстракции кислорода из крови;

3) наличие большого количества анастомозов;

4) высокий тонус гладкомышечных клеток во время сокращения;

5) значительная величина кровяного давления.

В состоянии покоя каждые 100 г массы сердца потребляют 60 мл крови. При переходе в активное состояние интенсивность коронарного кровотока увеличивается (у тренированных людей повышается до 500 мл на 100 г, а у нетренированных – до 240 мл на 100 г).

В состоянии покоя и активности миокард экстрагирует до 70–75 % кислорода из крови, причем при увеличении потребности в кислороде способность его экстрагировать не увеличивается. Потребность восполняется за счет повышения интенсивности кровотока.

За счет наличия анастомозов артерии и вены соединяются между собой в обход капиллярам. Количество дополнительных сосудов зависит от двух причин: тренированности человека и фактора ишемии (недостатка кровоснабжения).

Коронарный кровоток характеризуется относительно высокой величиной кровяного давления. Это связано с тем, что коронарные сосуды начинаются от аорты. Значение этого заключается в том, что создаются условия для лучшего перехода кислорода и питательных веществ в межклеточное пространство.

Во время систолы к сердцу поступает до 15 % крови, а во время диастолы – до 85 %. Это связано с тем, что во время систолы сокращающиеся мышечные волокна сдавливают коронарные артерии. В результате происходит порционный выброс крови из сердца, что отражается на величине кровяного давления.

Регуляция коронарного кровотока осуществляется с помощью трех механизмов – местных, нервных, гуморальных.

Ауторегуляция может осуществляться двумя способами – метаболическим и миогенным. Метаболический способ регуляции связан с изменением просвета коронарных сосудов за счет веществ, образовавшихся в результате обмена. Расширение коронарных сосудов происходит под действием нескольких факторов:

1) недостаток кислорода приводит к повышению интенсивности кровотока;

2) избыток углекислого газа вызывает ускоренный отток метаболитов;

3) аденозил способствует расширению коронарный артерий и повышению кровотока.

Слабый сосудосуживающий эффект возникает при избытке пирувата и лактата.

Миогенный эффект Остроумова-Бейлиса заключается в том, что гладкомышечные клетки начинают реагировать сокращением на растяжение при повышении кровяного давления и расслабляются при понижении. В результате этого скорость кровотока не изменяется при значительных колебаниях величины кровяного давления.

Нервная регуляция коронарного кровотока осуществляется в основном симпатическим отделом вегетативной нервной системы и включается при повышении интенсивности коронарного кровотока. Это обусловлено следующими механизмами:

1) в коронарных сосудах преобладают 2-адренорецепторы, которые при взаимодействии с норадреналином понижают тонус гладкомышечных клеток, увеличивая просвет сосудов;

2) при активации симпатической нервной системы повышается содержание метаболитов в крови, что приводит к расширению коронарных сосудов, в результате наблюдается улучшенное кровоснабжение сердца кислородом и питательными веществами.

Гуморальная регуляция сходна с регуляцией всех видов сосудов.

7. Рефлекторные влияния на деятельность сердца

За двустороннюю связь сердца с ЦНС отвечают так называемые кардиальные рефлексы. В настоящее время выделяют три рефлекторных влияния – собственные, сопряженные, неспецифические.

Собственные кардиальные рефлексы возникают при возбуждении рецепторов, заложенных в сердце и в кровеносных сосудах, т. е. в собственных рецепторах сердечно-сосудистой системы. Они лежат в виде скоплений – рефлексогенных или рецептивных полей сердечно-сосудистой системы. В области рефлексогенных зон имеются механо– и хеморецепторы. Механорецепторы будут реагировать на изменение давления в сосудах, на растяжение, на изменение объема жидкости. Хеморецепторы реагируют на изменение химического состава крови. При нормальном состоянии эти рецепторы характеризуются постоянной электрической активностью. Так, при изменении давления или химического состава крови изменяется импульсация от этих рецепторов. Выделяют шесть видов собственных рефлексов:

1) рефлекс Бейнбриджа;

2) влияния с области каротидных синусов;

3) влияния с области дуги аорты;

4) влияния с коронарных сосудов;

5) влияния с легочных сосудов;

6) влияния с рецепторов перикарда.

Рефлекторные влияния с области каротидных синусов – ампулообразных расширений внутренней сонной артерии в месте бифуркации общей сонной артерии. При повышении давления увеличивается импульсация от этих рецепторов, импульсы передаются по волокнам IV пары черепно-мозговых нервов, и повышается активность IХ пары черепно-мозговых нервов. В результате возникает иррадиация возбуждения, и по волокнам блуждающих нервов оно передается в сердце, приводя к уменьшению силы и частоты сердечных сокращений.

При понижении давления в области каротидных синусов уменьшается импульсация в ЦНС, активность IV пары черепно-мозговых нервов понижается и наблюдается снижение активности ядер Х пары черепно-мозговых нервов. Наступает преобладающее влияние симпатических нервов, вызывающих повышение силы и частоты сердечных сокращений.

Значение рефлекторных влияний с области каротидных синусов заключается в обеспечении саморегуляции деятельности сердца.

При повышении давления рефлекторные влияния с дуги аорты приводят к увеличению импульсации по волокнам блуждающих нервов, что приводит к повышению активности ядер и уменьшению силы и частоты сердечных сокращений, и наоборот.

При повышении давления рефлекторные влияния с коронарных сосудов приводят к торможению работы сердца. В этом случае наблюдаются угнетение давления, глубины дыхания и изменение газового состава крови.

При перегрузке рецепторов с легочных сосудов наблюдается торможение работы сердца.

При растяжении перикарда или раздражении химическими веществами наблюдается торможение сердечной деятельности.

Таким образом, собственные кардиальные рефлексы саморегулируют величину кровяного давления и работы сердца.

К сопряженным кардиальным рефлексам относятся рефлекторные влияния от рецепторов, которые непосредственно не связаны с деятельностью сердца. Например, это рецепторы внутренних органов, глазного яблока, температурные и болевые рецепторы кожи и др. Их значение заключается в обеспечении приспособления работы сердца при изменяющихся условиях внешней и внутренней среды. Также они подготавливают сердечно-сосудистую систему к предстоящей перегрузке.

Неспецифические рефлексы в норме отсутствуют, но их можно наблюдать в процессе эксперимента.

Таким образом, рефлекторные влияния обеспечивают регуляцию сердечной деятельности в соответствии с потребностями организма.

8. Нервная регуляция деятельности сердца

Нервная регуляция характеризуется рядом особенностей.

1. Нервная система оказывает пусковое и корригирующее влияние на работу сердца, обеспечивая приспособление к потребностям организма.

2. Нервная система регулирует интенсивность обменных процессов.

Сердце иннервируется волокнами ЦНС – экстракардиальные механизмы и собственными волокнами – интракардиальные. В основе интракардиальных механизмов регуляции лежит метсимпатическая нервная система, содержащая все необходимые внутрисердечные образования для возникновения рефлекторной дуги и осуществления местной регуляции. Важную роль играют и волокна парасимпатического и симпатического отделов вегетативной нервной системы, обеспечивающих афферентную и эфферентную иннервацию. Эфферентные парасимпатические волокна представлены блуждающими нервами, телами I преганглионарных нейронов, находящихся на дне ромбовидной ямки продолговатого мозга. Их отростки заканчиваются интрамурально, и тела II постганглионарных нейронов располагаются в системе сердца. Блуждающие нервы обеспечивают иннервацию образований проводящей системы: правый – синоатриального узла, левый – атриовентрикулярного. Центры симпатической нервной системы лежат в боковых рогах спинного мозга на уровне I–V грудных сегментов. Она иннервирует миокард желудочков, миокард предсердий, проводящую систему.

При активации симпатической нервной системы изменяются сила и частота сердечных сокращений.

Центры ядер, иннервирующих сердце, находятся в состоянии постоянного умеренного возбуждения, за счет чего к сердцу поступают нервные импульсы. Тонус симпатического и парасимпатического отделов неодинаков. У взрослого человека преобладает тонус блуждающих нервов. Он поддерживается за счет импульсов, поступающих из ЦНС от рецепторов, заложенных в сосудистой системе. Они лежат в виде нервных скоплений рефлексогенных зон:

1) в области каротидного синуса;

2) в области дуги аорты;

3) в области коронарных сосудов.

При перерезке нервов, идущих от каротидных синусов в ЦНС, отмечается падение тонуса ядер, иннервирующих сердце.

Блуждающие и симпатические нервы являются антагонистами и оказывают на работу сердца пять видов влияния:

1) хронотропное;

2) батмотропное;

3) дромотропное;

4) инотропное;

5) тонотропное.

Парасимпатические нервы оказывают отрицательное влияние по всем пяти направлениям, а симпатические – наоборот.

Афферентные нервы сердца передают импульсы из ЦНС на окончания блуждающих нервов – первично-чувствующие хеморецепторы, реагирующие на изменение величины кровяного давления. Они расположены в миокарде предсердий и левого желудочка. При повышении давления увеличивается активность рецепторов, и возбуждение передается в продолговатый мозг, работа сердца рефлекторно изменяется. Однако в сердце обнаружены свободные нервные окончания, которые образуют субэндокардиальные сплетения. Они контролируют процессы тканевого дыхания. От этих рецепторов импульсы поступают к нейронам спинного мозга и обеспечивают возникновение боли при ишемии.

Таким образом, афферентную иннервацию сердца выполняют в основном волокна блуждающих нервов, связывающие сердце с ЦНС.

9. Гуморальная регуляция деятельности сердца

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца (положительный инотропный эффект). При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. При повышении их концентрации наблюдается положительный батмотропный и дромотропный эффект. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации. Однако небольшое повышение содержания K стимулирует коронарный кровоток. В настоящее время обнаружено, что при увеличении уровня K по сравнению с Ca наступает снижение работы сердца, и наоборот.

Гормон адреналин увеличивает силу и частоту сердечных сокращений, улучшает коронарный кровоток и повышает обменные процессы в миокарде.

Тироксин (гормон щитовидной железы) усиливает работу сердца, стимулирует обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются. К ним относятся медиаторы. Например, ацетилхолин оказывает пять видов отрицательного влияния на деятельность сердца, а норадреналин – наоборот. Тканевые гормоны (кинины) – вещества, обладающие высокой биологической активностью, но они быстро разрушаются, поэтому и оказывают местное действие. К ним относятся брадикинин, калидин, умеренно стимулирующие сосуды. Однако при высоких концентрациях могут вызвать снижение работы сердца. Простагландины в зависимости от вида и концентрации способны оказывать различные влияния. Метаболиты, образующиеся в ходе обменных процессов, улучшают кровоток.

Таким образом, гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

10. Сосудистый тонус и его регуляция

Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение. Тонус поддерживается за счет базального механизма. Разные сосуды обладают разным базальным тонусом: максимальный тонус наблюдается в коронарных сосудах, скелетных мышцах, почках, а минимальный – в коже и слизистой оболочке. Его значение заключается в том, что сосуды с высоким базальным тонусом на сильное раздражение отвечают расслаблением, а с низким – сокращением.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС. За счет этого происходит еще большее увеличение базального тонуса. Такой суммарный тонус – тонус покоя, с частотой импульсов 1–3 в секунду.

Таким образом, сосудистая стенка находится в состоянии умеренного напряжения – сосудистого тонуса.

В настоящее время выделяют три механизма регуляции сосудистого тонуса – местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

Миогенная регуляция связана с изменением состояния гладких мышц – это эффект Остроумова-Бейлиса, направленный на поддержание на постоянном уровне объема крови, поступающей к органу.

Метаболическая регуляция обеспечивает изменение тонуса гладкомышечный клеток под влиянием веществ, необходимых для обменных процессов и метаболитов. Она вызвана в основном сосудорасширяющими факторами:

1) недостатком кислорода;

2) повышением содержания углекислого газа;

3) избытком К, АТФ, аденина, цАТФ.

Метаболическая регуляция наиболее выражена в коронарных сосудах, скелетных мышцах, легких, головном мозге. Таким образом, механизмы ауторегуляции настолько выражены, что в сосудах некоторых органах оказывают максимальное сопротивление суживающему влиянию ЦНС.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора. Симпатические нервы вызывают сосудосуживающий эффект в тех из них, в которых преобладают? 1 -адренорецепторы. Это кровеносные сосуды кожи, слизистых оболочек, желудочно-кишечного тракта. Импульсы по сосудосуживающим нервам поступают и в состоянии покоя (1–3 в секунду), и в состоянии активности (10–15 в секунду).

Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Парасимпатический отдел иннервирует сосуды языка, слюнных желез, мягкой мозговой оболочки, наружных половых органов. Медиатор ацетилхолин взаимодействует с М-холинорецепторами сосудистой стенки, что приводит к расширению.

Для симпатического отдела характерна иннервация коронарных сосудов, сосудов головного мозга, легких, скелетных мышц. Это связано с тем, что адренергические нервные окончания взаимодействуют с?-адренорецепторами, вызывая расширение сосудов.

Аксон-рефлекс возникает при раздражении рецепторов кожи, осуществляющихся в пределах аксона одной нервной клетки, вызывая расширение просвет сосуда в данной области.

Таким образом, нервная регуляция осуществляется симпатическим отделом, который может оказывать как расширяющее, так и суживающее действие. Парасимпатическая нервная система оказывает прямое расширяющее действие.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, оказывающие суживающий эффект и участвующие в возникновении потенциала действия, кальциевых мостиков, в процессе сокращения мышц. Ионы К также вызывают расширение сосудов и в большом количестве приводят к гиперполяризации клеточной мембраны. Ионы Na при избытке могут вызвать повышение кровяного давления и задержку воды в организме, изменяя уровень выделения гормонов.

Гормоны оказывают следующее действие:

1) вазопрессин повышает тонус гладкомышечных клеток артерий и артериол, приводя к их сужению;

2) адреналин способен оказывать расширяющее и суживающее действие;

3) альдостерон задерживает Na в организме, влияя на сосуды, повышая чувствительность сосудистой стенки к действию ангиотензина;

4) тироксин стимулирует обменные процессы в гладкомышечных клетках, что приводит к сужению;

5) ренин вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, действуя на белок ангиотензиноген, который превращается в ангиотензин II, ведущий к сужению сосудов;

6) атриопептиды оказывают расширяющее действие.

Метаболиты (например, углекислый газ, пировиноградная кислота, молочная кислота, ионы H) действуют как хеморецепторы сердечно-сосудистой системы, повышая скорость передачи импульсов в ЦНС, что приводит к рефлекторному сужению.

Вещества местного действия производят разнообразный эффект:

1) медиаторы симпатической нервной системы оказывают в основном суживающее действие, а парасимпатической – расширяющее;

2) биологически активные вещества: гистамин – расширяющее действие, а серотонин – суживающее;

3) кинины (брадикинин и калидин) вызывают расширяющее действие;

4) простагландины в основном расширяют просвет;

5) эндотелиальные ферменты расслабления (группа веществ, образуемых эндотелиоцитами) оказывают выраженный местный суживающий эффект.

Таким образом, на сосудистый тонус оказывают влияние местные, нервные и гуморальные механизмы.

11. Функциональная система, поддерживающая на постоянном уровне величину кровяного давления

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления , – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью вернуть их к норме. Функциональная система состоит из четырех звеньев:

1) полезного приспособительного результата;

2) центральног звена;

3) исполнительного звена;

4) обратной связи.

Полезный приспособительный результат – нормальная величина кровяного давления, при изменении которого повышается импульсация от механорецепторов в ЦНС, в результате возникает возбуждение.

Центральное звено представлено сосудодвигательным центром. При возбуждении его нейронов импульсы конвергируют и сходят на одной группе нейронов – акцепторе результата действия. В этих клетках возникает эталон конечного результата, затем вырабатывается программа для его достижения.

Исполнительное звено включает внутренние органы:

1) сердце;

2) сосуды;

3) выделительные органы;

4) органы кроветворения и кроверазрушения;

5) депонирующие органы;

6) дыхательную систему (при изменении отрицательного внутриплеврального давления изменяется венозный возврат крови к сердцу);

7) железы внутренней секреции, которые выделяют адреналин, вазопрессин, ренин, альдостерон;

8) скелетные мышцы, изменяющие двигательную активность.

В результате деятельности исполнительного звена происходит восстановление величины кровяного давления. От механорецепторов сердечно-сосудистой системы исходит вторичный поток импульсов, несущих информацию об изменении величины кровяного давления в центральное звено. Эти импульсы поступают к нейронам акцептора результата действия, где происходит сопоставление полученного результата с эталоном.

Таким образом, при достижении нужного результата функциональная система распадается.

В настоящее время известно, что центральный и исполнительный механизмы функциональной системы включаются не одновременно, поэтому по времени включения выделяют :

1) кратковременный механизм;

2) промежуточный механизм;

3) длительный механизм.

Механизмы кратковременного действия включаются быстро, но продолжительность их действия несколько минут, максимум 1 ч. К ним относятся рефлекторные изменение работы сердца и тонуса кровеносных сосудов, т. е. первым включается нервный механизм.

Промежуточный механизм начинает действовать постепенно в течение нескольких часов. Этот механизм включает:

1) изменение транскапиллярного обмена;

2) понижение фильтрационного давления;

3) стимуляцию процесса реабсорбции;

4) релаксацию напряженных мышц сосудов после повышения их тонуса.

Механизмы длительного действия вызывают более значительные изменения функций различных органов и систем (например, изменение работы почек за счет изменения объема выделяющейся мочи). В результате происходит восстановление кровяного давления. Гормон альдостерон задерживает Na, который способствует реабсорбции воды и повышению чувствительности гладких мышц к сосудосуживающим факторам, в первую очередь к системе «ренин – ангиотензин».

Таким образом, при отклонении от нормы величины кровяного давления различные органы и ткани объединяются с целью восстановления показателей. При этом формируется три ряда заграждений:

1) уменьшение сосудистой регуляции и работы сердца;

2) уменьшение объема циркулирующей крови;

3) изменение уровня белка и форменных элементов.

12. Гистогематический барьер и его физиологическая роль

Гистогематический барьер – это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является стенка капилляров, состоящая из:

1) фибриновой пленки;

2) эндотелия на базальной мембране;

3) слоя перицитов;

4) адвентиции.

В организме они выполняют две функции – защитную и регуляторную.

Защитная функция связана с защитой ткани от поступающих веществ (чужеродных клеток, антител, эндогенных веществ и др.).

Регуляторная функция заключается в обеспечении постоянного состава и свойств внутренней среды организма, проведении и передаче молекул гуморальной регуляции, удалении от клеток продуктов метаболизма.

Гистогематический барьер может быть между тканью и кровью и между кровью и жидкостью.

Основным фактором, влияющим на проницаемость гистогематического барьера, является проницаемость. Проницаемость – способность клеточной мембраны сосудистой стенки пропускать различные вещества. Она зависит от:

1) морфофункциональных особенностей;

2) деятельности ферментных систем;

3) механизмов нервной и гуморальной регуляции.

В плазме крови находятся ферменты, которые способны изменять проницаемость сосудистой стенки. В норме их активность невелика, но при патологии или под действием факторов повышается активность ферментов, что приводит к повышению проницаемости. Этими ферментами являются гиалуронидаза и плазмин. Нервная регуляция осуществляется по бессинаптическому принципу, так как медиатор с током жидкости поступает в стенки капилляров. Симпатический отдел вегетативной нервной системы уменьшает проницаемость, а парасимпатический – увеличивает.

Гуморальная регуляция осуществляется веществами, делящимися на две группы – повышающие проницаемость и понижающие проницаемость.

Повышающее влияние оказывают медиатор ацетилхолин, кинины, простагландины, гистамин, серотонин, метаболиты, обеспечивающие сдвиг pH в кислую среду.

Понижающее действие способны оказывать гепарин, норадреналин, ионы Ca.

Гистогематические барьеры являются основой для механизмов транскапиллярного обмена.

Таким образом, на работу гистогематических барьеров большое влияние оказывают строение сосудистой стенки капилляров, а также физиологические и физико-химические факторы.

В статье будет раскрыта вся тема нормальной физиологии сердца и сосудов, а именно как работает сердце, что заставляет приводить кровь в движение, а также учтутся особенности васкулярной системы. Разберем изменения, возникающие в системе с возрастом, при некоторых наиболее распространенных среди населения патологий, а также у маленьких представителей – у детей.

Анатомия и физиология сердечно-сосудистой системы – две неразрывно связанные между собой науки, между которыми есть прямая связь. Нарушение анатомических параметров кардиоваскулярной системы безоговорочно ведет к изменениям в ее работе, откуда уже в дальнейшем вытекает характерная симптоматика. Симптомы, связанные одним патофизиологическим механизмом формируют синдромы, а синдромы – заболевания.

Знание нормальной физиологии сердца очень важно для врача любой специальности. Не каждый должен углубляться в детали работы человеческого насоса, но фундаментальные знания необходимы всем.

Ознакомление населения с особенностями работы кардиоваскулярной системы позволит расширить знания о сердце, а также позволит понять некоторые симптомы, возникающие при вовлечении сердечной мышцы в патологию, а также разобраться с профилактическими мерами, позволяющими укрепить ее и предупредить возникновение множества патологий. Сердце – как мотор автомобиля, требует бережного отношения к себе.

Анатомические особенности

В одной из статей подробно рассматривается . В данном случае мы затронем эту тему лишь бегло для напоминания об анатомии и общего представления, необходимого, прежде чем затронуть тему нормальной физиологии.

Итак, сердце – полый мышечный орган, сформированный четырьмя камерами – двумя предсердиями и двумя желудочками. Кроме мышечной основы в нем имеется фиброзный каркас, на котором закреплен клапанный аппарат, а именно створки левого и правого атриовентрикулярных клапанов (митрального и трикуспидального).

В данный аппарат также входят сосочковые мышцы и сухожильные хорды, натягивающиеся от папиллярных мышц к свободным краям створок клапанов.

Сердце состоит из трех слоев.

  • эндокард – внутренний слой, выстилающий изнутри как камеры, так и покрывающий сам клапанный аппарат (представлен эндотелием);
  • миокард – собственно мышечная масса сердца (вид ткани является специфичным только для сердца, и не относится ни к поперечнополосатой, ни к гладкой мускулатуре);
  • эпикард – наружный слой, покрывающий сердце извне, и участвующий в формировании перикардиальной сумки, в которую заключено сердце.

Сердце – это не только его камеры, но и его сосуды, которые впадают в предсердия и выходят из желудочков. Рассмотрим, чем они представлены.

Важно! Единственно важная инструкция, направленная на поддержания здоровой сердечную мышцу, заключается в ежедневной физической активности человека и правильном питании, покрывающего все потребности организма в нутриентах, витаминах.

  1. Аорта. Крупный эластический сосуд, выходящий из левого желудочка. Подразделяется на торакальный и абдоминальный отделы. В грудном отделе выделяют восходящую часть аорты и дугу, которая дает три основные ветви, снабжающие верхнюю часть тела – плечеголовной ствол, левая общая сонная и левая подключичная артерии.Брюшной отдел, состоящий из нисходящей части аорты дает большое количество ветвей, питающих органы абдоминальной и тазовой полостей, а также нижние конечности.
  2. Легочной ствол. Главный сосуд правого желудочка – легочная артерия является началом малого круга кровообращения. Подразделяясь на правую и левую пульмональные артерии, а в дальнейшем три правых и две левых артерии, идущие в легкие, она играет основную роль в процессе оксигенации крови.
  3. Полые вены. Верхняя и нижняя полые вены (англ., IVC and SVC), впадая в правое предсердие, оканчивают, таким образом, большой круг кровообращения. Верхняя собирает венозную кровь, богатую на продукты метаболизма тканей и углекислый газ из головы шеи, верхних конечностей и верхней части туловища, а нижняя, соответственно, из оставшихся частей туловища.
  4. Легочные вены. Четыре легочные вены, впадая в левое предсердие, и перенося в себе артериальную кровь, являются частью малого круга кровообращения. Оксигенированная кровь в дальнейшем разносится по всем органам и тканям организма, питая их кислородом и обогащая питательными веществами.
  5. Коронарные артерии. Венечные артерии, в свою очередь являются собственными сосудами сердца. Сердце, как мышечный насос также требует питания, которое поступает из коронарных сосудов, выходящих из аорты, в непосредственной близости к полулунным аортальным клапанам.

Важно! Анатомия и физиология сердца и сосудов – две взаимосвязанные между собой науки.

Внутренние секреты сердечной мышцы

Три основных слоя мышечной ткани формируют сердце – предсердный и желудочковый (англ., atrial and ventricular) миокард, и специализированные возбуждающие и проводящие мышечные волокна. Атриальный и вентрикулярный миокард сокращаются подобно скелетной мышце за исключением длительности сокращений.

Возбуждающие и проводящие волокна в свою очередь сокращаются слабо, даже бессильно за счет того, что в своем составе имею всего несколько сократительных миофибрилл.

Вместо обычных сокращений последний вид миокарда генерирует электрический разряд с одинаковой ритмичностью и автоматизмом, проводит его через сердце, обеспечивая возбуждающую систему, которая контролирует ритмичные сокращения миокарда.

Также как и в скелетной мускулатуре, сердечную мышцу формируют актиновые и миозиновые волокна, которые во время сокращений скользят один относительного другого. В чем же отличия?

  1. Иннервация. К скелетным мышцам подходят веточки соматической нервной системы, в то время как работа миокарда автоматизирована. Конечно, к сердцу подходят нервные окончания, например, веточки блуждающего нерва, однако, они не играют ключевой роли в генерации потенциала действия и последующих сокращений сердца.
  2. Строение. Сердечная мускулатура состоит из множества индивидуальных клеток с одним-двумя ядрами, соединенных в параллельные тяжи между собой. Миоциты скелетной мышцы – мультиядерные.
  3. Энергия. Митохондрии – так званные «энергетические станции» клеток в большем количестве содержатся в сердечной мускулатуре, чем в скелетной. Для более наглядного примера – 25% всего клеточного пространства кардиомиоцитов занимают митохондрии, и, напротив, лишь 2% — в клетках скелетной мышечной ткани.
  4. Длительность сокращений. Потенциал действия скелетной мускулатуры вызван в большей степени внезапным открытием большого количества быстрых натриевых каналов. Это приводит к устремлению огромного количества ионов натрия внутрь миоцитов из внеклеточного пространства. Длится этот процесс всего несколько тысячных секунды, после чего каналы внезапно закрываются, и наступает период реполяризации.
    В миокарде, в свою очередь, потенциал действия обусловлен открытием сразу двух типов каналов в клетках – тех же быстрых натриевых, а также медленных кальциевых каналов. Особенность последних заключается в том, что они не только медленнее открываются, но и дольше остаются открытыми.

В течение этого времени больше ионов натрия и кальция входят в клетку, приводя к более продолжительному периоду деполяризации, за которым следует фаза плато в потенциале действия. Более подробно о различиях и сходствах между миокардом и скелетной мускулатурой рассказано в видео в этой статье. Обязательно дочитайте до конца эту статью, чтобы узнать как устроена физиология сердечно — сосудистой системы.

Главный генератор импульса в сердце

Синоатриальный узел, находящийся в стенке правого предсердия вблизи устья верхней полой вены, является основой работы возбуждающей и проводящей систем сердца. Это группа клеток, способных спонтанно генерировать электрический импульс, который в дальнейшем передается по всей проводящей системе сердца, продуцируя сокращения миокарда.

Синусовый узел способен продуцировать ритмичные импульсы, задавая тем самым нормальную частоту сокращений сердца – от 60 до 100 ударов в минуту у взрослых. Его также называют естественным водителем ритма.

После синоатриального узла импульс распространяется по волокнам от правого предсердия к левому, после – передается на атриовентрикулярный узел, расположенный в межпредсердной перегородке. Он является «переходным» этапом от предсердий к желудочкам.

По левой и правой ножке пучков Гиса электрический импульс переходит к волокнам Пуркинье, которые оканчиваются в желудочках сердца.

Внимание! Цена полноценной работы сердца зависит во многом от нормальной работы его проводящей системы.

Особенности проведения сердечного импульса:

  • существенная задержка в проведении импульса от предсердий к желудочкам позволяет первым полностью опустеть и наполнить кровью желудочки;
  • скоординированные сокращения вентрикулярных кардиомиоцитов обуславливают продукцию максимального систолического давления в желудочках, благодаря чему возможно вытолкнуть кровь в сосуды большого и малого кругов кровообращения;
  • обязательный период релаксации сердечной мышцы.

Сердечный цикл

Каждый цикл инициируется потенциалом действия, сгенерированном в синоатриальном узле. Состоит из периода релаксации – диастолы, в течение которого желудочки наполняются кровью, после которого наступает систола – период сокращения.

Общая продолжительность сердечного цикла, включающего систолу и диастолу, обратно пропорциональна частоте сердечных сокращений. Так при ускорении частоты сокращения сердца значительно укорачивается время, как релаксации, так и сокращения желудочков. Это обуславливает неполноценное наполнение и опустошение камер сердца перед следующим сокращением.

ЭКГ и сердечный цикл

Зубцы P, Q, R, S, T являются электрокардиографической записью с поверхности тела электрического вольтажа, сгенерированного сердцем. Зубец Р представляет собой распространение процесса деполяризации по предсердиям, вслед за которым происходит их сокращение и выталкивание крови в желудочки в диастолическую фазу.

Комплекс QRS – графическое изображение электрической деполяризации, в результате которой начинается сокращение желудочков, возрастает давление внутри полости, что способствует выталкиванию крови из желудочков в сосуды большого и малого кругов кровообращения. Зубец Т, в свою очередь, представляет стадию реполяризации желудочков, когда начинается расслабление мышечных волокон.

Насосная функция сердца

Около 80% крови, втекающей из легочных вен в левое предсердие и из полых вен в правое – пассивно перетекает в полость желудочков. Оставшиеся 20% попадают в желудочки путем активной фазы диастолы – во время сокращения предсердий.

Таким образом, первичная насосная функция предсердий увеличивает насосную эффективность желудочков примерно на 20%. В состоянии покоя выключение данной функции предсердий не сказывается на деятельности организма симптоматически, до того момента пока не возникает физическая активность. В таком случае недостаток 20% от ударного объема приводит к признакам сердечной недостаточности, в особенности одышке.

Например, при фибрилляции предсердий не возникает полноценных их сокращений, а лишь трепетоподобное движение их стенок. В результате активной фазы наполнения желудочков также не происходит. Патофизиология сердечно-сосудистой системы в данном случае направлена максимально на компенсацию недостатка этих 20% работой желудочкового аппарата, однако опасна развитием ряда осложнений.

Как только начинается сокращение желудочков, то есть наступает фаза систолы, давление в их полости резко возрастает, и из-за разницы давлений в предсердиях и желудочках митральный и трикуспидальный клапаны закрываются, что препятствует в свою очередь регургитации крови в обратном направлении.

Вентрикулярные мышечные волокна не сокращаются одномоментно – вначале возрастает их напряжение, и лишь после – укорочение миофибрилл и, собственно, сокращение. Рост внутриполостного давления в левом желудочке выше 80 мм.рт.ст приводит к открытию полулунных клапанов аорты.

Выброс крови в сосуды также подразделяется на быструю фазу, когда выкидывается около 70% всего ударного объема крови, а также медленную фазу, с выбросом оставшихся 30%. Возрастные анатомофизиологические заключаются в основном воздействием коморбидных патологий, влияющих как на работы проводящей системы, так и его сократительной способности.

Физиологические показатели сердечно сосудистой системы включают в себя следующие параметры:

  • объем конечно-диастолический – объем крови, накопившейся в желудочке в конце диастолы (приблизительно120 мл);
  • ударный объем – объем крови, выбрасываемый желудочком в одну систолу (около 70 мл);
  • конечно-систолический объем – объем крови, остающийся в желудочке по окончанию систолической фазы (около 40-50 мл);
  • фракция выброса – величина, рассчитываемая как отношение ударного объема к объему, оставшемуся в желудочке в конце диастолы (в норме должна быть выше 55%).

Важно! Анатомические и физиологические особенности сердечно-сосудистой системы у детей обуславливают другие нормальные показатели вышеперечисленных параметров.

Клапанный аппарат

Атриовентрикулярные клапаны (митральный и трехстворчатый) предупреждают обратный ток крови в предсердия в фазу систолы. Та же задача у полулунных клапанов аорты и легочной артерии, только они ограничивают регургитацию обратно в желудочки. Это один из наиболее ярких примеров, где физиология и анатомия сердечно сосудистой системы тесно связаны между собой.

Клапанный аппарат состоит из створок, фиброзного кольца, сухожильных хорд и папиллярных мышц. Нарушение работы одного из этих компонентов достаточно для ограничения работы всего аппарата.

Примером тому может служить инфаркт миокарда с вовлечением в процесс сосочковой мышцы левого желудочка, от которой тянется хорда к свободному краю митрального клапана. Ее некроз приводит к отрыву створки и развитие острой левожелудочковой недостаточности на фоне инфаркта.

Открытие и закрытие клапанов зависит от градиента давления между предсердиями и желудочками, а также желудочками и аортой или легочным стволом.

Клапаны аорты и легочного ствола, в свою очередь, построены иначе. Они имеют полулунную форму и способны вынести большее повреждение, нежели двухстворчатый и трикуспидальный клапаны, за счет более плотной фиброзной ткани. Это объясняется постоянно высокой скоростью потока крови через просвет аорты и легочной артерии.

Анатомия физиология и гигиена сердечно-сосудистой системы – фундаментальные науки, которыми обладает не только кардиолог, но и врачи других специальностей, так как здоровье кардиоваскулярной системы влияет на нормальную работу всех органов и систем.

В статье будет раскрыта вся тема нормальной физиологии сердца и сосудов, а именно как работает сердце, что заставляет приводить кровь в движение, а также учтутся особенности васкулярной системы. Разберем изменения, возникающие в системе с возрастом, при некоторых наиболее распространенных среди населения патологий, а также у маленьких представителей – у детей.

Анатомия и физиология сердечно-сосудистой системы – две неразрывно связанные между собой науки, между которыми есть прямая связь. Нарушение анатомических параметров кардиоваскулярной системы безоговорочно ведет к изменениям в ее работе, откуда уже в дальнейшем вытекает характерная симптоматика. Симптомы, связанные одним патофизиологическим механизмом формируют синдромы, а синдромы – заболевания.

Знание нормальной физиологии сердца очень важно для врача любой специальности. Не каждый должен углубляться в детали работы человеческого насоса, но фундаментальные знания необходимы всем.

Ознакомление населения с особенностями работы кардиоваскулярной системы позволит расширить знания о сердце, а также позволит понять некоторые симптомы, возникающие при вовлечении сердечной мышцы в патологию, а также разобраться с профилактическими мерами, позволяющими укрепить ее и предупредить возникновение множества патологий. Сердце – как мотор автомобиля, требует бережного отношения к себе.

Анатомические особенности

В одной из статей подробно рассматривается . В данном случае мы затронем эту тему лишь бегло для напоминания об анатомии и общего представления, необходимого, прежде чем затронуть тему нормальной физиологии.

Итак, сердце – полый мышечный орган, сформированный четырьмя камерами – двумя предсердиями и двумя желудочками. Кроме мышечной основы в нем имеется фиброзный каркас, на котором закреплен клапанный аппарат, а именно створки левого и правого атриовентрикулярных клапанов (митрального и трикуспидального).

В данный аппарат также входят сосочковые мышцы и сухожильные хорды, натягивающиеся от папиллярных мышц к свободным краям створок клапанов.

Сердце состоит из трех слоев.

  • эндокард – внутренний слой, выстилающий изнутри как камеры, так и покрывающий сам клапанный аппарат (представлен эндотелием);
  • миокард – собственно мышечная масса сердца (вид ткани является специфичным только для сердца, и не относится ни к поперечнополосатой, ни к гладкой мускулатуре);
  • эпикард – наружный слой, покрывающий сердце извне, и участвующий в формировании перикардиальной сумки, в которую заключено сердце.

Сердце – это не только его камеры, но и его сосуды, которые впадают в предсердия и выходят из желудочков. Рассмотрим, чем они представлены.

Важно! Единственно важная инструкция, направленная на поддержания здоровой сердечную мышцу, заключается в ежедневной физической активности человека и правильном питании, покрывающего все потребности организма в нутриентах, витаминах.

  1. Аорта. Крупный эластический сосуд, выходящий из левого желудочка. Подразделяется на торакальный и абдоминальный отделы. В грудном отделе выделяют восходящую часть аорты и дугу, которая дает три основные ветви, снабжающие верхнюю часть тела – плечеголовной ствол, левая общая сонная и левая подключичная артерии.Брюшной отдел, состоящий из нисходящей части аорты дает большое количество ветвей, питающих органы абдоминальной и тазовой полостей, а также нижние конечности.
  2. Легочной ствол. Главный сосуд правого желудочка – легочная артерия является началом малого круга кровообращения. Подразделяясь на правую и левую пульмональные артерии, а в дальнейшем три правых и две левых артерии, идущие в легкие, она играет основную роль в процессе оксигенации крови.
  3. Полые вены. Верхняя и нижняя полые вены (англ., IVC and SVC), впадая в правое предсердие, оканчивают, таким образом, большой круг кровообращения. Верхняя собирает венозную кровь, богатую на продукты метаболизма тканей и углекислый газ из головы шеи, верхних конечностей и верхней части туловища, а нижняя, соответственно, из оставшихся частей туловища.
  4. Легочные вены. Четыре легочные вены, впадая в левое предсердие, и перенося в себе артериальную кровь, являются частью малого круга кровообращения. Оксигенированная кровь в дальнейшем разносится по всем органам и тканям организма, питая их кислородом и обогащая питательными веществами.
  5. Коронарные артерии. Венечные артерии, в свою очередь являются собственными сосудами сердца. Сердце, как мышечный насос также требует питания, которое поступает из коронарных сосудов, выходящих из аорты, в непосредственной близости к полулунным аортальным клапанам.

Важно! Анатомия и физиология сердца и сосудов – две взаимосвязанные между собой науки.

Внутренние секреты сердечной мышцы

Три основных слоя мышечной ткани формируют сердце – предсердный и желудочковый (англ., atrial and ventricular) миокард, и специализированные возбуждающие и проводящие мышечные волокна. Атриальный и вентрикулярный миокард сокращаются подобно скелетной мышце за исключением длительности сокращений.

Возбуждающие и проводящие волокна в свою очередь сокращаются слабо, даже бессильно за счет того, что в своем составе имею всего несколько сократительных миофибрилл.

Вместо обычных сокращений последний вид миокарда генерирует электрический разряд с одинаковой ритмичностью и автоматизмом, проводит его через сердце, обеспечивая возбуждающую систему, которая контролирует ритмичные сокращения миокарда.

Также как и в скелетной мускулатуре, сердечную мышцу формируют актиновые и миозиновые волокна, которые во время сокращений скользят один относительного другого. В чем же отличия?

  1. Иннервация. К скелетным мышцам подходят веточки соматической нервной системы, в то время как работа миокарда автоматизирована. Конечно, к сердцу подходят нервные окончания, например, веточки блуждающего нерва, однако, они не играют ключевой роли в генерации потенциала действия и последующих сокращений сердца.
  2. Строение. Сердечная мускулатура состоит из множества индивидуальных клеток с одним-двумя ядрами, соединенных в параллельные тяжи между собой. Миоциты скелетной мышцы – мультиядерные.
  3. Энергия. Митохондрии – так званные «энергетические станции» клеток в большем количестве содержатся в сердечной мускулатуре, чем в скелетной. Для более наглядного примера – 25% всего клеточного пространства кардиомиоцитов занимают митохондрии, и, напротив, лишь 2% — в клетках скелетной мышечной ткани.
  4. Длительность сокращений. Потенциал действия скелетной мускулатуры вызван в большей степени внезапным открытием большого количества быстрых натриевых каналов. Это приводит к устремлению огромного количества ионов натрия внутрь миоцитов из внеклеточного пространства. Длится этот процесс всего несколько тысячных секунды, после чего каналы внезапно закрываются, и наступает период реполяризации.
    В миокарде, в свою очередь, потенциал действия обусловлен открытием сразу двух типов каналов в клетках – тех же быстрых натриевых, а также медленных кальциевых каналов. Особенность последних заключается в том, что они не только медленнее открываются, но и дольше остаются открытыми.

В течение этого времени больше ионов натрия и кальция входят в клетку, приводя к более продолжительному периоду деполяризации, за которым следует фаза плато в потенциале действия. Более подробно о различиях и сходствах между миокардом и скелетной мускулатурой рассказано в видео в этой статье. Обязательно дочитайте до конца эту статью, чтобы узнать как устроена физиология сердечно — сосудистой системы.

Главный генератор импульса в сердце

Синоатриальный узел, находящийся в стенке правого предсердия вблизи устья верхней полой вены, является основой работы возбуждающей и проводящей систем сердца. Это группа клеток, способных спонтанно генерировать электрический импульс, который в дальнейшем передается по всей проводящей системе сердца, продуцируя сокращения миокарда.

Синусовый узел способен продуцировать ритмичные импульсы, задавая тем самым нормальную частоту сокращений сердца – от 60 до 100 ударов в минуту у взрослых. Его также называют естественным водителем ритма.

После синоатриального узла импульс распространяется по волокнам от правого предсердия к левому, после – передается на атриовентрикулярный узел, расположенный в межпредсердной перегородке. Он является «переходным» этапом от предсердий к желудочкам.

По левой и правой ножке пучков Гиса электрический импульс переходит к волокнам Пуркинье, которые оканчиваются в желудочках сердца.

Внимание! Цена полноценной работы сердца зависит во многом от нормальной работы его проводящей системы.

Особенности проведения сердечного импульса:

  • существенная задержка в проведении импульса от предсердий к желудочкам позволяет первым полностью опустеть и наполнить кровью желудочки;
  • скоординированные сокращения вентрикулярных кардиомиоцитов обуславливают продукцию максимального систолического давления в желудочках, благодаря чему возможно вытолкнуть кровь в сосуды большого и малого кругов кровообращения;
  • обязательный период релаксации сердечной мышцы.

Сердечный цикл

Каждый цикл инициируется потенциалом действия, сгенерированном в синоатриальном узле. Состоит из периода релаксации – диастолы, в течение которого желудочки наполняются кровью, после которого наступает систола – период сокращения.

Общая продолжительность сердечного цикла, включающего систолу и диастолу, обратно пропорциональна частоте сердечных сокращений. Так при ускорении частоты сокращения сердца значительно укорачивается время, как релаксации, так и сокращения желудочков. Это обуславливает неполноценное наполнение и опустошение камер сердца перед следующим сокращением.

ЭКГ и сердечный цикл

Зубцы P, Q, R, S, T являются электрокардиографической записью с поверхности тела электрического вольтажа, сгенерированного сердцем. Зубец Р представляет собой распространение процесса деполяризации по предсердиям, вслед за которым происходит их сокращение и выталкивание крови в желудочки в диастолическую фазу.

Комплекс QRS – графическое изображение электрической деполяризации, в результате которой начинается сокращение желудочков, возрастает давление внутри полости, что способствует выталкиванию крови из желудочков в сосуды большого и малого кругов кровообращения. Зубец Т, в свою очередь, представляет стадию реполяризации желудочков, когда начинается расслабление мышечных волокон.

Насосная функция сердца

Около 80% крови, втекающей из легочных вен в левое предсердие и из полых вен в правое – пассивно перетекает в полость желудочков. Оставшиеся 20% попадают в желудочки путем активной фазы диастолы – во время сокращения предсердий.

Таким образом, первичная насосная функция предсердий увеличивает насосную эффективность желудочков примерно на 20%. В состоянии покоя выключение данной функции предсердий не сказывается на деятельности организма симптоматически, до того момента пока не возникает физическая активность. В таком случае недостаток 20% от ударного объема приводит к признакам сердечной недостаточности, в особенности одышке.

Например, при фибрилляции предсердий не возникает полноценных их сокращений, а лишь трепетоподобное движение их стенок. В результате активной фазы наполнения желудочков также не происходит. Патофизиология сердечно-сосудистой системы в данном случае направлена максимально на компенсацию недостатка этих 20% работой желудочкового аппарата, однако опасна развитием ряда осложнений.

Как только начинается сокращение желудочков, то есть наступает фаза систолы, давление в их полости резко возрастает, и из-за разницы давлений в предсердиях и желудочках митральный и трикуспидальный клапаны закрываются, что препятствует в свою очередь регургитации крови в обратном направлении.

Вентрикулярные мышечные волокна не сокращаются одномоментно – вначале возрастает их напряжение, и лишь после – укорочение миофибрилл и, собственно, сокращение. Рост внутриполостного давления в левом желудочке выше 80 мм.рт.ст приводит к открытию полулунных клапанов аорты.

Выброс крови в сосуды также подразделяется на быструю фазу, когда выкидывается около 70% всего ударного объема крови, а также медленную фазу, с выбросом оставшихся 30%. Возрастные анатомофизиологические заключаются в основном воздействием коморбидных патологий, влияющих как на работы проводящей системы, так и его сократительной способности.

Физиологические показатели сердечно сосудистой системы включают в себя следующие параметры:

  • объем конечно-диастолический – объем крови, накопившейся в желудочке в конце диастолы (приблизительно120 мл);
  • ударный объем – объем крови, выбрасываемый желудочком в одну систолу (около 70 мл);
  • конечно-систолический объем – объем крови, остающийся в желудочке по окончанию систолической фазы (около 40-50 мл);
  • фракция выброса – величина, рассчитываемая как отношение ударного объема к объему, оставшемуся в желудочке в конце диастолы (в норме должна быть выше 55%).

Важно! Анатомические и физиологические особенности сердечно-сосудистой системы у детей обуславливают другие нормальные показатели вышеперечисленных параметров.

Клапанный аппарат

Атриовентрикулярные клапаны (митральный и трехстворчатый) предупреждают обратный ток крови в предсердия в фазу систолы. Та же задача у полулунных клапанов аорты и легочной артерии, только они ограничивают регургитацию обратно в желудочки. Это один из наиболее ярких примеров, где физиология и анатомия сердечно сосудистой системы тесно связаны между собой.

Клапанный аппарат состоит из створок, фиброзного кольца, сухожильных хорд и папиллярных мышц. Нарушение работы одного из этих компонентов достаточно для ограничения работы всего аппарата.

Примером тому может служить инфаркт миокарда с вовлечением в процесс сосочковой мышцы левого желудочка, от которой тянется хорда к свободному краю митрального клапана. Ее некроз приводит к отрыву створки и развитие острой левожелудочковой недостаточности на фоне инфаркта.

Открытие и закрытие клапанов зависит от градиента давления между предсердиями и желудочками, а также желудочками и аортой или легочным стволом.

Клапаны аорты и легочного ствола, в свою очередь, построены иначе. Они имеют полулунную форму и способны вынести большее повреждение, нежели двухстворчатый и трикуспидальный клапаны, за счет более плотной фиброзной ткани. Это объясняется постоянно высокой скоростью потока крови через просвет аорты и легочной артерии.

Анатомия физиология и гигиена сердечно-сосудистой системы – фундаментальные науки, которыми обладает не только кардиолог, но и врачи других специальностей, так как здоровье кардиоваскулярной системы влияет на нормальную работу всех органов и систем.