Физиология и функции почек человека. Физиология и функции почек Оценка экскреторной функции почек

ВЫДЕЛИТЕЛЬНЫЕ ОРГАНЫ

В процессе жизнедеятельности в организме человека и животных образуются значительные количества продуктов распада органических соединений, часть которых не используется клетками. Эти продукты распада обязательно должны быть удалены из организма.

Конечные продукты обмена веществ, выделяемые организмом, называются экскретами, а органы, выполняющие выделительные функции, экскреторными или выделительными. К выделительным органам человека и животных относят легкие, желудочно-кишечный тракт, кожу, почки.

Легкие - способствуют выделению в окружающую среду углекислого газа (СО 2) и воды в виде паров (около 400 мл в сутки).

Желудочно-кишечный тракт выделяет незначительное количество воды, желчных кислот, пигментов, холестерина, некоторые лекарственные вещества (при поступлении их в организм), соли тяжелых металлов (железо, кадмий, марганец) и непереваренные остатки пищи в виде каловых масс.

Кожа выполняет экскреторную функцию за счет наличия потовых и сальных желез. Потовые железы выделяют пот, в состав которого входят вода, соли, мочевина, мочевая кислота, креатинин и некоторые другие соединения.

Основным же органом выделения являются почки, которые выводят с мочой большую часть конечных продуктов обмена, главным образом содержащих азот (мочевину, аммиак, креатинин и др.). Процесс образования и выделения мочи из организма называется диурезом.

ФИЗИОЛОГИЯ ПОЧЕК

Почкам принадлежит исключительная роль в поддержании нормальной жизнедеятельности организма. Главная функция почек - выделительная. Они удаляют из организма продукты распада, излишки воды, солей, вредные вещества и некоторые лекарственные препараты. Почки поддерживают на относительно постоянном уровне осмотическое давление внутренней среды организма за счет удаления излишка воды и солей (главным образом, хлорида натрия). Таким образом, почки принимают участие в водно-солевом обмене и осморегуляции.

Почки наряду с другими механизмами обеспечивают постоянство реакции крови (рН крови) за счет изменения интенсивности выделения кислых или щелочных солей фосфорной кислоты при сдвигах реакции крови в кислую или щелочную сторону.

Почки участвуют в образовании (синтезе) некоторых веществ, которые они же впоследствии и выводят. Почки осуществляют секреторную функцию. Они обладают способностью к секреции органических кислот и оснований, ионов К + и Н + . Установлено участие почек не только в минеральном, но и в липидном, белковом и углеводном обмене.

Таким образом, почки, регулируя величину осмотического давления в организме, постоянство реакции крови, осуществляя синтетическую, секреторную и экскреторную функции, принимают активное участие в поддержании постоянства состава внутренней среды организма (гомеостаза).


Строение почек. Для того чтобы яснее представить работу почек, необходимо познакомиться с их строением, так как функциональная активность органа тесно связана с его структурными особенностями. Почки располагаются по обеим сторонам поясничного отдела позвоночника. На внутренней их стороне имеется углубление, в котором находятся сосуды и нервы, окруженные соединительной тканью. Почки покрыты соединительнотканной капсулой. Размеры почки взрослого человека около 11х5 см, масса в среднем равна 200-250 г.

На продольном разрезе почки различают 2 слоя: корковый - темно-красный и мозговой - более светлый (рис. 1).

Рис. 1. Строение почки. А - общий вид; Б - увеличенный в несколько раз участок почечной ткани; 1 - капсула почечного клубочка;

2 - извитой каналец первого порядка; 3 - петля нефрона; 4 - извитой каналец второго порядка; 5 - собирательная трубка.

При микроскопическом изучении структуры почек млекопитающих видно, что они состоят из большого количества сложных образований, так называемых нефронов. Нефрон является структурно-функциональной единицей почки. Количество нефронов варьирует в зависимости от вида животного. У человека общее число нефронов в почке достигает в среднем 1 млн.

Нефрон представляет собой длинный каналец, начальный отдел которого в виде двустенной чаши окружает артериальный капиллярный клубочек, а конечный - впадает в собирательную трубку.

В нефроне выделяют следующие отделы: 1) почечное (мальпигиево) тельце состоит из сосудистого клубочка и окружающей его капсулы почечного клубочка (Шумлянского-Боумена) (рис. 2);

Рис. 2. Схема строения почечного тельца. 1 - приносящий сосуд; 2 - выносящий сосуд; 3 - капилляры клубочка;

4 - полость капсулы; 5 - извитой каналец; 6 - капсула.

2) проксимальный сегмент включает извитую (извитой каналец первого порядка) и прямую части (толстый нисходящий отдел петли нефрона (Генле); 3) тонкий сегмент петли нефрона; 4) дистальный сегмент, состоящий из прямой (толстый восходящий отдел петли нефрона) и извитой части (извитой каналец второго порядка). Дистальные извитые канальцы открываются в собирательные рубки (рис.3).

Рис. 3. Схема строения нефрона (по Смиту).

1 - клубочек; 2 - проксимальный извитой каналец; 3 - нисходящая часть петли нефрона; 4 - восходящая часть петли нефрона;

5 - дистальный извитой каналец; б - собирательная трубка. В кружочках - схема строения эпителия в различных частях нефрона.

Различные сегменты нефрона располагаются в определенных зонах почки. В корковом слое находятся сосудистые клубочки, элементы проксимального и дистального сегментов. В мозговом веществе располагаются элементы тонкого сегмента канальцев, толстые восходящие колена петель нефрона и собирательные трубки.

Собирательные трубки, сливаясь, образуют общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полсть почечной лоханки. Почечные лоханки открываются в мочеточники, которые в свою очередь впадают в мочевой пузырь.

Кровоснабжение почек. Почки получают кровь из почечной артерии – одной из крупных ветвей аорты. Артерия в почке делится на большое количество мелких сосудов – артериол, приносящих кровь к клубочку (приносящая артериола), которые затем распадаются на капилляры (первая сеть капилляров). Капилляры сосудистого клубочка, сливаясь, образуют выносящую артериолу, диаметр которой в 2 раза меньше диаметра приносящей. Выносящая артериола вновь распадается на сеть капилляров, оплетающих канальцы (вторая сеть капилляров).

Таким образом, для почек характерно наличие двух сетей капилляров: 1) капилляры сосудистого клубочка; 2) капилляры, оплетающие почечные канальцы.

Артериальные капилляры переходят в венозные. В дальнейшем они, сливаясь в вены, отдают кровь в нижнюю полую вену.

Давление крови в капилляры сосудистого клубочка выше, чем во всех капиллярах тела. Оно равно 9,332-11,299 кПа (70-90 мм рт.ст.), что составляет 60-70% от величины давления в аорте. В капиллярах, оплетающих канальцы почки, давление невелико – 2,67-5,33 кПа (20-40 мм рт.ст.).

Через почки вся кровь (5-6 л) проходит за 5 мин. В течение суток через почки протекает около 1000-1500 л крови. Такой обильный кровоток позволяет полностью удалить все образующиеся ненужные и даже вредные для организма вещества.

Лимфатические сосуды почек сопровождают кровеносные сосуды, образуя у ворот почки сплетение, окружающее почечную артерию и вену.

Иннервация почек. Почки хорошо иннервируются. Иннервация почек (эфферентные волокна) осуществляется преимущественно за счет симпатических нервов (чревные нервы). Парасимпатическая иннервация почек (блуждающие нервы) выражена незначительно. В почках обнаружен рецепторный аппарат, от которого отходят афферентные (чувствительные) волокна, идущие главным образом в составе симпатических нервов. Большое количество рецепторов и нервных волокон обнаружено в капсуле, окружающей почки.

В последнее время изучение иннервации почек привлекает особое внимание в связи с проблемой их пересадки.

Юкстагломерулярный комплекс. Юкстагломерулярный, или околоклубочковый, комплекс состоит в основном из миоэпителиальных клеток, располагающихся главным образом вокруг приносящей артериолы клубочка и секретирующих биологически активное вещество - ренин.

Юкстагломерулярный комплекс участвует в регуляции водно-солевого обмена и поддержании постоянства артериального давления.

Секреция ренина находится в обратной зависимости от количества крови, притекающей по приносящей артериоле, и от количества натрия в первичной моче. При уменьшении количества притекающей к почкам крови и снижении в ней содержания солей натрия выделение ренина и его активность возрастают.

При некоторых заболеваниях почек увеличивается секреция ренина, что может привести к стойкому повышению величины артериального давления и нарушению водно-солевого обмена в организме.

Почки обеспечивают постоянство среды, необходимой для функционирования клеток организма. Они регулируют водно-солевой баланс, кислотно-щелочное состояние, выделяют продукты азотистого обмена и чужеродные вещества.

Клубочковая фильтрация

Клубочковая фильтрация является начальным этапом мочеобразования. В просвет боуменовой капсулы поступает моча или т.н. «безбелковый ультрафильтрат» плазмы. В ультрафильтрат попадает лишь небольшое количество белка с низкой молекулярной массой (до 50 000 Да), большая часть которого реабсорбируется в проксимальных канальцах. Ультрафильтрат в клубочках образуется со скоростью 120-130 мл/мин или около 180 л в сутки. Образование свободного от форменных элементов и белков крови ультрафильтрата зависит прежде всего от гидростатического давления в клубочковых капиллярах, создаваемого работой сердца. Величина эффективного фильтрационного давления невелика. Гидростатическому давлению в клубочках, которое остается неизменным на всем протяжении клубочкового капилляра, противодействуют онкотическое давление плазмы внутри капилляра и гидростатическое давление в боуменовой капсуле (или проксимальном канальце). В обеспечении высокой скорости клубочковой фильтрации (СКФ) имеет значение проницаемость фильтрующей мембраны и площадь поверхности, доступной для фильтрации. СКФ рассчитывается с учетом уровня креатинина в сыворотке крови по формуле Кокрофта-Голта у взрослых и по или формуле Филлера с учетом уровня цистатина С в крови (таблица 1.1). У новорожденных из-за малого диаметра и меньшей фильтрующей поверхности клубочков СКФ значительно меньше, чем у взрослых, и равняется 20-30 мл/мин. У взрослых такой уровень СКФ свидетельствовал бы о тяжелой степени прогрессирующего (склерозирующего) процесса в почках, т.е. о хронической болезни почек (ХБП) 4 степени. Далее в течение первого года жизни СКФ повышается и достигает нормального уровня взрослого.

Таблица 1.1. Нормативы сывороточного креатинина, цистатина С и СКФ в зависимости от возраста

Возраст Креатинин Цистатин С, мг/л СКФ, мл/мин/1.73м 2
µмоль/л мг/дл
3 дня 80-130 0,8-1,5 1,2-2,4 20-30
7 дней 30-40 0,4-0,6 1,0-2,2 20-30
1 мес – 1 год 25-40 0,4-0,6 0,8-1.6 70-100
2-8 лет 40-60 0,5-0,7 0,6-1.4 90-130
9-18 лет 50-80 0,6-0,9 0,6-1.4 90-130

Таким образом, величина СКФ зависит от числа функционирующих клубочков (массы действующих нефронов). При склерозировании клубочков (нефронов) падает и СКФ.

Изменение состава мочи с появлением патологических элементов (форменные элементы крови, белок) зависит от нарушения проницаемости трехслойного клубочкового барьера . Состояние проницаемости фильтрационного барьера определяется величиной пор и электрическим зарядом. Поры эндотелия задерживают форменные элементы, следующие 2 слоя – и подоциты являются барьерами для прохождения белков плазмы. Анионы задерживаются в большей степени благодаря высокому отрицательному заряду в нормальных структурах стенки капилляра. При генетической или приобретенной патологии проницаемость капилляра повышается вследствие структурных нарушений. Например, нарушения структуры подоцитов, щелевой мембраны приводят к (возможен ) , истончение , генетические аномалии коллагена – к эритроцитурии и (наследственный нефрит, болезнь тонких базальных мембран) .

Почечный кровоток и его регуляция

СКФ близка 90-130 мл/мин. Фильтрация снижается при сужении приносящих артериол и увеличивается при сужении выносящих. Регуляция почечного кровотока многогранная и сложная.

Канальцево-клубочковая обратная связь.

ЮГА осуществляет регуляцию СКФ в отдельных нефронах в зависимости от состава ультрафильтрата в дистальном канальце в зоне macula densa (плотного пятна). Клетки плотного пятна передают сигнал о повышении концентрации NaCl в канальце, что стимулирует высвобождение аденозина , синтезируемого клетками ЮГА. воздействует на рецепторы ангиотензина А1 и вызывает констрикцию приносящих артериол , что в свою очередь снижает СКФ и предотвращает чрезмерную потерю солей и воды с мочой. Стимулом для продукции ренина клетками ЮГА является падение концентрации NaCl в содержимом канальцев.

Транспорт веществ в канальцах

В канальцах происходит активный и пассивный транспорт веществ. . Активная реабсорбция идет с затратой энергии, обычно в виде АТФ (работа Na+/K+-АТФазы), против градиента концентрации. При наличии электрической или химической разности ионы и молекулы могут транспортироваться пассивно, путем простой диффузии.

Реабсорбция глюкозы

В проксимальных канальцах полностью реабсорбируется глюкоза. Экскреция ее с мочой связано обычно с гипергликемией, превышающей транспортные возможности канальцев. Транспорт осуществляется с помощью белка-переносчика и он сопряжен первичным активным транспортом натрия. Глюкозурия при нормальном содержании сахара в крови встречается при канальцевой патологии (ренальная глюкозурия) вследствие нарушения реабсорбции.

Реабсорбция белка

Белки, выводимые с мочой, предоставляют очень небольшую часть фильтруемых белков. Основная масса фильтруемых белков реабсорбируется в проксимальном канальце путем эндоцитоза. Реабсорбированные белки гидролизируются в вакуоли до аминокислот или пептидов. В нормальной моче остаются такие низкомолекулярные белки, как?2–микроглобулин, лизоцим, ?1 и?2 – микроглобулины, их количество незначительное. В окончательной моче содержится 40-150 мг белка, из них 40% составляет альбумин, 10% IgG, 5% — легкие цепи и 3% IgА, остальную часть составляют другие белки, главным образом, образующиеся в канальцах – белок Тамм-Хорсфалла. Повышение альбуминурии происходит при клубочковой патологии, повышение белка Тамм-Хорсфалла свидетельствует о патологии канальцев.

Реабсорбция аминокислот

Для транспорта аминокислот, которые реабсорбируются в проксимальных канальцах, существуют по меньшей мере четыре активные транспортные системы. Из-за их дефекта возникают

различные типы наследственных аминоацидурий. Так же в проксимальных канальцах реабсорбируются кальций, фосфор, натрий, кальций и другие вещества. При синдроме Фанкони поражается проксимальный каналец с нарушением реабсорбции ряда веществ (аммиак, глюкоза, фосфор, карбонаты и др.).

Транспорт натрия.

Почки имеют большое значение в поддержании водно-солевого баланса. Для этого в почках существует высокоэффективный транспорт натрия. Натрий – основной катион внеклеточной среды и для поддержания солевого баланса его концентрация строго контролируется. Натрий и хлор свободно фильтруются в клубочках. Но 99% профильтровавшихся воды и NaCl подвергается реабсорбции, и только 1% выделяется с мочой. Это происходит в основном в проксимальных канальцах (70%) и петле Генле (25%). В дистальных канальцах и в собирательных трубках реабсорбируется 2-5% Na+. Натрий всасывается в перитубулярную плазму за счет фермента Na+/K+- АТФ-азы, расположенного в базолатеральных мембранах канальцевого эпителия. За счет создаваемого градиента концентрации происходит пассивный транспорт других ионов посредством ионных каналов и переносчиков. Так, в проксимальных канальцах происходят ко-транспортные процессы: Na++HCO3-, Na++аминокислоты, Na++глюкоза, Na++органические молекулы; также происходит Na+/Н+- обмен и транспорт Сl-. Реобсорбция натрия сопровождается параллельным всасыванием эквивалентного количества воды. Поэтому содержимое проксимальных канальцев остается изотоничным относительно плазмы. В отличие от проксимального сегмента в других отделах канальцев натрий и вода всасываются независимо друг от друга. В дистальных канальцах и собирательных трубках реабсорбция натрия и воды регулируется гормонами.

Регуляция водно-солевого баланса в организме

Вода – основная составляющая организма человека и занимает 60% от массы тела взрослого . У новорожденных содержание воды выше, составляет 75% и приближается к 60% от массы тела к концу первого года жизни. В организме вода содержится в двух пространствах: внутриклеточном и внеклеточном. Последнее в свою очередь делится на внутрисосудистое (плазма) и межклеточное (интерстициальное). Объем внутриклеточной жидкости больше (30-40% массы тела), чем внеклеточной (20-25% массы тела). У плода и новорожденных объем внеклеточной жидкости относительно больше, чем у взрослых, поэтому они больше подвержены гипо-, гипергидратации. Водно-солевой баланс в организме регулируется за счет контроля двух показателей: осмоляльности и объема циркулирующей крови. Общая осмоляльность внеклеточной жидкости, создаваемая в основном солями натрия, равна 290 мосм/кг. Нормальное функционирование клеток возможно лишь при очень небольших колебаниях осмоляльности плазмы и внутрисосудистого объема.

Осмоляльность.

Все компоненты тела находятся в состоянии осмотического равновесия. Осморецепторы контролируют потребление воды, экскрецию ее почками в зависимости от концентрации солей натрия. При нарушении содержания натрия в организме система регуляции осмоляльности сдвигает водный баланс и тем самым изменяет внутрисосудистый объем для восстановления осмотического равновесия. Существуют сложные системы волюморецепторов, чувствительных к изменению объема. Изменение объема (гипо-, гиперволемия) вызывает изменение экскреции натрия. Однако в условиях гиповолемии первым включается механизм восстановления внутрисосудистого объема, т.е. происходит задержка воды в ущерб осмоляльности.

Регуляция экскреции натрия почками.

Натриевый баланс регулируется почками. Потребление натрия фактически не регулируется. Именно почки адаптируются к резким колебаниям потребления соли. Экскреция натрия может снижаться почти до нуля и столь же резко возрастать. Ведущим фактором, определяющим выделение натрия почками, является СКФ. Достаточно небольших изменений СКФ, чтобы вызвать выраженные изменения экскретируемого натрия. Поскольку СКФ изменяется, должны существовать механизмы регуляции выделения натрия почками. Существуют внешние и внутренние факторы регуляции. К внешним факторам относятся гормональные факторы, к внутренним – внутрипочечные механизмы. К последним относится клубочково-канальцевый баланс. Благодаря ему повышение или снижение реабсорбции натрия сопровождается повышением или снижением СКФ. Транспорт натрия регулируется рядом гормонов. Это – альдостерон, предсердный натрийуретический пептид, ангиотензин II, норадреналин, простагландины, допамин, вазопрессин.

Транспорт калия в почках.

Калий – основной катион клеточной цитоплазмы, где его концентрация во много раз выше содержания во внеклеточной жидкости. Такая разница потенциалов чрезвычайно важна для функционирования клеток нервной, мышечной ткани, включая миокард. Калий свободно фильтруется в клубочках почек, далее он почти полностью (до 95%) реабсорбируется. Если натрий всасывается по всей длине почечных канальцев, а с мочой экскретируется натрий, который не успел реабсорбироваться, то основная часть профильтрованного калия реабсорбируется до того, как моча достигнет собирательных трубок. Тот калий, который все-таки выделяется с мочой, специально секретируется в собирательных трубках. Секреция калия осуществляется основными клетками собирательных трубок. Диуретические препараты амилорид, триамтерен подавляют секрецию калия, обладая калий-сберегающим эффектом. Транспорт калия регулируется активностью Na+/K+-АТФ-азы и калиевыми каналами. Альдостерон регулирует как деятельность транспортера Na+/K+-АТФ-азы, так и состояние калиевых каналов. Он увеличивает реабсорбцию натрия и секрецию калия. блокирует рецепторы альдостерона, оказывая калий сберегающий эффект. Помимо почек

калий выделяется желудочно-кишечным трактом и при потоотделении. На клеточное распределение калия влияют гормоны (, катехоламины, гормоны щитовидной железы, альдостерон), кислотно-щелочное состояние и повреждение клеток. Лизис клеток приводит к гиперкалиемии. Ацидоз способствует выходу калия из клеток (Н+ внутри клетки замещает К+), а эффект алкалоза противоположный. Катехоламины способствуют гипокалиемии. Связь между инсулином и поглощением клеткой калия двухсторонняя. Гиперкалиемия стимулирует, гипокалиемия угнетает выделение . Поэтому инсулин способствует входу калия в клетку. На этом основано действие глюкозо-инсулиновых растворов при гиперкалиемии.

Транспорт кальция, фосфатов и магния.

Кальций – основной двухвалентный катион организма. Второй по значимости двухвалентный катион – магний. Основной двухвалентный анион – фосфат. Большая часть этих трех элементов сосредоточена в костной ткани. Концентрация Са?+ и НРО4?- (в меньшей степени Мg?+) в плазме крови поддерживаются благодаря быстрому высвобождению их с костной ткани. Концентрация Са?+ и НРО4?- в плазме крови тесно связаны. Произведение Са?+ х НРО4?- поддерживается на определенном уровне. Даже незначительный прирост в величине этого показателя приводит к формированию труднорастворимого фосфата кальция, который откладывается в костях. Особую опасность представляют внеклеточные отложения этих солей в сосудах, мышцах при нарушении костно-минерального обмена. Концентрация кальция в плазме крови поддерживается в нормальных пределах за счет всасывания из кишечника и путем высвобождения из костей. Уровень магния определяется скоростью его выведения с мочой, а фосфата – всеми тремя способами.

Всасывание кальция в кишечнике усиливается витамином Д. Всего из пищевого кальция всасывается 25-30%. Общее содержание Са?+ в плазме составляет 2,5 ммоль/л, из которых 50% находятся в свободном (ионизированном) состоянии, 45% в виде комплекса с белками, 5% в связи с другими ионами. В клубочках почек фильтруются только свободные ионы. Кальций реабсорбируется на всем протяжении почечных канальцев, из них 70% – в проксимальных канальцах, 20% – в толстом сегменте восходящего участка петли Генле. В этих отделах реабсорбция протекает пассивно по межклеточным щелям. Диффузии способствует активная реабсорбция натрия. В дистальных канальцах происходит активная реабсорбция Са?+ в комплексе с белками с помощью Са?+-АТФазы, и этот процесс регулируется витамином Д и паратиреоидным гормоном. Поскольку реабсорбция кальция в проксимальных канальцах и восходящем колене петли Генле носит пассивный характер и связана с реабсорбцией натрия, все лекарственные препараты, влияющие на транспорт натрия в этих отделах (например, ) блокируют реабсорбцию кальция. Напротив, тиазиды, ингибирующие обратное всасывание натрия на уровне дистальных канальцев, не действуют на активный захват кальция. Более того, в их присутствии реабсорбция кальция даже несколько

усиливается, уменьшая Са?+-урию. Этот эффект тиазидов в клинике используется у больных нефролитиазом для уменьшения камнеобразования путем снижения кальция в моче.

В кишечнике всасывается 65% поступающего с пищей фосфата. 55% фосфата плазмы крови находится в свободном состоянии, которые свободно фильтруются и затем реабсорбируются в канальцах. 80% реабсорбируется в проксимальных канальцах трансклеточно с помощью транспортера NaPi?-. Его активность ингибируется паратгормоном. Далее 10% фосфатных анионов реабсорбируется в дистальных канальцах, 2-3%- в собирательных трубках.

Магний в основном содержится в тканях: 55% в костной ткани, 45%- в мягких тканях и только 10% находится во внеклеточных жидкостях. Ионы Мg?+ из крови свободно фильтруются, затем реабсорбируются в канальцах (30% в проксимальном, 65% — в толстом восходящем колене петли Генле, 5% — в дистальных канальцах).

Осмотическое концентрирование и разведение мочи

В зависимости от состояния водного баланса организма почки могут выделять гипотоническую или гипертоническую мочу. В этом процессе участвует так называемой противоточно-поворотно-множительная система, в состав которой входят параллельно расположенные в мозговом слое отделы петли Генле, собирательные трубки и прямые сосуды. Принцип работы этой системы заключается в том, что при движении двух потоков жидкости в противоположных направлениях (по нисходящему и восходящему отделу петли Генле) осуществляется двухсторонний обмен натрия и воды через интерстициальную ткань и стенку канальцев петли Генле.

Изотоничная моча из проксимального канальца поступает в нисходящую часть петли Генле, стенка которой проницаема для воды, но относительно непроницаема для солей. В восходящем толстом отделе петли Генле стенка канальца не пропускает воду, но активно реабсорбирует натрий, хлор, калий без воды. Таким образом, в нисходящем отделе петли Генле моча становится все более концентрированной по мере продвижения к вершине петли. При этом значительно уменьшается объем мочи. В дальнейшем при движении вверх по непроницаемому для воды восходящему отделу и дистальному канальцу осмотическая концентрация внутри канальцев падает. В дистальных канальцах и собирательных трубках осуществляется вторая фаза концентрирования мочи. Осмотическая концентрация мочи в этом отделе зависит от антидиуретического гормона (АДГ).

При обычном водном режиме относительная плотность мочи за сутки колеблется в пределах 1008-1025 (осмолярность 100-900 мосм/л), что обусловлено неравномерным приемом жидкости в течение дня и другими факторами. При избытке воды в организме уровень АДГ в крови снижается и стенка собирательных трубок остается непроницаемой для воды и выделяются большие объемы гипотонической мочи. В условиях дефицита жидкости в

организме повышается секреция АДГ гипофизом, который взаимодействуя с V2 рецепторами повышает проницаемость клеток собирательных трубок для воды, способствует реабсорбции осмотически свободной воды. Моча становится концентрированной с уменьшением количества.

В механизме осмотического концентрирования мочи важное значение имеет мочевина. В отличие от наружной зоны мозгового вещества, где повышение осмоляльности обусловлено главным образом накоплением солей натрия, во внутреннем мозговом веществе в нем участвует мочевина. В мозговом веществе существует специальная система, обеспечивающая круговорот мочевины и ее удержание в почке. Главную роль в этом процессе играет способность АДГ увеличивать проницаемость для мочевины стенки тех частей собирательных трубок, которые расположены во внутреннем мозговом слое почек. В вышележащих отделах канальцев стенка собирательных трубок непроницаема для мочевины. Там из-за реабсорбции воды концентрация мочевины повышается, а ниже большие количества мочевины реабсорбируются в мозговое вещество, повышая осмоляльность интерстиция. Отсюда мочевина поступает в просвет тонкого восходящего отдела петли Генле и движется по канальцу. Далее мочевина вновь реабсорбируется под влиянием АДГ, что и обеспечивает беспрерывный ее круговорот в почке и объясняет важную роль мочевины в процессе осмотического концентрирования мочи. У детей грудного возраста в отличие от взрослых снижена функция по осмотическому концентрированию и разведению мочи. У них компенсаторная реакция на дегидратацию и гипергидратацию осуществляется в основном клубочками, а не канальцевым аппаратом почек. Примерно к концу первого года жизни заканчивается формирование осморегулирующей функции почек. В сохранении высокой осмоляльности интерстиция мозгового вещества также играют роль прямые артериолы (vasa recta). Они работают как противоточные обменники.

Кислотно-щелочное состояние и его регуляция

В процессе метаболизма в организме образуется некоторые количество кислот, часть ионов Н+ поступает с пищей, в связи с чем возникает необходимость выведения избытка кислот из организма.

К почечным механизмам поддержания КЩС относятся основные три механизма. Во-первых, секретируемые ионы водорода участвуют в реабсорбции бикарбоната. Важным местом реабсорбции НСО3- является проксимальный каналец, где 90% профильтровавшегося НСО3- всасывается обратно. Это осуществляется не за счет прямого транспорта, а посредством специального механизма, в котором участвует карбоангидраза и Na+/H+- обменник. Таким образом, интенсивная секреция Н+ используется для возвращения профильтровавшихся бикарбонатов.

Базолатеральная Просвет

мембрана канальца

НСО3- НСО3- H+? H+ + HCO3-

На данном этапе ионы Н+ находятся в постоянном круговороте, обеспечиваемом карбоангидразой, и элиминации Н+ с мочой не происходит. Ионы водорода секретируются на всем протяжении канальцев. Далее в дистальных участках нефрона экскреция кислот осуществляется двумя механизмами: за счет связывания Н+ с фосфатами и с аммиаком (NH3). Ближе к собирательным трубочкам к Na+/H+ обменнику подключается (а затем превалирует) Н+-АТФ-аза. Эти процессы происходят во вставочных клетках собирательных трубок.

Фосфаты и органические кислоты связываются с водородным ионом и экскретируются с мочой. Работают системы Н++НРО4?- ? Н2РО4 или Н++ органическая кислота. Их экскреция определяет так называемую титруемую кислотность. В регуляции КЩС участвуют несколько гормонов. Паратиреоидный гормон подавляет реабсорбцию фосфатов в проксимальном канальце и косвенно участвует в регуляции кислотно-щелочного равновесия. На уровне собирательных трубок в регуляции участвует альдостерон: стимулирует реабсорбцию Na+ и действие Н+-АТФазы. Экскреция Н+ с титруемыми кислотами ограничена. Поэтому наиболее эффективной системой экскреции Н+ является аммонийный механизм, составляющий 60% от суммарной экскреции Н+ почками. В проксимальном и дистальном канальцах из глутамина непрерывно образуется аммиак (NH3). Связывая Н+, он превращается в аммоний (NH4) и с мочой выделяется в виде NH4Cl. Доля экскретируемых с мочой свободных (незабуференных) водородных ионов незначительна. У новорожденных функция почек по регуляции кислотно-основного равновесия недоразвита, в связи с чем для его сохранения важно сбалансировать питание.

Другие функции почек

Функции почек многообразны. Они обладают не только экскретирующей, но и секретирующей функцией. В почках синтезируются ряд гормонов и другие активные вещества. В почечной ткани происходит катаболизм ряда биологически активных веществ ( , ПТГ и др.), поступающих в просвет канальца в составе . При почечной недостаточности катаболическая способность почек снижается, что приводит к избыточному накоплению их в крови. В почечной ткани происходит синтез глюкозы (), окисление жирных кислот. Благодаря многочисленным функциям, почки участвуют в регуляции , поддержании костно-минерального обмена. Нарушение названных функций имеет место при потере функционирующей паренхимы почек. Поэтому при развитии конечных стадий хронических болезней почек (ХБП) клинические симптомы болезни включают не только уремическую интоксикацию и нарушения водно-солевого баланса, но и анемию, гипертензию с сердечно- сосудистыми осложнениями и костные нарушения.

Гормоны и почки

Почки и эндокринная система тесно взаимосвязаны. В почках синтезируется ряд гормонов (ренин, витамин Д3, эритропоэтин и др.) Для некоторых гормонов почки служат органом-мишенью, другие же гормоны активно метаболизируются и выводятся ими. Именно комплексность функций почек обусловливает комплекс гормональных нарушений, наблюдающихся при хронической почечной недостаточности (ХПН).

Гормоны, образующиеся в почках Экстраренальные гормоны, действующие на почки Гормоны, метаболизируемые и выводимые почками

Дигидрооксихолекальциферол

— 1,25(ОН)2Д3

Эритропоэтин

Калликреин

Простагландины

Альдостерон и стероиды Вазопрессин (АДГ) Паратиреоидный гормон Кальцитонин Натрийуретический пептид предсердий Катехоламины Эндотелин Пептидные гормоны Стероиды Катехоламины Инсулин

Ренин-ангиотензин-альдостероновая система (РААС)

Ренин вырабатывается в юкстагломерулярном аппарате почек (ЮГА), находящемся в тесном контакте со специальной частью дистальных канальцев – macula densa. Ренин действует на ангиотензиноген (?-глобулин,

синтезируемый печенью) с образованием неактивного ангиотензина I, который под действием ангиотензинпревращающего фермента (АПФ) переходит в активный ангиотензин II. АПФ содержатся во многих тканях (почках, мозге, в сосудах, легких и др., во всех эндотелиальных клетках).

Биологическое действие ангиотензина II.

1) Вазоконстрикция

2) Стимуляция секреции альдостерона

3) Реабсорбция натрия в почечных канальцах

4) Активация симпатической нервной системы и выделения катехоламинов

5) Центральное действие (жажда, центральное прессорное действие, высвобождение АДГ)

Следует отметить, что в настоящее время к действию ангиотензина на ЦНС приковано повышенное внимание в связи с его влиянием на , симпатическую нервную систему, чувство жажды, на АДГ и натриевый аппетит. Самым важным действием ангиотензина II является непосредственное сокращение сосудов, стимуляция образования альдостерона в клубочковой зоне коры надпочечников и регуляция транспорта натрия в почках. РААС важна для поддержания гомеостаза натрия: при потере соли (диарея, рвота) стимулируется выделение ренина и увеличение уровня ангиотензина, что в свою очередь приводит к выбросу альдостерона, который способствует сохранению натрия в организме. Также ангиотензин II вызывает сокращение сосудов, поддерживая кровяное давление, несмотря на уменьшение объема крови и внеклеточной жидкости (при кровопотере, диарее, рвоте). Напротив, накопление натрия ингибирует РААС.

Витамин Д

Витамин Д3 (холекальциферол) вместе с парат-гормоном (ПТГ) является важным регулятором минерального обмена, и представляет собой жирорастворимую молекулу, подобную холестерину. Он поступает в организм с пищей (молочные продукты) и образуется в коже под действием ультрафиолетовых лучей. В печени витамин Д3 превращается в 25-гидроксивитаминД3 (25-ОН Д3). Основной процесс биоактивации протекает с участием фермента 1?-гидроксилазы только в почках, где синтезируется 1,25-дигидроксивитаминД3 (1,25(ОН)2Д3), являющийся активным гормоном, оказывающим действие на кости, почки и желудочно-кишечный тракт. Он увеличивает всасывание кальция и фосфатов в кишечнике, взаимодействуя с ПТГ, способствует высвобождению кальция из костей и стимулирует реабсорбцию кальция из проксимальных канальцев почек. Нарушение метаболизма и действия витамина Д3 характерно для следующих заболеваний почек: Тубулопатии, ХБП:

1. В конечных стадиях ХБП отмечается снижение превращения неактивного 25-ОН Д3 в активный метаболит 1,25(ОН)2Д3? что ведет к развитию почечной остеодистрофии, вторичному гиперпаратиреозу. Поэтому при ХБП 3-5

стадии уровень 1,25(ОН)2 Д3 и Са снижается, что требует применения препаратов Д3 под контролем.

2. У больных синдромом Фанкони (нарушение канальцевой реабсорбции глюкозы, фосфатов, бикарбанотов, аминокислот, изменения костей) наблюдается снижение способности почек активировать витамин 1,25(ОН)2 Д3.

3. При заболевании с резистентностью рецепторов 1,25(ОН)2Д3 к витамину Д (витамин Д-зависимый II типа) имеет место мутация генов этих рецепторов, в связи с чем почки не отвечают на физиологические концентрации витамина Д3.

4. Д-зависимый 1 типа возникает в результате мутации гена1?-гидроксилазы и дефицита 1,25(ОН)2 Д3.

5. Идиопатическая гиперкальциемия, вероятно, связана с избыточным образованием в почках 1,25(ОН)2 Д3.

В настоящее время выявляется дефицит витамина Д в большой популяции населения земного шара.

Эритропоэтин

синтезируется почками и регулирует образование и развитие , выход ретикулоцитов в кровь. Как синтез, так и высвобождение эритропоэтина регулируется концентрацией кислорода в тканях. Активность почечного эритропоэтина также стимулируется андрогенами (что обусловливает более высокий уровень гемоглобина у мужчин), тиреоидными гормонами, простагландинами Е. Ренальная анемия, обусловленная ХПН, вызвана уменьшением синтеза эритропоэтина. Успешная трансплантация почек обычно повышает его синтез и устраняет анемию. Для коррекции анемии при ХПН применяетя рекомбинантный эритропоэтин.

Почечные простагландины

Почки – место образования всех основных простаноидов: простагландина Е2 (PGE2), простациклина и тромбоксана. PGE2 – преобладающий простагландин, синтезируемый в мозговом слое почек. Синтез тромбоксана, обладающего сосудосуживающим и агрегирующим действием, резко увеличивается при обструкции мочеточников. и нестероидные противовоспалительные препараты (НПВП) блокируют образование простагландинов. Этим объясняется как их противовоспалительный эффект, так и неблагоприятное действие на почки. Так, может вызвать падение почечного кровотока и СКФ, задержку солей и воды. и могут быть причиной папиллярного некроза и нефропатии, поскольку, блокируя выработку простагландинов и их сосудорасширяющее действие, уменьшают почечный медуллярный кровоток.


Министерство образования и науки РФ

ГОУ ВЛО «Тульский государственный университет»

Медицинский институт

Лечебный факультет

Кафедра медико-биологических дисциплин

Контрольно-курсовая работа

«Физиология почек. Регуляция мочеобразования».

Выполнил: студент гр.120581

Фролова Д.А.

Проверил: Хапкина А.В.
Тула, 2010 г

Вступление……………………………………………………………………………………………………………………………..……….3

Строение почек……………………………………………………………………………………………………………………………….5

Строение нефрона……………………………………………………………………………………………………………………….….8

Кровообращение почек………………………………………………………………………………………………………………….10.

Функции почек…………………………………………………………………………………………………………………………..……12

Мочеобразование……………………………………………………………………………………………………………………….....13

Регуляция мочеобразования………………………………………………………………………………………………….………14

Список литературы……………………………………………………………………………………………………………………….…17

Вступление

В процессе жизнедеятельности в организме человека образуются значительные количества продуктов обмена, которые уже не используются клетками и должны быть удалены из организма. Кроме того, организм должен быть освобожден от токсичных и чужеродных веществ, от избытка воды, солей, лекарственных препаратов. Иногда процессам выделения предшествует обезвреживание токсических веществ, например в печени. Так, такие вещества, как фенол, индол, скатол, соединяясь с глюкуроновой и серной кислотами, превращаются в менее вредные вещества.

Органы, выполняющие выделительные функции, называются выделительными, или экскреторными. К ним относят почки, легкие, кожу, печень и желудочно-кишечный тракт. Главное назначение органов выделения - это поддержание постоянства внутренней среды организма. Экскреторные органы функционально взаимосвязаны между собой. Сдвиг функционального состояния одного из этих органов меняет активность другого. Например, при избыточном выведении жидкости через кожу при высокой температуре снижается объем диуреза. Нарушение процессов выделения неизбежно ведет к появлению патологических сдвигов гомеостаза вплоть до гибели организма.

Легкие и верхние дыхательные пути удаляют из организма углекислый газ и воду. Кроме того, через легкие выделяется большинство ароматических веществ, как, например, пары эфира и хлороформа при наркозе, сивушные масла при алкогольном опьянении. При нарушении выделительной функции почек через слизистую оболочку верхних дыхательных путей начинает выделяться мочевина, которая разлагается, определяя соответствующий запах аммиака изо рта. Слизистая оболочка верхних дыхательных путей способна выделять йод из крови.

Печень и желудочно-кишечный тракт выводят с желчью из организма ряд конечных продуктов обмена гемоглобина и других порфиринов в виде желчных пигментов, конечные продукты обмена холестерина в виде желчных кислот. В составе желчи из организма экскретируются также лекарственные препараты (антибиотики), бромсульфалеин, фенолрот, маннит, инулин и др. Желудочно-кишечный тракт выделяет продукты распада пищевых веществ, воду, вещества, поступившие с пищеварительными соками и желчью, соли тяжелых металлов, некоторые лекарственные препараты и ядовитые вещества (морфий, хинин, салицилаты, ртуть, йод), а также красители, используемые для диагностики заболеваний желудка (метиленовый синий, или конгорот).

Кожа осуществляет выделительную функцию за счет деятельности потовых и в меньшей степени сальных желез. Потовые железы удаляют воду , мочевину, мочевую кислоту, креатинин, молочную кислоту, соли щелочных металлов, особенно натрия, органические вещества, летучие жирные кислоты, микроэлементы, пепсиноген, амилазу и щелочную фосфатазу. Роль потовых желез удалении продуктов белкового обмена возрастает при заболеваниях почек, особенно при острой почечной недостаточности. С секретом сальных желез из организма выделяются свободные жирные и неомыляемые кислоты, продукты обмена половых гормонов.

Почка представляет орган, где вырабатывается моча. Конечные продукты белкового обмена организма в виде мочевины, мочевой кислоты, креатинина, продукты неполного окисления органических веществ (ацетоновые тела, молочная и ацетоуксусная кислоты), соли, эндогенные и экзогенные токсические вещества, растворённые в воде, преимущественно удаляются из организма через почку. Небольшая часть этих веществ выводится через кожу и слизистые оболочки. Поэтому почки наряду с лёгкими, выделяющими углекислый газ, представляют главнейший орган, через который осуществляется очищение от конечных и ненужных организму продуктов обмена. Без доставки питательных веществ извне организм может существовать длительное время, без выведения экскретов погибает за 1-2 суток. Замечательное строение почки приспособлено так, что через биологические мембраны в мочевыводящие пути проникают только ненужные организму вещества. В почке на капиллярном уровне возникло теснейшее взаимоотношение между кровеносными сосудами и мочевыми канальцами. Экскреты, находящиеся в крови в малых концентрациях, проникают через сосудистую стенку в мочевые канальцы.

Строение почек

Почка – парный орган бобовидной формы. Длина её 10-12 см, ширина 5-6 см, толщина 3-4 см, масса 120-200 г. Левая почка несколько длиннее правой и иногда имеет больший вес. Цвет почек чаще тёмно-коричневый.

Строение правой почки (фронтальный разрез):

1 - корковое вещество; 2- мозговое вещество; 3- почечные сосочки; 4- почечные столбы; 5- фиброзная капсула; 6- малые почечные чашки; 7-мочеточник; 8- большая почечная чашка; 9 - почечная лоханка; 10- почечная вена; 11 - почечная артерия; 12- почечная пирамида

Внешнее строение . Наружный край выпуклый, внутренний - вогнутый. На внутреннем крае имеется углубление, где формируются ворота почки , ведущие в её пазуху. В воротах и пазухе располагаются чашечки, лоханки, мочеточник, артерия, вена и лимфатические сосуды. Если рассматривать отношение сосудов, лоханки и мочеточника, то спереди располагается вена, затем артерия и лоханка. Все эти образования заключены в жировую и рыхлую соединительную ткань почечной пазухи. Верхний конец почки более острый, чем нижний, передняя поверхность её более выпукла, чем задняя.

Внутреннее строение . На разрезе почек видно, что они состоят из мозгового и коркового вещества различной плотности и цвета; мозговое вещество плотнее коркового, несколько голубовато-красного цвета, корковое – желтовато-красного; эти различия зависят от неодинакового кровенаполнения.

Корковое вещество располагается снаружи и имеет толщину 4 – 5 мм. Мозговое вещество образует 15 – 20 пирамидок, широким основанием обращённых к корковому веществу, а узкой частью (верхушкой) – к пазухе почки. При слиянии 2 – 3 верхушек пирамид формируется сосочек, который окружён малой почечной чашечкой. Между корковым и мозговым веществом не существует ровной границы. В мозговое вещество между пирамидками проникает часть коркового вещества в виде столбов, а в корковое вещество проникает мозговое вещество в виде его лучистой части. Прослойки коркового вещества, находящиеся между лучистыми частями, состоят из свёрнутой части. Лучистая и свёрнутая части образуют дольку коркового вещества. Долька почки – часть коркового вещества, соответствующая основанию мозгового вещества и чётко выделяющаяся у детей.

В образовании коркового и мозгового вещества принимают участие кровеносные сосуды и мочевые канальцы.

Почечная артерия диаметром 7 – 9 мм начинается от брюшной аорты и в воротах почки разделяется на 5 – 6 ветвей, направляющихся к её верхнему, нижнему полюсам и центральной части. В вещество почки между пирамидками проникают междолевые артерии, которые у основания пирамид заканчиваются дуговыми артериями. Дуговые артерии располагаются на границе коркового и мозгового вещества. От дуговых артерий формируются два вида сосудов: одни направляются в корковое вещество в виде междольковых артерий , другие – в мозговое вещество, где образуются кровеносные капилляры для кровоснабжения петель нефрона . Междольковые артерии разделяются на приносящие артериолы, которые переходят в сосудистые клубочки, имеющие диаметр 100 – 200 мкм. Сосудистые клубочки представляют сеть кровеносных капилляров, выполняющих функцию не тканевого обмена, а фильтрации экскретов. Кровеносные капилляры клубочка собираются в его воротах в выносящую артериолу. Выносящая артериола клубочка имеет диаметр меньший, чем приносящая артерия. Разность диаметров артериол способствует поддержанию высокого кровяного давления в капиллярах клубочка, что является необходимым условием в процессе мочеобразования. Выносящий сосуд клубочка разделяется на капилляры, которые образуют густые сети вокруг мочевых канальцев и лишь затем переходят в венулы. Венозные сосуды, за исключением сосудистого клубочка приносящие артериолы и выносящие артериолы, повторяют ветвление артерий.

Вторым важным элементом почки является мочеобразующая система, названная нефроном . Нефрон начинается слепым расширением – двухстенной капсулой клубочка, которая выстлана одним слоем кубического эпителия. В результате соединения капсулы клубочка и сосудистого клубочка формируется новое функциональное образование – почечное тельце. Почечных телец насчитывается 2 млн. От капсулы клубочка начинаются извитые канальцы 1-го порядка, переходящие в нисходящую часть петли нефрона. Восходящая часть петли нефрона переходит в извитой каналец 2-го порядка, который вливается в прямые канальцы. Последние являются собирательными трубками для многих извитых канальцев 2-го порядка. Прямые канальцы в мозговом веществе впадают в сосочковые протоки, которые на вершине сосочка образуют решетчатое поле.

Таким образом, кровеносные сосуды, мочевые канальцы и окружающая соединительная ткань формируют вещество почки. Из этого следует, что корковое вещество складывается из междольковых артерий, приносящих артериол, выносящих артериол, почечных телец, капилляров и петель мочевых канальцев, прямых и собирательных трубочек.

В каждом почечном тельце выделяется за сутки 0,03 мл первичной мочи. Образование её возможно при кровяном давлении около 70 мм рт. ст. При кровяном давлении ниже 40 мм рт. ст. мочеобразование невозможно. При огромном числе почечных телец первичной мочи образуется около 60 л в сутки; она содержит 99% воды, 0,1% глюкозы, соли и другие вещества. Из первичной мочи, прошедшей через все отделы мочевого канальца, совершается реабсорбция воды и глюкозы в кровеносные капилляры. Окончательная моча объёмом 1,2 – 1,5 л в сутки через собирательные трубочки изливается в малые чашечки почечной лоханки.

Возрастные особенности . У новорожденного лучше видны границы долек. К моменту рождения и после него первые месяцы ещё продолжается формирование новых нефронов. По отношению к массе тела на единицу поверхности почки у детей приходится больше клубочков , чем у взрослого. Несмотря на это, фильтрующая мощность клубочков ниже, чем у взрослого, что обусловлено меньшим объёмом клубочков и более толстым эпителием почечной капсулы. Канальцевая реабсорбция также понижена. К 20 годам заканчивается рост массы почки за счёт увеличения размеров почечных телец и длины мочевых канальцев.

Оболочки почки . С корковым веществом почки срастается фиброзная капсула, от которой начинаются нежные соединительнотканные междольковые прослойки, невидимые простым глазом. Помимо соединительнотканных волокон, в капсуле имеется плохо выраженный слой гладких мышц. За счёт незначительного их сокращения поддерживается внутритканевое давление почки, что необходимо для процессов фильтрации.

Почку окутывает жировая капсула, состоящая из рыхлой соединительной ткани, где при избыточном питании откладывается жир. Жировая капсула почки лучше развита на её задней поверхности и имеет определённое значение в удержании почки в поясничной области. При похудании, когда жир в жировой капсуле исчезает, может возникнуть подвижность почки (блуждающая почка).

Самой наружной оболочкой является почечная фасция, представляющая двухслойную пластинку. Передний и задний листки почечной фасции на наружном крае и верхнем полюсе почки соединяются, а внизу в виде футляра продолжаются по мочеточнику до мочевого пузыря. На внутреннем крае фасциальные листки впереди и позади сосудов в 70% случаев соединяются с листками другой стороны.

Почка удерживается в нише поясничной области, образованной большими поясничными мышцами, квадратной мышцей и поясничной частью диафрагмы; оболочками почки, которые имеют многочисленные соединительнотканные волокна, соединяющие почечную фасцию, жировую капсулу и фиброзную капсулу ; кровеносными сосудами почки, и положительным внутрибрюшинным давлением.

Т о п о г р а ф и я. Почки располагаются в забрюшинной области по бокам позвоночника. Синтопия и скелетотопия правой и левой почек различны. Верхний полюс левой почки находится на уровне XI грудного позвонка, нижний – между II и III поясничными позвонками. XII ребро пересекает левую почку в области ворот, что является хорошим ориентиром при хирургическом доступе к почке. Правая почка располагается на 3 см ниже, чем левая.

Верхним концом почка соприкасается с надпочечником. Правая почка прилежит к печени и нисходящей части двенадцатиперстной кишки, а нижний её конец – к правому изгибу тонкой кишки. Левая почка соприкасается с желудком, селезёнкой и нисходящей частью толстой кишки. Корень брыжейки поперечной ободочной кишки пересекает почку посередине.

Строение нефрона

Основной структурно-функциональной единицей почки является нефрон, в котором происходит образование мочи. У человека в каждой почке насчитывается около 1 млн. нефронов.

Нефрон состоит из нескольких последовательно соединенных отделов. Начинается нефрон с почечного (мальпигиева) тельца (1) , которое содержит клубочек кровеносных капилляров, имеющий форму двустенной чаши.. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена.

Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев (2) .

Из полости капсулы моча поступает в проксимальный отдел канальца нефрона, длиной около 14 мм и диаметром 50-60 мкм, образованный одним слоем высоких цилиндрических каемчатых клеток, на апикальной поверхности которых имеется щеточная каемка, состоящая из множества микроворсинок. Около 85% натрия и воды, а также белок, глюкоза, аминокислоты, кальций, фосфор из первичной мочи всасываются именно в проксимальных отделах. Проксимальный отдел переходит в тонкую нисходящую часть петли Генле (3) - (около 15 мкм в диаметре), стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона. Дистальный отдел канальцев состоит из восходящей части петли Генле (4) и может иметь тонкую и всегда включает толстую восходящую часть. Этот отдел поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец (5) . Этот отдел канальца располагается в коре почки и обязательно соприкасается с полюсом клубочка между приносящей и выносящей артериолами в области плотного пятна. Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в собирательные трубочки (6) . Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

Всасывание воды в дистальной части и собирательных трубочках регулируется антидиуретическим гормоном задней доли гипофиза. В результате этого количество окончательной мочи по сравнению с количеством первичной резко уменьшается (до 1,5 л в сутки), в то же время возрастает концентрация веществ, не подвергающихся обратному всасыванию. Корковое вещество составляют почечные тельца и дистальные отделы нефронов. Мозговые лучи и мозговое вещество образованы прямыми канальцами, мозговые лучи - нисходящими и восходящими отделами петель корковых нефронов и начальными отделами собирательных трубочек; а мозговое вещество почки - нисходящими и восходящими отделами и коленами петель нефронов, конечными отделами собирательных трубочек и сосочковыми протоками.

Моча из сосочковых отверстий поступает в малые, затем в большие почечные чашки и лоханку, переходящую в мочеточник. Стенки почечных чашек, лоханки, мочеточников и мочевого пузыря, в основном, построены одинаково: они

6.4. Выделение. Физиология почек.

Процессы выделения - это конечное звено обмена веществ в организме. В результате него из организма удаляются неиспользуемые продукты обмена.

К органам выделения относятся: легкие, желудочно-кишечный тракт, потовые железы, почки.

Легкие - выделяют из организма углекислый газ, пары воды, а также некоторые летучие вещества: пары эфира, хлороформа, алкоголя и др. Участвуют в регуляции кислотно-щелочного обмена.

Желудочно-кишечный тракт - экскретирует: соли тяжелых металлов, продукты превращения веществ, поступающих с желчью (в частности - желчные пигменты).

Слюнные железы и железы желудка выделяют: некоторые тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты), некоторые чужеродные органические соединения (красители - индигокармин).

Печень - экскретирует: продукты обмена гемоглобина, азотистого метаболизма и многие другие вещества.Поджелудочная железа и кишечник - выделяют: соли тяжелых металлов, лекарственные вещества

Потовые железы - экскретируют: воду, минеральные соли, продукты диссимиляции - мочевину, мочевую кислоту, креатинин. Кроме того, при интенсивной мышечной работе через потовые железы может выделяется молочная кислота. При нарушении функции почек роль кожи в выделительных процессах значительно возрастает.

Среди органов выделения особое место занимают сальные и молочные железы, которые выделяют не конечные продукты обмена веществ, а продукты, имеющие определенное физиологическое значение (молоко, кожное сало).

Главным же выделительным органом являются почки.

Физиология почек

Почки выполняют ряд гомеостатических функций:

    1. регуляция водно-солевого баланса в организме,

    2. поддержание постоянства обьема жидкостей тела,

    3. поддержание осмотического давления крови (за счет уровня глюкозы, аминокислот, липидов, гормонов в ней),

    4. поддержание ионного состава крови,

    5.регуляция кислотно-щелочного баланса (рН мочи - от 4,5 до 8,4, тогда как рН крови - постоянная),

    6. образование мочи,

    7. выделение продуктов обмена веществ,

    8. удаление из крови чужеродных соединений и нейтрализация токсических веществ,

    9. участие в регуляции развития клеток крови в органах кроветворения - синтез эритропоэтинов и лейкопоэтинов,

    10. участие в регуляции артериального давления - синтез и выделение в кровь ренина,

    11. секреция ферментов и БАВ (брадикинин, простагландины, урокиназа),

    12. участие в регуляции свертывания крови.

В основе перечисленных функций лежат процессы, происходящие в паренхиме почек:

1. Клубочковая фильтрация - фильтрация из плазмы крови в капсулу почечного клубочка безбелковой жидкости - первичной мочи .

2. Канальцевая реабсорбция - обратное всасывание воды и растворенных в ней веществ из просвета канальца в капиллярное русло.

3. Секреция - процесс активной деятельности канальцевого эпителия, в результате которого из организма удаляются вещества, не фильтруемые из Мальпигиева клубочка в капсулу Шумлянского-Боумена.

4. Синтез новых соединений, поступающих в кровь или мочу (ренин, уромукоид, гиппуровая кислота, некоторые простагландины и т.д.).

Структурно-функциональной единицей почки является нефрон. Общий план строения нефрона:

Нефрон - это своеобразный эпителиальный каналец, длиной 3-3,5 см, один конец которого заканчивается слепо в виде двухслойной чаши - капсулы почечного клубочка (капсула Шумлянского-Боумена), а второй - соединяется с начальной собирательной трубкой. В нефроне выделяют следующие отделы: почечное тельце, проксимальный отдел (извитая часть, прямая часть), петля Генли, дистальный отдел (прямая часть, извитая часть), - собирательная трубочка.

Различают следующие типы нефронов: суперфициальные (поверхностные), инракортикальные, юкстамерулярные.

Различие между ними заключается в локализации, величине клубочков, глубине расположения и длине отдельных участков нефрона.

Нефрон имеет ряд особенностей кровоснабжения, что и способствует выполнению почками своих основных функций. Почечная артерия, разветвляясь, образует артериолы, каждая из которых входит в капсулу Шумлянского-Боумена, где распадается на капиллярную сеть, образующую Мальпигиев клубочек. Затем эти капилляры вновь собираются в отводящую артериолу. Диаметр приносящей артериолы примерно в 2 раза больше, чем выносящей. Это, а также то, что путь от брюшной аорты до почечных приносящих артериол очень короткий, позволяет создать в капиллярах мальпигиева клубочка давление, более чем в 2 раза превышающее гидростатическое давление в обычных капиллярах. Оно составляет 70-80 мм. рт. ст., что и объясняет столь мощную фильтрацию первичной мочи.

Некоторые приносящие артериолы окружены особыми околоклубочковыми (юкстагломедулярными) клетками. Они являются местом выработки ренина - протеолитического фермента, участвующего в регуляции артериального давления.

Основная функция почек - образование мочи.

Общая характеристика выделительной функции почек.

1.Ряд веществ, находящихся в плазме крови в норме отсутствуют во вторичной моче. Это вещества, которые в норме практически не проходят через почечный барьер, и вещества которые в норме в почках полностью реабсорбируются, это как правило биологически ценные необходимые организму вещества/аминокислоты, глюкоза/.2.Другие вещества находятся во вторичной моче в концентрациях, значительно превышающие таковые в плазме крови. Это прежде всего продукты обмена белков/мочевины в 65 раз больше, мочевой кислоты – больше в 12 раз/. В этом проявляется концентрирующая функция почек. 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.

Процесс мочеобразования включает в себя следующие механизмы:

1. Клубочковая фильтрация.2. Канальцевая реабсорбция. 3. Секреция.

Клубочковая фильтрация.

Клубочковая фильтрация - процесс фильтрации из плазмы крови, протекающей через капилляры клубочка в полость капсулы почечного клубочка воды и растворенных в плазме веществ (за исключением крупномолекулярных соединений). Фильтрация в клубочках осуществляется через поры эндотелия, базальную мембрану, щели между клетками эпителия внутренней стенки капсулы.

Через почечный фильтр проходят молекулы, молекулярная масса которых не превышает 60 тысяч дальтон, при молекулярной массе от этого уровня до 70 тысяч дальтон/гемоглобин,альбумин/ через поры базальной мембран проходят 1-3% молекул, молекулярная масса порядка 80 тысяч дальтон является абсолютным пределом для прохождения молекул через поры мембраны.

Клубочковая фильтрация зависит от: 1. Гидростатического давления крови в капиллярах клубочка (70 мм рт. ст.). 2. Онкотического давления белков плазмы крови (20 мм рт. ст.). 3. Давления в капсуле Шумлянского, т.е. от внутрипочечного давления-(15 мм.рт.ст.).

Клубочковая фильтрация обусловлена разностью между гидростатическим давлением в капиллярах и величинами онкотического и внутрипочечного давления. ФД = ГД - (ОД + ВД), где ФД - фильтрационное давление, ГД - гидростатическое давление, ОД - онкотическое давление крови, ВД - внутрипочечное давление.

Фильтрационное давление составляет 70мм рт. ст - (20мм рт. ст. + 15мм рт. ст.) = 35 мм рт. ст..

В 1 минуту через почки проходит около 1200 мл. крови. При этом образуется 120 мл. фильтрата (первичная моча),это скорость клубочковой фильтрации, в норме она составляет 11-125 мл/мин.За сутки образуется 150-170 л. первичной мочи. Содержание неорганических и органических веществ (за исключением белков) в первичной моче такое же, как и в плазме крови.

Канальцевая реабсорбция.

Канальцевая реабсорбция - процесс обратного всасывания воды и ряда растворенных в ней веществ. Из 170 литров образующейся первичной мочи выводится в виде конечной мочи лишь 1-1,5 литра в сутки. Остальная жидкость и значительное количество растворенных в ней веществ всасывается в канальцах и поступает в кровь. Такой объем реабсорбции обусловлен большой суммарной поверхностью канальцев. Достаточно сказать, что только длина почечных канальцев достигает 100 километров, а площадь - 50 м 2 . Ребсорсорбция веществ, растворенных в крови, находится в зависимости от их концентрации в крови.

Вещества делятся на 1)беспороговые/непороговые/, они выделяют с мочой при любой/низкой,высокой/ их концентрации в крови, к ним относятся мочевина, креатинин, инулин,маннитол и др. и 2)пороговые/ все жизненно важные для организма вещества, выделение которых с мочой начинается лишь при достижении некоторого порога/уровня/ их концентрации в крови. Так, если концентрация глюкозы в крови не превышает 150-180 мг%, то она полностью реабсорбируется. Если же превышает эти величины, то часть глюкозы поступает в мочу.

Избирательность реабсорбции.

1.Многие вещества в норме реабсорбируются полностью. Это биологически ценные, жизненно важные вещества: витамины, аминокислоты, низкомолекулярные белки.2.Реабсорбируется большая часть многих веществ. Это натрий, калий, кальций, хлор и др. 3.Конечные продукты обмена веществ (мочевина, мочевая кислота, аммиак) реабсорбируются в значительно меньшей степени/выводится 50-70%/. 4.Некоторые вещества (сульфаты, креатинин) полностью выводятся из организма.

Реабсорбция подразделяется на облигатную/обязательную/ и факультативную/не обязательную , зависящую от функционального состояния (проницаемости стенки канальцев, скорости движения жидкости по канальцам, величине осмотического градиента).

Канальцевая реабсорбция обеспечивается:

1.активным транспортом,2. пассивным транспортом.

Активный транспорт - это транспорт против градиента: электрохимического, концентрационного или осмотического. Активный процесс всегда идет в одном направлении и характеризуется высокой специфичностью в отношении того или иного вещества.

Виды активного транспорта: а) первично-активный - это перенос вещества против злектрохимического градиента, за счет энергии клеточного метаболизма (реабсорбация натрия и калия происходит при участии фермента - Na+, K+ - АТФ-азы, использующей знергию АТФ), б) вторично-активный - это перенос вещества против концентрационного градиента, но без затраты энергии клеток непосредственно на этот процесс (реабсорбция глюкозы, аминокислот).

Эти органические вещества из просвета канальца входят в эпителиальную клетку проксимального канальца с помощью специального переносчика, который обязательно должен присоединить Nа + . Комплекс - белок-переносчик + органическое вещество + N а + перемещается через мембрану щеточной каймы и уже внутри клетки диссоциирует.

Пассивный перенос осуществляется по принципу облегченной диффузии (реабсорбция Н 2 О, СО 2 , хлориды). Пассивный транспорт может осуществляться по электрохимическому градиенту (Н 2 О) и по концентрационному градиенту (мочевина).

В проксимальном канальце происходит облигатная реабсорбция, реабсорбируются 65-85 % объема первичной мочи(Н 2 О), а так же 98% аминокислот, 77% мочевой кислоты, 100% глюкозы, 60% мочевины, 95% витаминов, 85% Nа + , 99% Cl - , 100% К + , 95% РО 4 , 80% НСО 3 - .

Реабсорбция веществ из проксимальных канальцев в кровоток происходит за счет первичной реабсорбции натрия, которая осуществляется за счет активного транспорта/первично-активный транспорт/,против градиента концентрации. Перенос натрия в области апикальной мембраны частично сопряжен с транспортом глюкозы и с транспортом аминокислот/симпорт/, так же частично связан с обратным транспортом Н + /антипорт/, вторично-активный транспорт. За счет возникающего осмотического градиента происходит пассивная реабсорбция воды, это вызывает концентрированию некоторых веществ в первичной моче, что позволяет им частично реабсорбироваться по градиенту концентрации.

Реабсорбция белков в этом отделе нефрона осуществляется путем пиноцитоза. Первичная моча в конечной части проксимальных канальцах изоосмолярна.

Петля Генле /нисходящая и восходящая части петли/. Ход их расположен параллельно друг другу, а ток жидкости противоположен, формирует противоточно - множительную систему (поворотно-противоточная система). В ней реабсорбируется 10- 25% объема первичной мочи, в основном электролиты.

Только почки теплокровных способны образовывать мочу, имеющую большую концентрацию осмотически активных веществ, чем таковая в крови/ осмотическое концетрирование/, почки у всех других животных способны только к осматическому разведению , человек сохранил и эту способность, но чаще- концентрирование .

Концентрационная способность нефрона обеспечивается противоточно-множительной системой. Нисходящая часть петли Генли непроницаема для Na + и хорошо проницаема для Н 2 О, в восходящей части петли Генли активно реабсорбируется Na + , но она непроницаема для воды. Реабсорбция натрия создает гиперосмотичеость в интерстиции,что способствует выходу дополнительных порций воды из канальцев, что способствует быстрому уменьшению жидкости в канальцах, осмотическому концентрированию мочи. Параллельно умножается эффект реабсорбции воды/Н 2 О/

Дистальные канальцы

В дистальных канальцах происходит факультативная реабсорбция, реабсорбируется 9% общего объема первичной мочи. Оставшийся 1% - вторичная моча.

Секреторная функция канальцев.

Канальцевая секреция имеет большое значение в выделении из организма продуктов обмена и чужеродных веществ.

Секреция позволяет быстро выводить с мочой органические кислоты, пенециллин, органические основания/холин/, ионы/К + , при избытке/. Транспорт в большинстве случаев осуществляется за счет переносчиков, которые обладают высоким сродством к переносимым веществам. Скорость экскреции того или иного вещества изменяется пропорционально его концентрации в плазме крови, при этом скорости экскреции различных веществ существенно различаются.

Сочетание различных процессов при проведении различных веществ Разные вещества выводятся по-разному: инулин - только фильтрацией, глюкоза - фильтрацией + реабсорбция, парааминогиппуровая кислота - фильтрацией + секреция, К + - фильтрацией + реабсорбция + секреция.

Физиологические показатели деятельности почек:

Клубочковая фильтрация - в норме клубочковая фильтрация составляет 100-130 мл/мин - по клиренсу креатинина. При снижении этого показателя ниже 70,0 -развивается почечная недостаточность.

Почечный плазмоток - указывает количество плазмы, которая орошает проксимальные извитые канальцы. - В норме = 650-720 мл/мин при общем почечном кровотоке 1100-1200 мл/мин.

Фильтрационная фракция - характеризует ту часть протекающей через клубочки плазмы, которая подвергается в них процессу ультрафильтрации. В норме = 16-19%.

Величина максимальной канальцевой реабсорбции глюкозы - в норме = 350 - 370мг/мин - и реабсорбция воды - (В норме = 99%) - служит показателем процесса канальцевой реабсорбции.

Максимальной канальцевой секреции кардиотраста или диотраста - в норме = 90-98 мг/мин - характеризуют функциональную секреторную способность канальцев.

Регуляция мочеобразования.

1. Нервная. 2. Гуморальная (наиболее выраженная).

Нервная регуляция мочеобразования - рефлекторное расширение сосудов почек увеличивает диурез. Раздражение симпатических волокон приводит к сужению почечных сосудов, а это в свою очередь - снижает фильтрационное давление и уменьшает или даже прекращает диурез. Нервная система может рефлекторно изменить секрецию гормонов гипофиза (вазопрессин или АДГ) и коры надпочечников (из "минералокортикоидов" - альдостерон - Na - сберегающий). Нервная же система может вызвать болевую анурию (при болевых раздражениях выброс АДГ усиливается).

Всякое повышение кровяного давления , связанное с возбуждением нервной системы, приводит к усилению клубочковой фильтрации, а понижение к уменьшению фильтрации. Эти реакции почек направлены на поддержание уровня кровяного давления и постоянства обьема крови.

Гуморально-гормональная регуляция мочеобразования:

Она более выражена по сравнению с нервной (доказано в опытах на собаках с пересадкой почки в область шеи, где почка функционировала, как и в норме, в соответствии с условиями).

Гормоны, регулирующие работу почек (мочеобразование)

Вазопрессин (АДГ - антидиуретический гормон). В нормальных условиях на клубочковую фильтрацию не влияет, но усиливает обратное всасывание воды - тем самым уменьшает диурез. При недостаточной функции задней доли гипофиза, выделяющей АДГ, стенка дистального отдела нефрона становится непроницаемой для воды и почка выводит ее до 25 литров в сутки - несахарное мочеизнурение.

Альдостерон (гормон коркового вещества надпочечников) - Na + - сберегающий гормон - усиливает реабсорцию натрия в проксимальных канальцах, усиливает секрецию К + в дистальных канальцах.

Натрийуретический гормон вырабатывается в предсердии при раздражнии волюморецепторов - (лействует на проксимальные канальцы, восходящую часть петли Генли)

Инсулин- снижает реабсорбцию К + . Паратгормон - (влияет на проксимальные и дистальные канальцы) - усиливает реабсорбцию Са 2+ , снижает канальцевую реабсорбцию фосфата, Кальцитонин - уменьшает реабсорбцию Са 2+ в проксимальных канальцах.

Ренин-ангиотензиновая система (ренин-ангиотензиноген-ангиотензин1-ангио­тен­зин 11. Выброс ренина происходит при снижении артериального давления, так как возникает угроза прекращения фильтрации и об­­разования первичной мочи. Ангиотензин 11 представляет собой одно из всех известных сосудосуживающих веществ. Длительно повышает тонус гладкой мускулатуры артериол, это при­­водит к повышению сосудистого сопротивления, что в свою очередь повышает артериальное давление и восстанавливает фильтрацию. Кроме этого, ангиотензин 11вызывает выброс альдостерона.

Адреналин, норадреналин (гормоны мозгового слоя надпочечников) усиливают выработку ренина, непосредственно возбуждая адренорецепторы юкстагломерулярных клеток, а также косвенно активируя барорецепторы в результате сокращения гладкой мускулатуры приносящих артериол.

В процессе жизнедеятельности в организме человека образуются значительные количества продуктов обмена, которые уже не используются клетками и должны быть удалены из организма. Кроме того, организм должен быть освобожден от токсичных и чужеродных веществ, от избытка воды, солей, лекарственных препаратов. Иногда процессам выделения предшествует обезвреживание токсических веществ, например в печени. Так, такие вещества, как фенол, индол, скатол, соединяясь с глюкуроновой и серной кислотами, превращаются в менее вредные вещества.

Органы, выполняющие выделительные функции, называются выделительными, или экскреторными. К ним относят почки, легкие, кожу, печень и желудочно-кишечный тракт. Главное назначение органов выделения - это поддержание постоянства внутренней среды организма. Экскреторные органы функционально взаимосвязаны между собой. Сдвиг функционального состояния одного из этих органов меняет активность другого. Например, при избыточном выведении жидкости через кожу при высокой температуре снижается объем диуреза. Нарушение процессов выделения неизбежно ведет к появлению патологических сдвигов гомеостаза вплоть до гибели организма.

Легкие и верхние дыхательные пути удаляют из организма углекислый газ и воду. Кроме того, через легкие выделяется большинство ароматических веществ, как, например, пары эфира и хлороформа при наркозе, сивушные масла при алкогольном опьянении. При нарушении выделительной функции почек через слизистую оболочку верхних дыхательных путей начинает выделяться мочевина, которая разлагается, определяя соответствующий запах аммиака изо рта. Слизистая оболочка верхних дыхательных путей способна выделять йод из крови.

Печень и желудочно-кишечный тракт выводят с желчью из организма ряд конечных продуктов обмена гемоглобина и других порфиринов в виде желчных пигментов, конечные продукты обмена холестерина в виде желчных кислот. В составе желчи из организма экскретируются также лекарственные препараты (антибиотики), бромсульфалеин, фенолрот, маннит, инулин и др. Желудочно-кишечный тракт выделяет продукты распада пищевых веществ, воду, вещества, поступившие с пищеварительными соками и желчью, соли тяжелых металлов, некоторые лекарственные препараты и ядовитые вещества (морфий, хинин, салицилаты, ртуть, йод), а также красители, используемые для диагностики заболеваний желудка (метиленовый синий, или конгорот).

Кожа осуществляет выделительную функцию за счет деятельности потовых и в меньшей степени сальных желез. Потовые железы удаляют воду, мочевину, мочевую кислоту, креатинин, молочную кислоту, соли щелочных металлов, особенно натрия, органические вещества, летучие жирные кислоты, микроэлементы, пепсиноген, амилазу и щелочную фосфатазу. Роль потовых желез удалении продуктов белкового обмена возрастает при заболеваниях почек, особенно при острой почечной недостаточности. С секретом сальных желез из организма выделяются свободные жирные и неомыляемые кислоты, продукты обмена половых гормонов.

Функции, строение, кровоснабжение почек

Почки являются основным органом выделения. Они выполняют в организме много функций. Одни из них прямо или косвенно связаны с процессами выделения, другие - не имеют такой связи.

Выделительная, или экскреторная, функция. Почки удаляет из организма избыток воды, неорганических и органических веществ, продукты азотистого обмена и чужеродные вещества: мочевину, мочевую кислоту, креатинин, аммиак, лекарственные препараты.

Регуляция водного баланса и соответственно объема крови, вне- и внутриклеточной жидкости (волюморегуляция) за счет изменения объема выводимой с мочой воды.

Регуляция постоянства осмотического давления жидкостей внутренней среды путем изменения количества выводимых осмотически активных веществ: солей, мочевины, глюкозы (осморегуляция).

Регуляция ионного состава жидкостей внутренней среды и ионного баланса организма путем избирательного изменения экскреции ионов с мочой (ионная регуляция).

Регуляция кислотно-основного состояния путем экскреции водородных ионов, нелетучих кислот и оснований.

Образование и выделение в кровоток физиологически активных веществ: ренина, эритропоэтина, активной формы витамина D, простагландинов, брадикининов, урокиназы (инкреторная функция).

Регуляция уровня артериального давления путем внутренней секреции ренина, веществ депрессорного действия, экскреции натрия и воды, изменения объема циркулирующей крови.

Регуляция эритропоэза путем внутренней секреции гуморального регулятора эритрона - эритропоэтина.

Регуляция гемостаза путем образования гуморальных регуляторов свертывания крови и фибринолиза - урокиназы, тромбопластина, тромбоксана, а также участия в обмене физиологического антикоагулянта гепарина.

Участие в обмене белков, липидов и углеводов (метаболическая функция).

Защитная функция: удаление из внутренней среды организма чужеродных, часто токсических веществ.

Следует учитывать, что при различных патологических состояниях выделение лекарств через почки иногда существенно нарушается, что может приводить к значительным изменениям переносимости фармакологических препаратов, вызывая серьезные побочные эффекты вплоть до отравлений.

Строение нефрона

Основной структурно-функциональной единицей почки является нефрон, в котором происходит образование мочи. В зрелой почке человека содержится около 1 - 1,3 мл нефронов.

Нефрон состоит из нескольких последовательно соединенных отделов

Начинается нефрон с почечного (мальпигиева) тельца, которое содержит клубочек кровеносных капилляров. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена.

Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев.

Проксимальный отдел канальцев начинается извитой частью, которая переходит в прямую часть канальца. Клетки проксимального отдела имеют щеточную каемку из микроворсинок, обращенных в просвет канальца.

Затем следует тонкая нисходящая часть петли Генле, стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона.

Дистальный отдел канальцев состоит из восходящей части петли Генле и может иметь тонкую и всегда включает толстую восходящую часть. Этот отдел поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец.

Этот отдел канальца располагается в коре почки и обязательно соприкасается с полюсом клубочка между приносящей и выносящей артериолами в области плотного пятна.

Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в собирательные трубочки. Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

По особенностям локализации клубочков в коре почек, строения канальцев и особенностям кровоснабжения различают 3 типа нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные.

Кровоснабжение почек

Отличительной особенностью кровоснабжения почек является то, что кровь используется не только для трофики органа, но и для образования мочи. Почки получают кровь из коротких почечных артерий, которые отходят от брюшного отдела аорты. В почке артерия делится на большое количество мелких сосудов-артериол, приносящих кровь к клубочку. Приносящая (афферентная) артериола входит в клубочек и распадается на капилляры, которые, сливаясь, образуют выносящую (эфферентную) артериолу. Диаметр приносящей артериолы почти в 2 раза больше, чем выносящей, что создает условия для поддержания необходимого артериального давления (70 мм рт.ст.) в клубочке. Мышечная стенка у приносящей артериолы выражена лучше, чем у выносящей. Это дает возможность регуляции просвета приносящей артериолы. Выносящая артериола вновь распадается на сеть капилляров вокруг проксимальных и дистальных канальцев. Артериальные капилляры переходят в венозные, которые, сливаясь в вены, отдают кровь в нижнюю полую вену. Капилляры клубочков выполняют только функцию мочеобразования. Особенностью кровоснабжения юкстамедуллярного нефрона является то, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые вместе с петлей Генле спускаются в мозговое вещество почки и участвуют в осмотическом концентрировании мочи.

Через сосуды почки в 1 мин проходит около 1/4 объема крови, выбрасываемого сердцем в аорту. Почечный кровоток условно делят на корковый и мозговой. Максимальная скорость кровотока приходится на корковое вещество (область, содержащую клубочки и проксимальные канальцы) и составляет 4-5 мл/мин на 1 г ткани, что является самым высоким уровнем органного кровотока. Благодаря особенностям кровоснабжения почки давление крови в капиллярах сосудистого клубочка выше, чем в капиллярах других областей тела, что необходимо для поддержания нормального уровня клубочковой фильтрации. Процесс мочеобразования требует создания постоянных условий кровотока. Это обеспечивается механизмами ауторегуляции. При повышении давления в приносящей артериоле ее гладкие мышцы сокращаются, уменьшается количество поступающей крови в капилляры и происходит снижение в них давления. При падении системного давления приносящие артериолы, напротив, расширяются. Клубочковые капилляры также чувствительны к ангиотензину II, простагландинам, брадикининам, вазопрессину. Благодаря указанным механизмам кровоток в почках остается постоянным при изменении системного артериального давления в пределах 100-150 мм рт. ст. Однако при ряде стрессовых ситуаций (кровопотеря, эмоциональный стресс и т.д.) кровоток в почках может уменьшаться.