Физический смысл производной. Определение производной

Цели урока:

Образовательные:

  • Создать условия для осмысленного усвоения учащимися физического смысла производной.
  • Содействовать формированию умений и навыков практического использования производной для решения разнообразных физических задач.

Развивающие:

  • Способствовать развитию математического кругозора, познавательного интереса у учащихся через раскрытие практической необходимости и теоретической значимости темы.
  • Обеспечить условия для совершенствования мыслительных умений учащихся: сравнивать, анализировать, обобщать.

Воспитательная:

  • Содействовать воспитанию интереса к математике.

Тип урока: Урок освоения новых знаний.

Формы работы: фронтальная, индивидуальная, групповая.

Оборудование: Компьютер, интерактивная доска, презентация, учебник.

Структура урока:

  1. Организационный момент, постановка цели урока
  2. Изучение нового материала
  3. Первичное закрепление нового материала
  4. Самостоятельная работа
  5. Итог урока. Рефлексия.

Ход урока

I. Организационный момент, постановка цели урока (2 мин.)

II . Изучение нового материала (10 мин.)

Учитель: На предыдущих уроках мы познакомились с правилами вычисления производных, научились находить производные линейной, степенной, тригонометрических функций. Узнали, в чем заключается геометрический смысл производной. Сегодня на уроке мы узнаем, где в физике применяется данное понятие.

Для этого вспомним определение производной (Слайд 2)

Теперь обратимся к курсу физики (Слайд 3)

Учащиеся рассуждают, вспоминают физические понятия и формулы.

Пусть тело движется по закону S(t)= f(t) Рассмотрим путь, пройденный телом за время от t 0 до t 0 + Δ t, где Δt – приращение аргумента. В момент времени t 0 телом пройден путь S(t 0), в момент t 0 +Δt – путь S(t 0 +Δt). Поэтому за время Δt тело прошло путь S(t 0 +Δt) –S(t 0), т.е. мы получили приращение функции. Средняя скорость движения тела за этот промежуток времени υ==

Чем меньше промежуток времени t, тем точнее мы можем узнать, с какой скоростью движется тело в момент t. Устремив t →0, получим мгновенную скорость – числовое значение скорости в момент t этого движения.

υ= , при Δt→0 скорость – есть производная от пути по времени.

Слайд 4

Вспомним определение ускорения.

Применяя изложенный выше материал можно сделать вывод, что при t а(t)= υ’(t) ускорение – есть производная от скорости.

Далее на интерактивной доске появляются формулы силы тока, угловой скорости, ЭДС и т.д. Учащиеся дописывают мгновенные значения данных физических величин через понятие производной. (При отсутствии интерактивной доски использовать презентацию)

Слайды 5-8

Вывод формулируют учащиеся.

Вывод: (Слайд 9) Производная – это есть скорость изменения функции. (Функции пути, координаты, скорости, магнитного потока и т.д.)

υ (х)=f ’(х)

Учитель: Мы видим, что связь между количественными характеристиками самых различных процессов исследуемых физикой, техническими науками, химией, аналогична связи между путем и скоростью. Можно привести множество задач, для решения которых также необходимо находить скорость изменения некоторой функции, например: нахождение концентрации раствора в определенный момент, нахождение расхода жидкости, угловой скорости вращения тела, линейной плотности в точке и т.д. Некоторые из таких задач мы сейчас решим.

III. Закрепление полученных знаний (работа в группах) (15 мин.)

С последующим разбором у доски

Перед решением задач уточнить единицы измерения физических величин.

Скорость – [м/с]
Ускорение – [м/с 2 ]
Сила – [Н]
Энергия – [Дж]

Задание 1 группе

Точка движется по закону s(t)=2t³-3t (s – путь в метрах, t – время в секундах). Вычислите скорость движения точки, ее ускорение в момент времени 2с

Задание 2 группе

Маховик вращается вокруг оси по закону φ(t)= t 4 -5t. Найдите его угловую скорость ω в момент времени 2с (φ – угол вращения в радианах, ω – угловая скорость рад/с)

Задание 3 группе

Тело массой 2 кг движется прямолинейно по закону х(t)=2-3t+2t²

Найдите скорость тела и его кинетическую энергию через 3с после начала движения. Какая сила действует на тело в этот момент времени? (t измеряется в секундах, х – в метрах)

Задание 4

Точка совершает колебательные движения по закону х(t)=2sin3t. Докажите, что ускорение пропорционально координате х.

IV. Самостоятельное решение задач №272, 274, 275, 277

[А.Н.Колмогоров, А.М.Абрамов и др. «Алгебра и начала анализа10-11 класс»] 12 мин

Дано: Решение:
x(t)=-
______________
t=?
υ(t)=?
υ(t)=х’(t);
υ(t)= (-)’=·3t²+6t= +6t;
a(t)=υ’(t)
a(t)=( +6t)’=·2t+6=-t+6;
a(t)=0;
-t+6=0;
t=6;
υ(6)=+6·6=-18+36=18м/с
Ответ: t=6c; υ(6)= 18м/с

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B (x ; f (x )). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆ x ; ВС =∆у; tgβ =∆ y /∆ x .

Так как АС || Ox , то Ð ALO = Ð BAC = β (как соответственные при параллельных). Но Ð ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая ( a ), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tg β =∆ y /∆ x , то получим

или tg a = f "(x 0 ), так как
a -угол накло­на касательной к положительному направлению оси Ох

, по определению производной. Но tg a = k - угловой коэффициент каса­тельной, значит, k = tg a = f "(x 0 ).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x (t ). Известно (из курса физики), что средняя скорость за промежуток времени [ t 0 ; t 0 + ∆ t ] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

V ср = ∆ x /∆ t . Перейдем к пределу в последнем равенстве при ∆ t → 0.

lim V ср (t ) = n (t 0 ) - мгновенная скорость в момент времени t 0 , ∆ t → 0.

а lim = ∆ x /∆ t = x "(t 0 ) (по определению производной).

Итак, n (t ) = x "(t ).

Физический смысл производной заключается в следующем: произ­водная функции y = f ( x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u (t ) = x "(t ) - скорость,

a (f ) = n "(t ) - ускорение, или

a (t ) = x "(t ).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ (t ) - изменение угла от времени,

ω = φ "(t ) - угловая скорость,

ε = φ "(t ) - угловое ускорение, или ε = φ "(t ).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m (х) - масса,

x Î , l - длина стержня,

р = m "(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = - kx , x – переменная координата, k - коэффициент упругости пружины. Положив ω 2 = k / m , получим дифференциальное уравнение пружинного маятника х"( t ) + ω 2 x(t ) = 0,

где ω = √ k /√ m частота колебаний ( l / c ), k - жесткость пружины ( H / m ).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin (ωt + φ 0 ) или у = Acos (ωt + φ 0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Иногда в задаче B9 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» B9.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=x\left(t \right)$, то $v$ мы можем посчитать следующим образом:

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

\[{x}"\left(t \right)=-\frac{1}{5}\cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

\[{x}"\left(t \right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

Нам требуется найти производную в точке 2. Давайте подставим:

\[{x}"\left(2 \right)=-{{2}^{4}}+4\cdot {{2}^{3}}-3\cdot {{2}^{2}}+5=\]

\[=-16+32-12+5=9\]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

\[{x}"\left(t \right)=\frac{1}{3}\cdot 3{{t}^{2}}-4\cdot 2t+19\]

\[{x}"\left(t \right)={{t}^{2}}-8t+19\]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

\[{{t}^{2}}-8t+19=3\]

\[{{t}^{2}}-8t+16=0\]

\[{{\left(t-4 \right)}^{2}}=0\]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Рассмотрим график некоторой функции y = f(x).

Отметим на нем некоторую точку А с координатами (x, f(x)) и недалеко от нее точку В с координатами (x+h, f(x+h). Проведем через эти точки прямую (АВ). Рассмотрим выражение . Разность f(x+h)-f(x) равна расстоянию BL, а расстояние АL равно h. Отношение BL/AL - это тангенс ε угла - угла наклона прямой (АВ). Теперь представим себе, что величина h очень и очень мала. Тогда прямая (АВ) почти совпадет с касательной в точке х к графику функции y = f(x).

Итак, дадим определения.

Производной функции y = f(x) в точке х называется предел отношения при h стремящемся к нулю. Пишут:

Геометрический смысл производной – тангенс угла наклона касательной.

У производной есть еще и физический смысл. В начальных классах давалось определение скорости, как расстояние, деленное на время. Однако, в реальной жизни скорость, например, автомобиля, не постоянна на протяжении всего пути. Пусть путь – это некоторая функция от времени - S(t).Зафиксируем момент времени t. За небольшой промежуток времени от t до t+h автомобиль пройдет путь S(t+h)-S(t). За маленький промежуток времени скорость сильно не изменится и поэтому, можно использовать определение скорости, известное с начальной школы . А при h, стремящемся к нулю, это и будет производная.