Фазовые P – V и T – S диаграммы состояний. Законы идеальных газов

На рис 3.3 представлена фазовая диаграмма в P – V координатах, а на рис.3.4 - в T – S координатах.

Рис.3.3. Фазовая Р-V диаграмма Рис.3.4. Фазовая Т-S диаграмма

Обозначения :

т + ж – область равновесного сосуществования твердой и жидкой

т + п – область равновесного сосуществования твердой и паро-

ж + п – область равновесного сосуществования жидкой и паровой

Если на Р – Т диаграмме области двухфазных состояний изображались кривыми, то P – V и T – S диаграммах – это некоторые площади.

Линия AKF называется пограничной кривой. Она в свою очередь разделяется на нижнюю пограничную кривую (участок АК) и верхнюю пограничную кривую (участок KF).

На рис.3.3 и 3.4 линия BF, где смыкаются области трех двухфазных состояний, - это растянутая тройная точка Т с рис3.1 и 3.2.

При плавлении вещества, которое, как и парообразование, протекает при постоянной температуре, образуется равновесная двухфазная смесь твердой и жидкой фаз. Значения удельного объема жидкой фазы в составе двухфазной смеси снимаются на рис3.3 с кривой АN, а значения удельного объема твердой фазы – с кривой ВЕ.

Внутри области, ограниченной контуром AKF, вещество представляет собой смесь двух фаз: кипящей жидкости (Ж) и сухого насыщенного пара (П).

Вследствие аддитивности объема удельный объем такой двухфазной смеси определяется по формуле

удельная энтропия:

Особые точки фазовых диаграмм

Тройная точка

Тройная точка – это точка, в которой сходятся кривые равновесия трех фаз. На рис.3.1 и 3.2 – это точка Т.

Некоторые чистые вещества, например, сера, углерод и др., в твердом агрегатном состоянии имеют несколько фаз (модификаций).

В жидком и газообразном состояниях модификации отсутствуют.



В соответствии с уравнением (1.3) в однокомпонентной термодеформационной системе одновременно находиться в равновесии могут не более трех фаз.

Если у вещества в твердом состоянии существуют несколько модификаций, то общее количество фаз вещества в сумме превышает три и такое вещество должно иметь несколько тройных точек. В качестве примера на рис.3.5 приведена фазовая Р –Т диаграмма вещества, имеющего две модификации в твердом агрегатном состоянии.

Рис.3.5. Фазовая Р-Т диаграмма

вещества с двумя кристалличес-

кими фазами

Обозначения :

I – жидкая фаза;

II – газообразная фаза;

III 1 и III 2 – модификации в твердом агрегатном состоянии

(кристаллические фазы)

В тройной точке Т 1 в равновесии находятся: газообразная, жидкая и кристаллическая фаза III 2. Эта точка является основной тройной точкой.

В тройной точке Т 2 в равновесии находятся: жидкая и две кристаллические фазы.

В тройной точке Т 3 в равновесии находятся газообразная и две кристаллические фазы.

У воды известно пять кристаллических модификаций (фаз): III 1, III 2 , III 3 , III 5 , III 6 .

Обычный лед – это кристаллическая фаза III 1 , а остальные модификации образуются при очень больших давлениях, составляющих тысячи МПа.

Обычный лед существует до давления 204,7 МПа и температуры – 22 0 С.

Остальные модификации (фазы) – это лед плотнее воды. Один из этих льдов – « горячий лед » наблюдался при давлении 2000 МПа вплоть до температуры + 80 0 С.

Термодинамические параметры основнойтройной точки воды следующие:

Т тр = 273,16 К = 0,01 0 С;

Р тр = 610,8 Па;

V тр = 0,001 м 3 /кг.

Аномалия кривой плавления () существует только для обычного льда.

Критическая точка

Как следует из фазовой P – V диаграммы (рис.3.3) по мере роста давления различие между удельными объемами кипящей жидкости (V") и сухого насыщенного пара (V"") постепенно уменьшается и в точке К становится равным нулю. Такое состояние называется критическим, а точка К – критической точкой вещества.

P к, T к, V к,S к – критические термодинамические параметры вещества.

Например, для воды:

P к = 22,129 МПа;

T к = 374, 14 0 С;

V к = 0, 00326 м 3 /кг

В критической точке свойства жидкой и газообразной фаз одинаковы.

Как следует из фазовой Т – S диаграммы (рис 3.4) в критической точке теплота парообразования, изображаемая как площадь под горизонтальной линией фазового перехода (С" - С""), от кипящей жидкости к сухому насыщенному пару, равна нулю.

Точка К для изотермы Т к в фазовой P – V диаграмме (рис.3.3) является точкой перегиба.

Изотерма Т к, проходящая через точку К, является предельной изотермой двухфазной области, т.е. отделяет область жидкой фазы от области газообразной.

При температуре выше Т к изотермы уже не имеют ни прямолинейных участков, свидетельствующих о фазовых переходах, ни точки перегиба, характерной для изотермы Т к, а постепенно принимают вид плавных кривых, близких по форме к изотермам идеального газа.

Понятия «жидкость» и «газ» (пар) в известной степени условны, т.к. взаимодействия молекул в жидкости и газе имеют общие закономерности, отличаясь лишь количественно. Этот тезис можно проиллюстрировать рисунком3.6, где переход из точки Е газообразной фазы в точку L жидкой фазы произведен в обход критической точки К по траектории EFL.

Рис.3.6. Два варианта фазового перехода

из газообразной в жидкую фазу

При переходе по линии AD в точке С происходит разделение вещества на две фазы и затем вещество постепенно переходит из газообразной (парообразной) фазы в жидкую.

В точке С свойства вещества изменяются скачком (в фазовой P – V диаграмме точка С фазового перехода превращается в линию фазового перехода (С" - С"")).

При переходе по линии EFL превращение газа в жидкость происходит непрерывно, так как линия EFL нигде не пересекает кривую парообразования ТК, где вещество одновременно существует в виде двух фаз: жидкой и газообразной. Следовательно, при переходе по линии EFL вещество не будет распадаться на две фазы и останется однофазным.

Критическая температура Т к – это предельная температура равновесного сосуществования двух фаз.

Применительно к термодинамическим процессам в сложных системах это классическое лаконичное определение Т к может быть развернуто следующим образом:

Критическая температура Т к - это нижняя температурная граница области термодинамических процессов, в которых невозможно появление двухфазного состояния вещества «газ - жидкость» ни при каких изменениях давления и температуры. Это определение иллюстрируются рис.3.7 и 3.8. Из этих рисунков следует, что эта область ограниченная критической температурой, охватывает только газообразное состояние вещества (газовую фазу). Газообразное состояние вещества, именуемое паром в эту область не входит.

Рис. 3.7. К определению критической Рис.3.8.К определению критиче-

температуры ской температуры

Из этих рисунков следует, что эта заштрихованная область, ограниченная критической температурой, охватывает только газообразное состояние вещества (газовую фазу). Газообразное состояние вещества, именуемое паром в эту область не входит.

Используя понятие критической точки, можно из общего понятия «газообразное состояние вещества» выделить понятие «пар».

Пар – это газообразная фаза вещества в области температур ниже критической.

В термодинамических процессах, когда линия процесса пересекает или кривую парообразования ТК, или кривую сублимации 3, газообразная фаза всегда сначала является паром.

Критическое давление Р к – это давление, выше которого разделение вещества на две одновременно и равновесно сосуществующие фазы: жидкость и газ невозможно при любой температуре.

Это классическое определение Р к, применительно к термодинамическим процессам в сложных системах можно сформулировать более подробно:

Критическое давление Р к – это нижняя по давлению граница области термодинамических процессов, в которых невозможно появление двухфазного состояния вещества «газ - жидкость» ни при каких изменениях давления и температуры. Это определение критического давления иллюстрируется рис.3.9. и 3.10. Из этих рисунков следует, что эта область, ограниченная критическим давлением, охватывает не только часть газообразной фазы, расположенную выше изобары Р к, но и часть жидкой фазы, расположенную ниже изотермы Т к.

Для сверхкритической области за вероятную (условную) границу «жидкость-газ» условно принимают критическую изотерму.

Рис.3.9.К определению критичес - Рис.3.10. К определению критического

кого давления давления

Если давление перехода много больше давления в критической точке, то вещество из твердого (кристаллического) состояния будет переходить прямо в газообразное состояние, минуя жидкое состояние.

Из фазовых Р-Т диаграмм аномального вещества (рис 3.6, 3.7, 3.9) это не очевидно, т.к. на них не показана та часть диаграммы, где вещество, имеющее при больших давлениях несколько кристаллических модификаций (и, соответственно, несколько тройных точек), снова приобретает нормальные свойства.

На фазовой Р – Т диаграмме нормального вещества рис. 3.11 этот переход из твердой фазы сразу в газообразную показан в виде процесса А"D".

Рис. 3.11. Переход нормального

вещества из твердой фазы сразу в

газообразную при Р>Ртр

Переход вещества из твердой фазы в паровую, минуя жидкую, возложен лишь при Р<Р тр. Примером такого перехода, называемого сублимацией, является процесс АD на рис 3.11.

Критическая температура имеет весьма простое молекулярно – кинетическое истолкование.

Объединение свободно движущихся молекул в каплю жидкости при сжижении газа происходит исключительно под действием сил взаимного притяжения. При Т>Т к кинетическая энергия относительного движения двух молекул больше энергии притяжения этих молекул, поэтому образование капель жидкости (т.е. сосуществование двух фаз) невозможно.

Критические точки имеют только кривые парообразования, так как они соответствуют равновесному сосуществованию двух изотропных фаз: жидкой и газообразной. Линии плавления и сублимации не имеют критических точек, т.к. они соответствуют таким двухфазным состояниям вещества, когда одна из фаз (твердая) является анизотропной.

Закритическая область

В фазовой Р-Т диаграмме – это область, расположенная правее и выше критической точки, примерно там, куда можно было бы мысленно продолжить кривую насыщения.

В современных прямоточных паровых котлах парообразование осуществляется в закритической области.

Рис.3.12. Фазовый переход в Рис.3.13. Фазовый переход в докритической

докритической и закритической и закритической областях Р-V диаграммы

областях Р-Т диаграммы

Термодинамические процессы в закритической области протекают с рядом отличительных особенностей.

Рассмотрим изобарный процесс AS в докритической области, т.е. при . Точка А соответствует жидкой фазе вещества, которая при достижении температуры Т н начинает превращаться в пар. Этому фазовому переходу соответствует точка В на рис.3.12 и отрезок В"В"" на рис 3.13. При переходе через кривую насыщения ТК свойства вещества изменяются скачком. Точка S соответствует газообразной фазе вещества.

Рассмотрим изобарный процесс A"S" при давлении . В точке А" вещество находится в жидкой фазе, а в точке S"- в газообразной, т.е. в различных фазовых состояниях. Но при переходе от точки A" к S" скачкообразного изменения свойств не происходит: свойства вещества меняются непрерывно и постепенно. Скорость этого изменения свойств вещества на линии A"S" различна: мала вблизи точек А" и S" и резко возрастает при входе в закритическую область. На любой изобаре в закритической области можно указать точки максимальной скорости изменения: температурного коэффициента объемного расширения вещества , энтальпии, внутренней энергии, вязкости, теплопроводности и т.д.

Таким образом, в закритической области развиваются явления, похожие на фазовые переходы, но двухфазное состояние вещества «жидкость - газ» при этом не наблюдается. Кроме этого, границы закритической области размыты.

При Р<Р к, т.е. в докритической области, на фазовое превращение «жидкость - пар» требуется затратить скрытую теплоту парообразования, которая является как бы «тепловым барьером» между жидкой и паровой фазами.

Нечто подобное наблюдается в закритической области. На рис3.14 представлена типичная картина изменения удельной изобарной теплоемкости при Р>Р к.

Рис.3.14. Удельная изобарная

теплоемкости при закритическом

давлении.

Так как Q р = С р dТ, то площадь под кривой Ср(Т) – это теплота, необходимая для превращения жидкости (точка А’) в газ (точка S’) при закритическом давлении. Пунктирной линией А’М S’ показана типичная зависимость Ср от температуры вдокритической области.

Таким образом, максимумы на кривой С р (Т) в закритической области, означающие дополнительные затраты теплоты на нагревание вещества, также выполняют схожие функции «теплового барьера» между жидкостью и газом в этой области.

Как показали исследования, положения максимумов не совпадают, что свидетельствует об отсутствии единой линии раздела жидкости и пара в закритической области. В ней существует лишь широкая и размытая зона, где превращение жидкости в пар происходит наиболее интенсивно.

Наиболее интенсивно эти превращения происходят при давлениях, не слишком превышающих критическое (Р к). По мере повышения давления явления превращение жидкости в пар сглаживаются и при больших давлениях проявляются очень слабо.

Таким образом, при Р>Р к существуют, но не могут сосуществовать одновременно и равновесно жидкая фаза, газообразная фаза и некоторая промежуточная фаза. Эту промежуточную фазу иногда называют метафазой , она сочетает в себе свойства жидкости и газа.

Из-за резкого изменения термодинамических параметров, теплофизических характеристик и характеристических функций в закритической области погрешности их экспериментального определения в этой области в десять с лишним раз больше, чем при докритических давлениях.

AF- изотерма H20 -зависимость удельного объема воды

от давления при температуре 0 С. Область,

которая заключается между изотермой и

осью координат – область равновесного

существования Ж и Т фаз.

При нагреве, объем начнет увелич и при достижении кипения в т А1 становится максимальной. С увеличением давления увелич Т, в т А1 v2>v1 . АК- пограничная кривая жидкости, во всех точках степень сухости = 0, Х=0. КВ-пограничная кривая пара, Х=1. Дальнейший подвод теплоты переводящий воду из состояния насыщения в состояние сухого пара: А1-В1, А2-В2 – изобарно – изотермич пр-сы.

Зависимость удельного объема v′′ изображается кривой КВ- пограничной кривой пара. Пар на этой кривой имеет степень сухости Х=1. При дальнейшем подводе теплоты к сухому пару в т Д1 и Д2, в котором находится перегретый пар, р=const, а Т растет.

Линии В2-Д2, В1-Д1 – изобарный пр-с перегретого пара. АК и КВ делят область диаграммы на три части. Левее АК располагается жидкость, а правее – влажный насыщенный пар (пароводяная смесь). КВ – сухой насыщенный пар, правее перегретый. К – критическая точка. А – тройная точка,

Удельное кол-во работы

8. TS-диаграмма водяного пара используется при исследовании холодильных установок и паросиловых установок А-а-А1.



Р-м пр-сы нагрева:

А1В1- линия парообразования

В1Д1-линия пароперегрева

Левее АК находится жидкость.

АК и КВ- область влажного насыщ пара

Область правее КВ – перегретый пар

Между АК и КВ наход линии кривые

промежуточной степени сухости.

TS диаграмма используется для определения подводимого или отводимого тепла. Из TS диаграммы видно что самое большое кол-во теплоты идет на пр-с парообразования, меньше на пароперегрев, еще меньше на нагревание. Пр-с пароперегрева - в пароперегревателе, в котлах – парообразование. По тепловому потоку вначале располагаются испаритель, пароперегреватель, экономайзер.

9. hS диаграмма водяного пара. Эта диаграмма наиболее удобна для расчетов. В отличие от pV и TS диаграмм связана величина удельной работы, а так же кол-во подведенного и отведенного тепла, изобр не виде площади, а в виде отрезков. За начало координат hS диаграммы принимают состояние воды в тройной точке, где величина энтальпии и энтропии равна 0. По оси абсцисс – энтропия, по ординате – энтальпия. На диаграмме наносятся пограничные кривые жидкости АК и пара – линия КВ. Пограничные кривые выходят из начала координат.

На hS диаграмме находятся:

изотермы

Изобары в области влажного пара,

представляет собой прямые линии

выходящие из начала пограничной

кривой жидкости к которой они

касаются. В этой области изобары

совпадают с изотермой, т е имеют одинаковый угол наклона.

, - температура кипения или насыщения, величина постоянная для данного давления между АК и КВ. В области перегретого пара изобары представляют собой кривые отклоненные вверх, с выпуклостью направленной вниз. Изотермы отклонены вправо и выпуклы вверх. Изобара АВ1 соответствует давлению в тройной точке Р0 = 0,000611 МПа. Ниже АВ1 находится состояние смеси льда и пара, на эту диаграмму наносятся изохоры.

Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V , заключенный в эластичную оболочку с поверхностью F (рисунок 2.1). Если газу сообщить некоторое количество теплоты, то он будет расширяться, совершая при этом работу против внешнего давления р , оказываемого на него средой. Газ дей­ствует на каждый элемент оболочки dF с силой, равной pdF и, перемещая ее по нормали к поверхности на расстояние dn , совершает элементарную работу pdFdn .

Рис. 2.1 – К определению работы расширения

Общую работу, совершенную в течение бесконечно малого процесса, получим, интегрируя данное выражение по всей поверхности F оболочки:

.

Из рисунок 2.1 видно, что изменение объема dV выражается в виде интеграла по поверхности: , следовательно

δL = pdV. (2.14)

При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна

Из (2.14) следует, что δL и dV всегда имеют одинаковые знаки:

если dV > 0, то и δL > 0, т.е. при расширении работа тела положительна, при этом тело само совершает работу;

если же dV < 0, то и δL< 0, т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Единицей измерения работы в СИ яв­ляется джоуль (Дж).

Отнеся работу расширения к 1 кг массы рабочего тела, получим

l = L/M; δl = δL/М = pdV/M = pd(V/M) = pdv. (2.16)

Величина l, представляющая собой удельную работу, совершаемую систе­мой, содержащей 1 кг газа, равна

Поскольку в общем случае р – вели­чина переменная, то интегрирование воз­можно лишь тогда, когда известен закон изменения давления p = p(v).

Формулы (2.14) – (2.16) справедливы только для равновесных процессов, при которых давление рабочего тела равно давлению окружающей среды.

В термодинамике для исследования равновесных процессов широко исполь­зуют рv – диаграмму, в которой осью аб­сцисс служит удельный объем, а осью ординат – давление. Поскольку состоя­ние термодинамической системы опреде­ляется двумя параметрами, то на рv – диаграмме оно изображается точкой. На рисунке 2.2 точка 1 соответствует начально­му состоянию системы, точка 2 – конеч­ному, а линия 12 – процессу расшире­ния рабочего тела от v 1 до v 2 .

При бесконечно малом изменении объема dv площадь заштрихованной вертикальной полоски равна pdv = δl, следовательно, работа процесса 12 изо­бражается площадью, ограниченной кри­вой процесса, осью абсцисс и крайними ординатами. Таким образом, работа из­менения объема эквивалентна площади под кривой процесса в диаграмме рv .


Рис. 2.2 – Графическое изображение работы в рv – координтах

Каждому пути перехода системы из состояния 1 в состояние 2 (например, 12, 1а2 или 1b2) соответствует своя работа расширения: l 1 b 2 >l 1 a 2 >l 12 Следова­тельно, работа зависит от характера термодинамического процесса, а не явля­ется функцией только исходного и ко­нечного состояний системы. С другой стороны, ∫pdv зависит от пути интегри­рования и, следовательно, элементарная работа δl не является полным диффе­ренциалом.

Работа всегда связана с перемеще­нием макроскопических тел в простран­стве, например перемещением поршня, деформацией оболочки, поэтому она ха­рактеризует упорядоченную (макрофизическую) форму передачи энергии от од­ного тела к другому и является мерой переданной энергии.

Поскольку величина δl пропорцио­нальна увеличению объема, то в качестве рабочих тел, предназначенных для пре­образования тепловой энергии в механи­ческую, целесообразно выбирать такие, которые обладают способностью значи­тельно увеличивать свой объем. Этим качеством обладают газы и пары жидко­стей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внут­реннего сгорания – газообразные про­дукты сгорания того или иного топлива.

2.4 Работа и теплота

Выше отмечалось, что при взаимодействии термодинамической системы с окружающей средой происходит обмен энергией, причем один из способов ее передачи – работа, а другой – теплота.

Хотя работа L и количество теплоты Q имеют размерность энергии, они не являются видами энергии. В отличие от энергии, которая является параметром состояния системы, работа и теплота зависят от пути перехода системы от одного состояния в другое. Они представляют две формы передачи энергии от одной системы (или тела) к другой.

В первом случае имеет место макрофизическая форма обмена энергией, которая обусловлена механическим воздействием одной системы на другую, сопровождаемым видимым перемещением дру­гого тела (например, поршня в цилиндре двигателя).

Во втором случае осуществлена микрофизическая (т.е. на моле­кулярном уровне) форма передачи энергии. Мера количества пе­реданной энергии – количество теплоты. Таким образом, работа и теплота – энергетические характеристики процессов механическо­го и теплового взаимодействия системы с окружающей средой. Эти два способа передачи энергии эквивалентны, что вытекает из зако­на сохранения энергии, но неравноценны. Работа может непосред­ственно преобразовываться в теплоту – одно тело передает при тепловом контакте энергию другому. Количество же теплоты Q непосредственно расходуется только на изменение внутренней, энергии системы. При превращении теплоты в работу от одного тела – источника теплоты (ИТ) теплота передается другому – рабо­чему телу (РТ), а от него энергия в виде работы передается третьему телу – объекту работы (ОР).

Следует подчеркнуть, что если мы записываем уравнение термодинамики, то входящие в уравнения L и Q означают энергию, полученную соответственно макро– или микрофизическим спосо­бом.

Изопроцессами называются процессы, протекающие при неизменном значении одного из па-раметров: давления (p ) , объема (V ) , температуры (T ).

Изопроцессами в газах являются термодинамические процессы, на протяжении течения которых количество вещества и давление, объём, температура либо энтропия не поддаются изменениям. Таким образом, при изобарном процессе не изменяется давление, при изохорном - объём, при изотермическом - температура, при изоэнтропийном - энтропия (к примеру, обратимый адиабатический процесс). И линии, которые отображают перечисленные процессы на некой термодинамической диаграмме, называют, соответственно, изобара , изохора , изотерма и адиабата . Все эти изопроцессы являются частными случаями политропного процесса.

Изохорный процесс.

Изохорный (или изохорический ) процесс — это изменение термодинамической системы с условием не изменения объема (V = const ). Изохорой называют линию, которая отображает изохорический процесс на графике. Этот процесс описывает закон Шарля.

Изотермический процесс.

Изотермический процесс — это изменение термодинамической системы с условием не изменения температуры (T = const ). Изотермой называют линию, которая отображает изотермический процесс на графике. Этот процесс описывает закон Бойля-Мариотта.

Изоэнтропийный процесс.

Изоэнтропийный процесс — это изменение термодинамической системы с условием не изменения энтропии (S = const ). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

pV γ = const ,

где γ — показатель адиабаты, определяемый типом газа.